# Learning Curriculum Policies for Reinforcement Learning

Sanmit Narvekar and Peter Stone
Department of Computer Science
University of Texas at Austin
{sanmit, pstone} @cs.utexas.edu





### Successes of Reinforcement Learning



Approaching or passing human level performance

#### **BUT**

Can take *millions* of episodes! People learn this <u>MUCH</u> faster

### People Learn via Curricula





People are able to learn a lot of complex tasks very efficiently

## Example: Quick Chess

- Quickly learn the fundamentals of chess
- 5 x 6 board
- Fewer pieces per type
- No castling
- No en-passant



### Example: Quick Chess





### Task Space



- Quick Chess is a curriculum designed for people
- We want to do something similar automatically for autonomous agents



 Curriculum learning is a complex problem that ties task creation, sequencing, and transfer learning

### Value Function Transfer

 Initialize Q function in target task using values learned in a source task



- Assumptions:
  - Tasks have overlapping state and action spaces
  - OR an inter-task mapping is provided
    - Existing related work on learning mappings



Image credit: Taylor and Stone, JMLR 2009

## Reward Shaping Transfer

Reward function in target task augmented with a shaping reward
 f:

$$r'(s, a, s') = r(s, a, s') + f(s, a, s')$$
New Reward Old Reward Shaping Reward

 Potential-based advice restricts f to be difference of potential functions:

$$f(s, a, s') = \Phi(s', \pi(s')) - \Phi(s, a)$$

Use the value function of the source as the potential function:

$$\Phi(s, a) = Q_{source}(s, a)$$

### The Problem: Autonomous Sequencing



- Existing work heuristic-based, such as examining performance on the target task, and using heuristics to select next task
- In this work, we use learning to do sequencing

# Sequencing as an MDP



University of Texas at Austin Sanmit Narvekar 11

## Sequencing as an MDP



- State space  $S^c$ : All policies  $\pi_i$  an agent can represent
- Action space  $A^c$ : Different tasks  $M_i$  an agent can train on
- Transition function  $p^c(s^c,a^c)$ : Learning task  $a^c$  transforms an agent's policy  $s^c$
- Reward function  $r^c(s^c, a^c)$ : Cost in time steps to learn task  $a^c$  given policy  $s^c$

## Sequencing as an MDP



- A policy  $\pi^c$ :  $S^c \to A^c$  on this curriculum MDP (CMDP) specifies which task to train on given learning agent policy  $\pi_i$
- Essentially training a teacher
- How to do learning over CMDP?
- How does CMDP change when transfer method changes?

### Learning in Curriculum MDPs



- Express raw CMDP state using the weights of base agent's VF/policy
- Extract features so that similar policies (CMDP states) are "close" in feature space

### Example: Discrete Representations



| CMDP State 1 |      |       |               |  |  |
|--------------|------|-------|---------------|--|--|
|              | Left | Right | Policy        |  |  |
| State 1      | 0.3  | 0.7   | $\rightarrow$ |  |  |
| State 2      | 0.1  | 0.9   | $\rightarrow$ |  |  |
| State 3      | 0.4  | 0.6   | $\rightarrow$ |  |  |
| State 4      | 0.0  | 1.0   | $\rightarrow$ |  |  |

| CMDP State 2 |      |       |               |  |  |
|--------------|------|-------|---------------|--|--|
|              | Left | Right | Policy        |  |  |
| State 1      | 0.2  | 0.8   | $\rightarrow$ |  |  |
| State 2      | 0.2  | 0.8   | $\rightarrow$ |  |  |
| State 3      | 0.2  | 0.8   | $\rightarrow$ |  |  |
| State 4      | 0.3  | 0.7   | $\rightarrow$ |  |  |

| CMDP State 3 |      |       |               |  |  |
|--------------|------|-------|---------------|--|--|
|              | Left | Right | Policy        |  |  |
| State 1      | 0.7  | 0.3   | <b>←</b>      |  |  |
| State 2      | 0.9  | 0.1   | <b>←</b>      |  |  |
| State 3      | 0.6  | 0.4   | <b>←</b>      |  |  |
| State 4      | 0.0  | 1.0   | $\rightarrow$ |  |  |

 CMDP states 1 and 2 encode very similar policies, and should be close in CMDP representation space

### Example: Discrete Representations



- One approach: use tile coding
- Create a separate tiling on a state-by-state level
- When comparing CMDP states, the more similar the policies are in a primitive state, the more common tiles will be activated
- Each primitive state contributes equally towards the similarity of the CMDP state

# Continuous CMDP Representations

- In continuous domains, weights are not local to a state
- Needs to be done separately for each domain
  - Neural networks
  - Tile coding
  - Etc...
- If the base agent uses a linear function approximator, one can use tile coding over the parameters as before





### Changes in Transfer Algorithm



- Transfer method directly affects CMDP state representation and transition function
- CMDP states represent "states of knowledge," where knowledge represented as VF, shaping reward, etc.
- Similar process can be done if knowledge parameterizable

### Experimental Results

Evaluate whether curriculum policies can be learned

#### Grid world

- Multiple base agents
- Multiple CMDP state representations

#### Pacman

- Multiple transfer learning algorithms
- How long to train on sources?





### Grid world Setup

#### **Agent Types**

- Basic Agent
  - State: Sensors on 4 sides that measure distance to keys, locks, etc.
  - Actions: Move in 4 directions, pickup key, unlock lock
- Action-dependent Agent
  - State difference: weights on features are shared over 4 directions
- Rope Agent
  - Action difference: Like basic, but can use rope action to negate a pit

#### **CMDP Representations**

- Finite State Representation
  - For discrete domains, groups and normalizes raw weights state-by-state to form CMDP features
- Continuous State Representation
  - Directly uses raw weights of learning agent as features for CMDP agent



## Basic Agent Results



### Action-Dependent Agent Results



## Rope Agent Results



### Pacman Setup

#### **Agent Representation**

Action-dependent egocentric features



#### **CMDP Representation**

- Continuous State Representation
  - Directly uses raw weights of learning agent as features for CMDP agent

#### **Transfer Methods**

- Value Function Transfer
- Reward Shaping Transfer

#### How long to train on a source task?

### Pacman Value Function Transfer



# Pacman Reward Shaping Transfer



### How long to train?



### Related Work

#### Restrictions on source tasks

• Florensa et al. 2018, Riedmiller et al. 2018, Sukhbaatar et al. 2017

#### Heuristic based sequencing

Da Silva et al. 2018, Svetlik et al. 2017

#### MDP/POMDP based sequencing

Matiisen et al. 2017, Narvekar et al. 2017

#### **CL** for supervised learning

Bengio et al. 2009, Fan et al. 2018, Graves et al. 2017

## Summary

- Generalize/Formulate curriculum generation as an MDP
- Demonstrate curriculum policies can be learned, and is robust to:
  - Learning agent state/action representation
  - CMDP representations
  - Transfer algorithm used





