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Abstract. We investigate the following approach to symmetric encryp-
tion: �rst encode the message via some keyless transform, and then
encipher the encoded message, meaning apply a permutation FK based
on a shared key K. We provide conditions on the encoding functions
and the cipher which ensure that the resulting encryption scheme meets
strong privacy (eg. semantic security) and/or authenticity goals. The en-
coding can either be implemented in a simple way (eg. prepend a counter
and append a checksum) or viewed as modeling existing redundancy or
entropy already present in the messages, whereby encode-then-encipher
encryption provides a way to exploit structured message spaces to achieve
compact ciphertexts.

1 Introduction

Enciphering vs. encrypting. Many popular books on cryptography describe
\encryption" as applying a key-indexed permutation FK to the plaintext M ,
thereby obtaining the ciphertext C = FK(M). Yet, if the goal of encryption is
privacy (as it is usually assumed to be), then our community has long since rec-
ognized that, being deterministic, this realization of encryption cannot possibly
achieve the strong security guarantees that one would hope for, namely, semantic
security under chosen-plaintext attack and beyond [9, 7, 13]. (For example, if the
same message is encrypted twice an adversary will be able to detect this.)

From this point forward, a family of permutations F = fFKg will be called
a cipher. Applying one of these functions, FK , is enciphering (not encrypting).
Applying F�1

K is deciphering (not decrypting). In this paper, \good" for an
enciphering method means approximating (in the usual ways [11]) a family of
random permutations. On the other hand, \good" for an encryption scheme
means achieving privacy properties at least as strong as semantic security. As
indicated above, good enciphering never, by itself, makes for good encryption.



Despite the last statement, there seems to be a widespread belief that enci-
phering a message is, somehow, almost as good as encrypting it. When messages
are somehow \structured," or the message space has \enough entropy," maybe
enciphering does the job. Is there some scienti�c basis for such a belief?

In this paper we investigate the circumstances under which good encipher-
ing really does make for good encryption. This leads us to introduce encoding
schemes as a way to conceptualize what is happening when you encipher struc-
tured messages. Let us describe what are encoding schemes, and how they relate
to enciphering.

Encode-then-encipher encryption. Start with a good cipher that operates
on messages of any length at all. (In other words, FK , for a random K, \looks
like" a random length-preserving permutation.) Now to encrypt M , �rst \en-
code" it into some string M�. The encoding might be extremely simple|like
prepending a counter, or appending some 0-bits, or maybe doing both. The
encoding might even be the identity function. All that is demanded of an en-
coding method is that it does not \lose" information: you can \decode" M� to
recover M , and you can recognize when a string is and is not the encoding of
any message. Now to encrypt message M under key K, encipher the encoded
message M� using FK , yielding ciphertext C = FK(M

�). To decrypt a cipher-
text C decipher it to �nd M� = F�1

K (C), and then decode M� to get either a
message M or an indication that M� is not the encoding of any message. We
call this style of encryption \encode-then-encipher encryption." This is not a
popular way to encrypt, though it is certainly a very natural paradigm.

Our results. In this paper we investigate how properties of the encoding
scheme and the enciphering scheme can give rise to security properties of the
resulting encryption scheme.

Suppose �rst that the encoding scheme adds in a nonce|usually a counter or
a random value. The nonce can be added into the message in any way at all. All
one needs is that the \collision probability"|the chance that two encoded mes-
sages come out the same"|be small. We prove in Theorem 1 that enciphering
such encodings provides semantic security.

Next we look at encoding schemes which result in encoded messages which
have enough redundancy. This means that \most" stringsM� will be considered
\bad." We prove in Theorem 2 that the resulting encryption scheme will now
achieve message authenticity. It is as though the sender had sent a MAC along
with his transmission. Interestingly, this theorem requires that the cipher be a
strong pseudorandom permutation [11]. We show in Theorem 3 that an ordinary
pseudorandom permutation won't do.

The actual results are quantitative. They show how much privacy and au-
thenticity is guaranteed as a function of (easily-calculated) numbers associated
to the encoding scheme, and as a function of the (quanti�ed) security of the
underlying cipher.

