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Traffic congestion caused by the stop-and-go waves
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https://docs.google.com/file/d/102bFR5-5fqQ0g75fBQYFacurfHgdTr1w/preview

Training Autonomous Venhicles to Reduce Traffic Congestion
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Training Autonomous Venhicles to Reduce Traffic Congestion
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https://docs.google.com/file/d/14x1yx31lUwxrGTXAe6eqxC42xTcD0e_o/preview

But we are still far from real-world deployment

Policies were trained and tested under similar conditions
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Progress to reduce traffic congestion using AVs

e Traffic reduction in both closed network (circular roads) and open network
[Wu et al., 2017b; Kreidieh et al., 2018; Vinitsky et al., 2018].

e Centralized and Decentralized driving policies [Vinitsky et al., 2018; Cui et al.,
2021].

e Developing robust driving policies:
o The robustness of a hand-coded policy is examined over different AV penetration and
driving aggressiveness [Parvate, 2020].
o Generalizing to different traffic densities on a closed ring road [Wu et al., 2021].

o Negative results on the generalization of a single-lane policy to a double-lane ring road
[Cummins et al., 2021].

o Robust policy is developed in bottleneck scenario [Vinitsky et al., 2020].



In this paper,

e \We first develop a single-lane decentralized policy that is robust to:
O AV placement in traffic
O Traffic flow

O Fraction of AVs in traffic (AVP)
e \We demonstrate that this is also robust to different road geometry:

O Road with two merging ramps




In this paper,

e \We first develop a single-lane decentralized policy that is robust to:
O AV placement in traffic
O Traffic flow

O Fraction of AVs in traffic (AVP)
e \We demonstrate that this is also robust to different road geometry:

O Road with two merging ramps

O Double-lane road




Single-lane decentralized policy: vehicle placement
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Policy evaluated under random vehicle placement

Training: even or random vehicle placement, main inflow 2000, train and evaluate at the same AVP,
Evaluating: random vehicle placement, main inflow= [1200, 2000]
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Policy evaluated under even vehicle placement

Training: even or random vehicle placement, main inflow 2000, train and evaluate at the same AVP,
Evaluation: even vehicle placement, main inflow= [1200, 2000]
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Single-lane decentralized policy: AV penetration/faction
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Policy trained under medium AVP (30%)
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Training: random vehicle placement, main inflow 2000, AVP=[0,100%),
Evaluation: random vehicle placement, main inflow 1800, AVP=/0,40%]
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Single-lane decentralized policy: Inflow
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Policy trained under high inflow (2000 veh/hour)

Training: random vehicle placement, main inflow [1600,2000], AVP=30%,
Evaluation: random vehicle placement, main inflow [1200,2000], AVP=40%
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Single-lane decentralized policy: deployed with two ramps

The distance between two ramps is 200 m

The distance between two ramps is 800 m
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Single-lane decentralized policy: deployed with two ramps

Training: random vehicle placement, main inflow 1800, merge inflow 200, AVP=30%,
Evaluation: random vehicle placement, main inflow 1800, merge inflow 200 for each ramp, AVP=[0,40%]
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Single-lane decentralized policy: deployed in the right lane
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Single-lane decentralized policy: deployed in the right lane

Evaluation: random vehicle placement, left main inflow=1600,
right main inflow= [1600, 2000], right AVP=10%, left AVP=0%

3,150

+— random-2000-200-30
human-baseline

1,600

1,700 1,800 1,900
RightMainInflow

2,000

19



Conclusion and future work

e \We have developed a single policy that is robust to:
O Traffic flow
O Fraction of AVs in traffic (AVP)
O AV placement in traffic
O Road geometry
m Double ramps
m Double lanes
e Limitations and Future work:
O Existence of a left-lane policy in multi-lane scenarios.
O All simulated human-driven vehicles share the same aggressiveness.
O Generalize toward a wider variety of road geometries.
O Still sim-2-real gap: noisy sensing, actuation delay
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