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Successes of Reinforcement Learning

Video Pinball _] 2839%

Approaching or passing human level performance
BUT

Can take millions of episodes! People learn this MUCH faster
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People Learn via Curricula

People are able to learn a lot of complex tasks very efficiently
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Example: Quick Chess

* Quickly learn the
fundamentals of chess

5 x 6 board

Fewer pieces per type

No castling

* No en-passant
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Example: Quick Chess
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Task Space

Pawns + King

Pawns only / ‘
L4 \\
/,« \\‘ Ta rge/t task

Empty task

One piece per type

* Quick Chess is a curriculum designed for people

* We want to do something similar automatically for autonomous agents
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Task = MDP

Curriculum Learning

Environment

Action

Task Creation

Assume Given

Sequencing Transfer Learning
This work: 2 types

e Curriculum learning is a complex problem that ties task creation, sequencing,
and transfer learning
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Value Function Transfer

* |nitialize Q function in target task using values learned in a
source task

QSOUFCG(SIa)
Source Task Target Task
— " —
* Assumptions: i ></_
* Tasks have overlapping state and action spaces ol o
 ORan inter-task mapping is provided ER G
* Existing related work on learning mappings :2 — zﬁ

Image credit: Taylor and Stone, JMLR 2009
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Reward Shaping Transfer

* Reward function in target task augmented with a shaping reward
f:

r'(s,a,s’) =r(s,a,s") + f(s,a,s")
|

\ J \ )
1 1 |

New Reward Old Reward Shaping Reward

\

* Potential-based advice restricts f to be difference of potential
functions: , , )
f(s,a,5") = (5", m(s)) — O(s, a)
e Use the value function of the source as the potential function:

(s, a) = Qsource(s, a)
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The Problem: Autonomous Sequencing
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* Existing work heuristic-based, such as examining performance on the
target task, and using heuristics to select next task

* In this work, we use learning to do sequencing
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Sequencing as an MDP

Curriculum Task

Curriculum
Agent

Curriculum Action

— T~

Task 1 Task 2 Task N

Environment

Environment Environment

State
Reward

State
Reward

State
Reward

Action

Action Action

Curriculum State

Curriculum Reward
v

Curriculum

Agent
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Sequencing as an MDP

State space S¢: All policies 7; an agent can represent
Action space A¢: Different tasks M, an agent can train on
Transition function p¢(s¢,a“): Learning task a¢ transforms an agent’s policy s¢

Reward function r¢(s¢,a¢): Cost in time steps to learn task a¢ given policy s¢
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Sequencing as an MDP

A policy ©¢: S¢ > A€ on this curriculum MDP (CMDP) specifies which task to
train on given learning agent policy T,

Essentially training a teacher
How to do learning over CMDP?

How does CMDP change when transfer method changes?
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Learning in Curriculum MDPs

[1,3,4,...0] @ v [1,2,3,...0]
-~ Riz ™
My -~ v T My
,/, R ~~~~~ [1,2,3,...9]
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Extract Raw CMDP Function Approximation
: Extract Features :
State Variables and Learning

\ 4

\ 4

* Express raw CMDP state using the weights of base agent’s VF/policy

* Extract features so that similar policies (CMDP states) are “close” in feature
space
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Example: Discrete Representations

CMDP State 1 CMDP State 2 CMDP State 3

Left Right  Policy Left Right  Policy Left Right  Policy
State 1 0.3 0.7 > State 1 0.2 0.8 > State 1 0.7 0.3 <
State 2 0.1 0.9 > State 2 0.2 0.8 > State 2 0.9 0.1 <
State 3 0.4 0.6 > State 3 0.2 0.8 > State 3 0.6 0.4 <
State 4 0.0 1.0 > State 4 0.3 0.7 > State 4 0.0 1.0 >

« CMDP states 1 and 2 encode very similar policies, and should be close in
CMDP representation space



Example: Discrete Representations

State 1

<—Tiling #1

<—— Tiling #2

Normalized
Q(State 1, Left)

Normalized
Q(State 1, Right)

State 2

<«—— Tiling #1

Tiling #2

Normalized

Q(State 2, Left)

* One approach: use tile coding

Normalized
Q(State 2, Right)

* Create a separate tiling on a state-by-state level

* When comparing CMDP states, the more similar the policies are in a
primitive state, the more common tiles will be activated

e Each primitive state contributes equally towards the similarity of the

CMDP state
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Continuous CMDP Representations

* In continuous domains, weights
are not local to a state

K7
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tput layer
 Needs to be done separately for RS

each domain hidden layer 1 hidden layer 2
* Neural networks
e Tile coding
* Etc...

<——Tiling #1

<«—— Tiling #2

 If the base agent uses a linear
function approximator, one can
use tile coding over the
parameters as before
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Changes in Transfer Algorithm

’ Sso
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* Transfer method directly affects CMDP state representation and transition
function

 CMDP states represent “states of knowledge,” where knowledge represented as
VF, shaping reward, etc.

* Similar process can be done if knowledge parameterizable
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Experimental Results

e Evaluate whether curriculum
policies can be learned

e Grid world
* Multiple base agents

* Multiple CMDP state
representations

e Pacman

* Multiple transfer learning
algorithms

* How long to train on sources?




Grid world Setup

Agent Types

* Basic Agent

» State: Sensors on 4 sides that measure distance to keys, locks, etc.
* Actions: Move in 4 directions, pickup key, unlock lock

* Action-dependent Agent
e State difference: weights on features are shared over 4 directions

* Rope Agent
* Action difference: Like basic, but can use rope action to negate a pit

CMDP Representations

* Finite State Representation
e For discrete domains, groups and normalizes raw weights state-by-state to form CMDP features

* Continuous State Representation
* Directly uses raw weights of learning agent as features for CMDP agent
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Basic Agent Results

—5000

—10000

—15000

—20000 .
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—25000 — Narvekar et al. (2017) .
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Action-Dependent Agent Results
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Rope Agent Results
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Pacman Setup

Agent Representation

* Action-dependent egocentric features

CMDP Representation

* Continuous State Representation
* Directly uses raw weights of learning agent as features for CMDP agent

Transfer Methods
e Value Function Transfer

e Reward Shaping Transfer

How long to train on a source task?



Pacman Value Function Transfer
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Pacman Reward Shaping Transfer

—500

—

—1000 |
—1500 H

—2000

I I I
- pen P
M Ad B ind v Lomadhe o W er ey ) o Mol g

—2500

Cost to Learn Target Task

—3000

— no curriculum

— Svetlik et al. (2017)

—— continuous state representation
—— naive length 2 representation

—3500
0

University of Texas at Austin

100

200 300 400 500 600 700

CMDP Episodes

Sanmit Narvekar

26



How long to train?

-100000

-200000

-300000

-400000

Cost to Learn Target Task
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reward shaping (return-based)
reward shaping (small fixed)
value function (return-based)
value function (small fixed)

-500000
0
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Related Work

Restrictions on source tasks
* Florensa et al. 2018, Riedmiller et al. 2018, Sukhbaatar et al. 2017

Heuristic based sequencing
* Da Silva et al. 2018, Svetlik et al. 2017

MDP/POMDP based sequencing
* Matiisen et al. 2017, Narvekar et al. 2017

CL for supervised learning
* Bengio et al. 2009, Fan et al. 2018, Graves et al. 2017



Summary

* Generalize/Formulate curriculum

generation as an MDP

* Demonstrate curriculum policies can be

learned, and is robust to:

* Learning agent state/action representation

* CMDP representations
e Transfer algorithm used

University of Texas at Austin
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