Justifying some old intuition. At some level it would seem to be folklore
that enciphering strings which employ nonces or redundancy makes for good



encryption. In the security literature one sees many statements to the e�ect that
we assume that messages to be encrypted employ adequate redundancy, or we
avoid replay attacks by including a nonce in the messages we encrypt. Our results
help formalize what such authors may have had in mind, since the statements
above become meaningful and true when \encryption" means \enciphering" and
when the roles of nonces and redundancy are formally de�ned.

Is the encoding step \real"? In some applications of encode-then-encipher
encryption we imagine that the encoding step will be an ostensible part of en-
crypting: the piece of software which encrypts M will encode it �rst, and then
encipher the encoded message. For example, the encryption engine might take
in a message M , prepend a counter, append a checksum, and encipher the re-
sulting string. But encode-then-encipher encryption is actually more interesting
when the encoding and decoding operations do not occur within the customary
boundary of the encryption engine. For example, the encryption software may be
presented with an already-formatted IP packetM�. Its payload is the messageM
one should get on decodingM�, but the encryption software itself knows nothing
about where is the payload or how to extract it. Still, the encoding and decod-
ing processes really did occur, albeit within a di�erent piece of code. Finally, the
encoding step may exist purely as a conceptualization. For example, if messages
are supposed to be English-language sentences then the encoding step can be
regarded as the the identity function on the space of proper English-language
sentences, while the decoding function takes a stringM� and returnsM =M� if
it is English, or else an indication that this is not an English sentence. Probably
this decoding operation can only performed by a human! Nonetheless, even in
this case the language of encodings makes sense.

In general, the encoding of messages should be seen as a model for how the
messages that we are enciphering might arise. This model is a more useful and
general approach than trying to equip an unknown message space with a distribu-
tion. For example, a distribution on messages can not handle ideas like inserting
a counter into the message, and it is quite arti�cial to try to equip English-
language utterances with some distribution. The encoding/decoding model lets
us discuss, in a natural and simple way, all the relevant properties about how
messages might look.

Why encode-then-encipher? Encode-then-encipher encryption can be used
to provide short ciphertexts with a high degree of independence on message-
formatting conventions. As such, it can be used to provide a convenient migration
path for legacy protocols. Let us explain.

In various application, particularly in networking, a \packet format" will have
been de�ned, where this packet format includes redundancy and/or nonces, but
has no �elds for cryptographic purposes (eg., �elds for an IV or MAC). Now
suppose a need arises to add in privacy or authenticity features. At the same
time, there will often be a real-world constraint not to grow or re-de�ne the
packet format.

Using encode-then-encipher you probably do not have to. If packets are
known to repeat rarely or not at all (eg., packets always contain a sequence



number) then semantic security is automatically guaranteed just by applying
a good cipher. And if packet formats already include redundancy (which they
typically do if for no other reason than to simplify parsing) then there may be no
need to add in a separate MAC; once again, good enciphering (this time, with a
strong pseudorandom permutation) is enough. And because it is irrelevant how
and where the nonce and redundancy appeared in the packet, privacy and au-
thenticity will be retained, with no protocols changes at all, if packet formats
should subsequently change in some details.

The result is that encode-then-encipher encryption would leave packet sizes
alone (our ciphers are understood to be length-preserving), and they would leave
packets looking identical (after deciphering) to the way they looked before. This
allows for modular software changes with minimal code disruption. The code
which enciphers as a way to encrypt doesn't know (or care) where is the sequence
number, say, where other �elds are, or what values these �elds can take. Such
indi�erence makes for robust and simple software, and thus an easier migration
path for adding in security features.

Constructing variable-input-length ciphers. To encrypt messages using
the encode-then-encipher approach you need to encipher strings which may be
long or short, and whose lengths may vary from one enciphering to the next. The
cipher should look like a random length-preserving permutation � :M� !M�.
This may sound just like a block cipher, but it is actually quite di�erent, because
the domain includes strings of di�erent lengths. One construction is given in [5],
and others are possible, building on work like [11] and [12].

A notion of authenticity for encryption schemes. We note a �nal con-
tribution of this paper, which is the notion of authenticity de�ned in Section 2.
The usual way that message authenticity has been de�ned (eg., [2]) assumes that
each message M is accompanied by a tag (the message authentication code) � .
The adversary wants to produce a hitherto unseen messageM 0 and a valid tag � 0

for it. But this setting does not apply to us, where the messages being authenti-
cated are never made visible. In the new setting the adversary's goal is to get the
receiver to accept as authentic a string C|with a possibly unknown \meaning"
M|where the adversary has not already witnessed C. This necessitates a new
notion (or measure) of security for a symmetric encryption scheme.

While several de�nitions of privacy for symmetric encryption schemes are
given in [1], here we are suggesting a notion of authenticity for an encryption
scheme. Namely, consider a symmetric encryption scheme in which the decryp-
tion algorithm is allowed to reject ciphertexts to indicate that they are unau-
thentic. We take the setting of [1] in which the adversary gets to see (via an
oracle) ciphertexts of messages of her choice encrypted under a key K. We then
say that the adversary wins if she can produce a valid ciphertext (meaning one
which the decryption function under K does not reject) which was never an
output of the encryption oracle.

Early (submitted) versions of this paper date to December 1998. Since then,
de�nitions of authenticity for symmetric encryption schemes have appeared else-
where [10]. We refer the reader to [4] for a comprehensive treatment of di�erent



notions of authenticity for symmetric encryption schemes and their relations to
the notions of privacy.

2 De�nitions

We provide de�nitions for PRFs, PRPs and SPRPs over arbitrary message
spaces, and de�nitions of privacy and authenticity for symmetric encryption
schemes.

History and comparisons. The basic de�nition of a PRF (pseudorandom
function), as given by [8], sets the domain, range and keyspace to all be strings
of some �xed length, and then de�nes security asymptotically. We adopt con-
crete versions of these de�nitions, as per [2], in order to model block-cipher
based construction, and also to allow for a domain (which we call the message
space) containing strings of di�erent lengths. Our notion of a PRP (pseudoran-
dom permutation) follows [2, 3] and di�ers from that of [11] in that we measure
distinguishability versus a random permutation rather than a random function,
which is important when concrete security is considered. The notion of an SPRP
(strong pseudorandom permutation) is that of [11] concretized in the style of [2]
and extended with regard to domains. The de�nition of privacy for symmetric
encryption schemes is from [1].

Notation and conventions. A message space M is a subset of f0; 1g� for
which x 2 M implies that x0 2 M for all x0 of the same length of x, and for
which there exists an eÆcient (say linear time) algorithm to decide membership.
A ciphertext space C is a subset of f0; 1g�. A key space K is a set together with a
probability measure on that set. Writing K  K means to choose K at random
according to this probability measure. The notation jX j denotes the length of
X if X is a string and the number of elements in X if X is a set.

Ciphers. Let K,M and C be a key space, message space, and ciphertext space. A
family of functions is a map F : K�M! C. IfK 2 K then we let FK(�) = FK(�)
and call this an instance of F . We let f  F denote the operation of picking a
function from F at random. (This is shorthand forK  K; f  FK .) We assume
that jFK(M)j = `(jM j) depends only on jM j and call ` the length function of
the family. A cipher is a family of functions F : K�M! C in which each FK :
M! C is one-to-one and onto. In this case, F�1

K denotes the inverse of FK(�).
A cipher is length-preserving if FK(M) = jM j for all K 2 K and M 2 M.
For simplicity, all ciphers in this paper are assumed to be length-preserving. A
block-cipher is a cipher with domain and range f0; 1gn. The number n is called
the block length.

We let Rand(M; `) denote the family of all functions f : M! f0; 1g� that
satisfy jf(M)j = `(jM j) for all M 2 M. A random function f from Rand(M; `)
is determined as follows: for each M 2 M, f(M) is a random string of length
`(jM j). Also let Perm(M) denote the cipher consisting of all length-preserving,
one-to-one and onto functions on M. A random function � from Perm(M) is
determined as follows: for each number i such thatM contains strings of length i,



let �i be a random permutation on f0; 1gi. Then de�ne �(M) = �i(M), where
i = jM j.

PRFs, PRPs and SPRPs. A distinguisher is a (possibly probabilistic) algo-
rithm A which has access to an oracle. If F : K �M ! C is a function family
with length function ` we let

Adv
prf
F (A) = Pr[K  K : AFK (�) = 1]� Pr[f  Rand(M; `) : Af(�) = 1]

denote the advantage of A in distinguishing F from a random function. We let

Adv
prp
F (A) = Pr[K  K : AFK(�) = 1]� Pr[�  Perm(M) : A�(�) = 1]

denote the advantage of A in distinguishing F from a random permutation.
De�ne

Adv
prf
F (t; q; �) = max

A
fAdvprfF (A)g

Adv
prp
F (t; q; �) = max

A
fAdvprpF (A)g

where the maximum is taken over all adversaries having time-complexity at
most t and asking at most q oracle queries, these queries totaling at most �
bits. (The time-complexity, here and hereafter, refers to the execution time of
the experiment underlying the de�nition of the advantage, plus the size of the
description of the adversary.)

To de�ne SPRPs we give the distinguisher not only an oracle for the function,
but also one for its inverse. Let F : K�M! C be a PRP with length function `.
Then we let

Adv
sprp
F (A) =

Pr[K  K : AFK (�);F�1

K
(�) = 1]� Pr[�  Perm(M) : A�(�);��1(�) = 1]

denote the advantage of A in distinguishing F from a random permutation.
De�ne

Adv
sprp
F (t; q; �) = max

A
fAdvsprpF (A)g

where the maximum is taken over all adversaries having time-complexity at
most t and asking at most q oracle queries, these queries totaling at most � bits.

Throughout, if the distinguisher inquires as to the value of oracle f at a
point M 62 M then the oracle responds with the distinguished point ?. Since
we assume that there is a (simple) algorithm to decide membership inM there
is in fact no point for the adversary to make such inquiries.

Encapsulation schemes. Fix a key space K, a message space M, and a ci-
phertext space C. An encapsulation scheme SE = (K; E ;D) is a triple of algo-
rithms. The probabilistic key-generation algorithm K produces a key K 2 K;
we write K  K. The encryption algorithm E can be either probabilistic or
stateful. It takes a key K 2 K and a message M 2 M and returns ciphertext
C = EK(M; r) 2 C[f?g. If probabilistic, r 2 f0; 1g� is its coins tosses, which are
taken anew upon each invocation. If stateful, r is the internal state, which the



encryption algorithm updates upon each invocation and which is securely main-
tained across invocations. (The state is typically a counter, which is incremented
by some message-dependent amount.) The value ? is returned if M 62 M or (if
this is a stateful encryption scheme) the state r indicates that the message M
can not be sent (when, for example, too many messages have already been sent).
Algorithm D takes K 2 K and C 2 f0; 1g� and computes M = DK(C) whereM
is either a string inM or the distinguished symbol ?. A return value of ? is used
to indicate that C is regarded as unauthentic. We call C valid if DK(C) 2 M
and we call C invalid if DK(C) = ?. We also permit applying EK to (?; r),
which results in a return value of ?. Likewise, applying DK to ? is permitted
and this gives a return value of ?. We require that if C = EK(M; r) and C 6= ?
then DK(C) =M .

When we think of the goal of SE as privacy, or a combination of privacy and
message authenticity, we typically call it an encryption scheme. When we think
of the goal of SE as authenticating messages then we call it an authentication
scheme. But we emphasize that there is no syntactic distinction between an
encryption scheme and an authentication scheme under this formalization: they
are both encapsulation schemes.

Privacy. Several formulations for the privacy of a symmetric encryption scheme
under chosen-plaintext attack were provided in [1] and compared in terms of
concrete security. We will use one of these notions, namely \real-or-random"
security. The idea is that an adversary cannot distinguish the encryption of text
from the encryption of an equal-length string of garbage. For the formalization,
let SE = (K; E ;D) be an encryption scheme and let A be an adversary with an
encryption oracle. If the encryption scheme is probabilistic then fresh random
choices are made for each query. If the encryption scheme is stateful then the
state is properly initialized and then adjusted with each query. De�ne

Adv
priv
SE

(A) = Pr
h
K  K : AEK(�) = 1

i
� Pr

h
K  K : AEK($j�j) = 1

i
:

In the �rst game, the oracle, given a message, returns an encryption of it under
keyK; in the second game the oracle, given a message, ignores it except to record
its length n, and then returns an encryption of a random message of length n.
The advantage of A is a measure of the adversary's ability to tell these two
worlds apart. We let

Adv
priv
SE

(t; q; �) = max
A
fAdvpriv� (A)g

where the maximum is over all adversaries which have time-complexity at most
t and ask at most q oracle queries, where these queries total at most � bits.

Authenticity. Consider parties sharing a key K and sending messages using
an encapsulation scheme SE = (K; E ;D). We are interested in authenticity:
the receiver wants to be con�dent that a received ciphertext (and underlying
message) really did originate with the sender. To formalize this an adversary
will be given a way to generate authenticated messages of her choice: M1 7!
C1;M2 7! C2; : : : ;Mq 7! Cq . She will \win" if she computes a new string C

(that is, C 62 fC1; : : : ; Cqg) which would be deemed authentic by the receiver.



Authenticity in the context of an encapsulation scheme is a more general con-
cept than that of a message authentication code (MAC). A MAC makes explicit
a particular mechanism, namely the attachment of a tag to the transmission.
(The tag, computed using the key, is created by the sender and checked by the
receiver.) An encapsulation scheme may use a MAC, or may not, and consid-
eration of authenticity for such a scheme cannot make assumptions about the
presence of any type of mechanism. But there is a deeper di�erence between a
MAC and a general authentication scheme. In formalizing the security of a MAC
the adversary makes a number of queries to a MAC-generation oracle, with each
query mapping the message Mi to its tag ti. After that the adversary has to
come up with a new message M and a tag t such that the receiver will deem
(M; t) authentic. In particular, the adversary must \know" the message M that
is being forged, insofar as the adversary outputs it along with t. In contrast, an
adversary attacking an authentication scheme in the general sense we are de�n-
ing wins even if she does not know what is the message M which is being forged.
All that is required is that there is such a message underlying C|that is, the
receiver will recover something in the message spaceM (and not an indication
that C is bogus).

Formally, let SE = (K; E ;D) be an authentication scheme and let A be an
adversary who is given oracle access to E . After interacting with that oracle the
adversary outputs a string C. We say C is new if C was not the response to any
earlier oracle query asked by A. Adversary A is said to be successful if C is new
and valid, and we measure the probability of this:

Advauth
SE (A) = Pr[K  K ; C  AEK(�) : C is new and DK(C) 6= ? ] :

The quality of SE in authenticating messages is measured by the function

Advauth
SE (t; q; �) = max

A
fAdvauth

� (A)g

where the maximum is over all adversaries who have time-complexity at most t
and make at most q � 1 oracle calls, these totaling a most � � jCj bits, where
C is the length of A's output. For simplicity, we assume that an adversary A

attacking the authenticity of SE will only output a string which is new.
The above notion is called \integrity of ciphertexts" in [4] who provide a

comprehensive picture of how it relates to other notions of privacy and au-
thenticity for encapsulation schemes. In particular they show that integrity of
ciphertexts plus privacy against chosen-plaintext attack imply privacy under
chosen-ciphertext attack.

3 Encoding Schemes

Syntax. Fix message spacesM;M�. An encoding scheme (\onM", or \from
M to M�") is a pair of algorithms Encode = (Encode;Decode) as we now
describe.

Algorithm Encode can be either probabilistic or stateful, while Decode is
neither. First assume that Encode is probabilistic (not stateful). Then each time
Encode is called on an input M 2 M the algorithm 
ips some coins, r, and



returns a string M� = Encode(M; r) 2 M�. We assume that for any string
M 2 M and any coins r, we have that jEncode(M; r)j = `(jM j) for some
function `, the \length function" of the encoding scheme.

Algorithm Decode takes as input M� 2 f0; 1g�. It returns either a binary
string M 2 M or the distinguished symbol ?. If Decode(M�) is a binary string
we say thatM� is valid , while we say thatM� is invalid if Decode(M�) = ?. We
demand that for any M 2M and any r, we have that Decode(Encode(M; r)) =
M .

We allow that Encode and Decode be presented with any string at all, even
ones outside ofM andM�. If you try to encode a stringM 62 M then the result
is the distinguished value ?. If you try to decode a string M� 62 M� then the
result is the distinguished value ?. We further establish the convention that you
can encode or decode ?, which once again returns ?.

For simplicity in theorem statements we assume that Encode and Decode

are eÆciently computable, say in linear time.

Rare-collision encodings. Let Encode = (Encode;Decode) be an encoding
scheme and let `(n) be its length function. Let �: N! R be a function. We say
that Encode is �-colliding if for and any number q and any (even computation-
ally unbounded) adversary A who asks q queries, the probability that some two
of these queries receive the same valid response is at most �(q).

Pr[(M�
1 ; : : : ;M

�
q ) Responses AEncode(�) : 9 i < j s.t. M�

i 6= ?,

M�
j 6= ?, and M�

i =M�
j ] � �(q) :

We shall say that hM�
1 ; : : :M

�
q i \collide" if some pair of these strings are the same

and are di�erent from?. The reader may prefer to think ofM1 =M2 = � � � =Mq

since typically this would be the adversary's best strategy when trying to produce
a collision (asM 6=M 0 implies that their encodings, if valid, have to be di�erent).

Example 1. Encoding scheme Prepend-128-Random-Bits works as follows. The
message space isM = f0; 1g�. Function Encode takes an input M and outputs
r kM , where r is a sequence of 128 random bits. Function Decode takes an input
M� and behaves as follows. If M� is at least 128 bits, then Decode outputs all
but the �rst 128 bits ofM�. IfM� is less than 128 bits then Decode(M�) outputs
?. Then Prepend-128-Random-Bits is C(q; 2128)-colliding, where C(q;m) denotes
the probability of at least one collision in the experiment of throwing q balls,
independently and at random, into m bins.

Collision-free encodings. For algorithm Encode to be stateful means that
it maintains state across invocations. The initial value of that state is some �xed
constant, r0. Typically there will be a limit, N , on the number of times that
Encode may be used. After that number of invocations Encode will return? even
when the inquiry is inM. We require that for all messages M and all internal
states r, if Encode(M; r) returns a binary string M� then Decode(M�) = M .
We emphasize that decoding is stateless.



Stateful encoding schemes are of interest because with them we can make
an encoding scheme collision free, meaning 0-colliding, in the language above.
Note that getting two ? values does not count as a collision. Here is an example.

Example 2. Encoding scheme Prepend-64-Bit-Counter works as follows. The mes-
sage space isM = f0; 1g�. A counter ctr is initialized to 0. The i-th message is
encoded as follows. If i � 264 then the encoding is ?. Otherwise the encoding
is M� = hii k M , where hii the number i written as a 64-bit binary string.
Function Decode takes an input M� and behaves as follows. If jM�j < 64 then
Decode returns ?. Otherwise it returns M� after having expunged the �rst 64-
bits. Clearly Prepend-64-Bit-Counter is collision free: the counter guarantees that
no two encodings can collide.

Sparse encodings. Let Encode = (Encode;Decode) be an encoding scheme
and let Æ be a real number. We say that encoding scheme Encode is Æ-dense if
for all n 2 N,

Pr[M�  f0; 1gn : Decode(M�) 2 f0; 1g� ] � Æ :

That is, for every message length, at most a Æ-fraction of all strings of that length
are valid (they decode to strings in M). The rest are invalid encodings (they
decode to ?).

Example 3. The encoding scheme Prepend-32-Zeros works as follows. LetM =
f0; 1g�. De�ne Encode(M) = 032 k M . De�ne Decode(M�) to be M� after
stripping away its �rst 32 bits, assuming that M� has at least 32 bits, and set
Decode(M�) = ? otherwise. Then Prepend-32-Zeros is 2�32-dense: a string is
valid (it starts with 32 zeros) with probability at most 2�32. Indeed the proba-
bility that a random string M� is valid is exactly 2�32 if the length of M� is at
least 32 bits, while the probability is 0 if the length of M� is less than 32 bits.

Example 4. Let the message spaceM be odd-parity-adjusted ASCII strings of
length at least 50 bytes. This means that a message M 2 M is a sequence of
bytes M = b1 k � � � k bn, for n � 50, where each bi is a byte having its low 7
bits arbitrary and its high bit whatever is necessary so that the number of 1-bits
in bi will be odd. Encoding scheme Odd-Parity is de�ned as follows. Function
Encode is the identity function. Function Decode checks that the bit length of
its input is divisible by 8, that the input is at least 50 bytes, and that each byte
has odd parity. If these conditions are satis�ed then Decode returns its input.
Otherwise it returns ?. Then Odd-Parity is 2�50-dense: a random string is valid
with probability at most 2�50. Indeed the probability that a random n-byte
string is valid is 2�n if n � 50, and 0 if n < 50 or if the input is not a byte string
at all.
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Fig. 1. Scheme F Æ Encode: encrypting (left-hand side) and decrypting (right-hand
side) using the encode-then-encipher paradigm. The plaintext is M , the ciphertext is
C, the cipher is F = fFKg, and the encoding scheme is Encode = (Encode;Decode).

4 Enciphering Encoded Messages

Let Encode = (Encode;Decode) be an encoding scheme from M to M� and
let F = fFK :M� ! M�g be a cipher with key space K. Then we de�ne the
following encapsulation scheme F Æ Encode = (K; E ;D):

(1) K chooses a random key K  K and outputs it.

(2) EK(M) sets M�  Encode(M), returns ? if M� = ?, and otherwise
computes C  FK(M

�) and returns that. Algorithm E is stateful if and
only if Encode is. If Encode is stateful then the initial state for E is the
initial state mandated by Encode, and E maintains the state needed by the
encoding scheme.

(3) DK(C) returns ? if C 62 M�, and otherwise computes M�  F�1
K (C), sets

M  Decode(M�), and returns M .

For a pictorial representation, see Figure 3.

Privacy from Rare/Collision-Free Encodings.We show that encryption
scheme F Æ Encode is private if encoding scheme Encode has rare or no collisions
and F is a secure cipher, in the sense of being a good PRP. The following theorem
makes this formal and quantitative.

Theorem 1. Let Encode = (Encode;Decode) be an encoding scheme from M
to M� and let F = fFK :M� ! M�g be a cipher with key space K. Suppose
that Encode is �-colliding. Then F Æ Encode = (K; E ;D) has security

Adv
priv
FÆEncode(t; q; �) � Adv

prf
F (t0; q; �) + �(q)

where t0 = t+O(�).



Proof. Let B be an adversary attacking the privacy of F Æ Encode. Let t be
its running time, q the number of queries it makes, and � the length of all its
queries put together, plus the length of B's output. Our goal is to upper bound
Adv

priv
FÆEncode(B). To this end we introduce a couple of more algorithms and some

associated probabilities.

Algorithm D is a distinguisher for F . It is given an oracle for a permutation
f 2 Perm(M�). It runs B. When B makes an oracle query M , distinguisher D
computes M�  Encode(M) and C  f(M�). It returns C to B as the answer
to the query. When B terminates, D outputs whatever B outputs.

Algorithm A is a collision �nding adversary for Encode. It is given oracle Encode.
It picks a permutation f from Perm(M�) at random. (Or simulates such a
permutation. The di�erence is technically immaterial since the running time of
A is not restricted.) It then runs B. When B makes an oracle queryM , algorithm
A computesM�  Encode(M) and C  f(M�). It returns C to B as the answer
to the query. When B terminates, so does A.

We now de�ne the following probabilities:

p1 = Pr[K  K : BEK(�) = 1]

p2 = Pr[K  K : BEK($j�j) = 1]

p3 = Pr[K  K : DFK(�) = 1]

p4 = Pr[�  Perm(M�) : D�(�) = 1]

p5 = Pr[(M�

1 ; : : : ;M
�

q ) Responses AEncode(�) : 9 i < j s.t. M�

i =M�

j 6= ?] :

Note that Advpriv
FÆEncode(B) = p1 � p2. To upper bound it we use the following

claims. First, p1 = p3. Second, p2 � p4 � p5. The proofs of these claims are
omitted here for lack of space but can be found in the full version of this paper
[6]. Given these claims we have

Adv
priv
FÆEncode(B) = p1�p2 � p3�(p4�p5) = (p3�p4)+p5 � Adv

prp
F (D)+�(q) :

This concludes the proof of Theorem 1.

Authenticity from Sparse Encodings. We show that F Æ Encode is an au-
thenticated encryption scheme if encoding Encode adds adequate redundancy
and F is a strong PRP. The following theorem makes this formal and quan-
titative. We remark that this result requires that the PRP be strong, which
the previous result did not, and we subsequently show this extra requirement is
necessary.

Theorem 2. Let Encode = (Encode;Decode) be an encoding scheme from M
toM� and let F = fFK :M� !M�g be a cipher with key space K. Suppose that
Encode is Æ-dense and that q � 1

2Æ . Then F Æ Encode = (K; E ;D) has security

Advauth
FÆEncode(t; q; �) � Adv

sprp
F (t0; q; 2�) + 2Æ

where t0 = t+O(�).



Proof. Let B be an adversary attacking the authenticity of F Æ Encode. Let t
be its running time, q � 1 the number of queries it makes, and � the total
length of all its queries put together, and its �nal output. Our goal is to upper
bound Advauth

FÆEncode(B). To this end we introduce an algorithm D and some
probabilities.

Algorithm D is a distinguisher for F . It is given two oracles: f and f�1, where
f 2 Perm(M�) is a permutation. It runs B. When B makes an oracle query
M , distinguisher D computes M�  Encode(M) and C  f(M�). It returns C
to B as the answer to the query. When B terminates, it outputs a ciphertext C,
which is supposed to its forgery. Algorithm D outputs 0 if C 62 M�. Otherwise
D computesM�  f�1(C) (this is the one and only time it uses its f�1 oracle).
Algorithm D then computes M  Decode(M�). If M = ? then D outputs 0,
else D outputs 1.

We now de�ne the following probabilities:

p1 = Pr[K  K ; C BEK(�) : C is new and DK(C) 6= ?]

p2 = Pr[K  K : DFK(�);F�1

K
(�) = 1]

p3 = Pr[�  Perm(M�) : D�(�);��1(�) = 1]

Note that Advauth
FÆEncode(B) = p1. To upper bound it we use the following claims.

First, p1 = p2. Second, p3 � 2Æ. The proofs of these claims are omitted here for
lack of space but can be found in the full version of this paper [6]. Given these
claims we have

Advauth
FÆEncode(B) = p1 = p2 = (p2 � p3) + p3 � Adv

prp
F (D) + 2Æ :

This concludes the proof of Theorem 2.

We now discuss the necessity of the extra requirement on the PRP above, namely
that it be strong. The following indicates that without this requirement, the au-
thenticity does not hold. Using the bounds found in the proof, the informal
theorem statement below is easily adapted to give a more precise (but less un-
derstandable) quantitative assertion. A proof of the following can be found in
[6].

Theorem 3. If there exists a secure PRP then there exists a secure PRP F

(that is not a strong-PRP) and a Æ-dense encoding scheme Encode for which the
scheme F Æ Encode does not achieve authenticity.
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