
Data-efficient Policy Evaluation through

Behavior Policy Search

Josiah Hanna1 Philip Thomas2 Peter Stone1

Scott Niekum1

1University of Texas at Austin

2University of Massachusetts, Amherst

August 8th, 2017

Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum UT Austin

Data-efficient Policy Evaluation through Behavior Policy Search 1



Policy Evaluation
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Outline

1 Demonstrate that importance-sampling for
policy evaluation can outperform on-policy
policy evaluation.

2 Show how to improve the behavior policy for
importance-sampling policy evaluation.

3 Empirically evaluate (1) and (2).
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Background

Finite-horizon MDP.

Agent selects actions with a stochastic policy, π.

The policy and environment determine a distribution over
trajectories, H : S0,A0,R0, S1,A1,R1, ..., SL,AL,RL
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Policy Evaluation

Policy performance:

ρ(π) := E

[
L∑

t=0

γtRt

∣∣∣∣∣H ∼ π

]

Given a target policy, πe , estimate ρ(πe).

Let πe ≡ πθe
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Monte Carlo Policy Evaluation

Given a dataset D of trajectories where ∀H ∈ D,
H ∼ πe :

MC(D) :=
1

|D|
∑
Hi∈D

L∑
t=0

γtR
(i)
t
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+100

+1

Action 1

Action 2

Target policy πe samples the high-rewarding first action
with probability 0.01.

Monte Carlo evaluation of πe has high variance.

Importance-sampling with a behavior policy that samples
either action with equal probability gives a low variance
evaluation.
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Importance-Sampling Policy Evaluation1

Given a dataset D of trajectories where ∀Hi ∈ D,
Hi is sampled from a behavior policy πi :

IS(D) :=
1

|D|
∑
Hi∈D

L∏
t=0

πe(At |St)
πi(At |St)︸ ︷︷ ︸

re-weighting factor

L∑
t=0

γtR
(i)
t

For convenience:

IS(H , π) :=
L∏

t=0

πe(At |St)

π(At |St)

L∑
t=0

γtRt

1Precup, Sutton, and Singh (2000)
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The Optimal Behavior Policy

Importance-sampling can achieve zero mean-squared error
policy evaluation with only a single trajectory!

We cannot analytically determine this policy.

Requires ρ(πe) be known!

Requires the reward function be known.

Requires deterministic transitions.
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Behavior Policy Search

Adapt the behavior policy towards the optimal
behavior policy.

At each iteration, i :

1 Choose behavior policy parameters, θi , based on
all observed data D.

2 Sample m trajectories, H ∼ θi and add to a
data set D.

3 Estimate ρ(πe) with trajectories in D.
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Behavior Policy Gradient

Key Idea: Adapt the behavior policy parameters, θ, with
gradient descent on the mean squared error of
importance-sampling.

θi+1 = θi − α
∂

∂θ
MSE[IS(Hi ,θ)]

MSE[IS(H ,θ)] is not computable.

∂
∂θ MSE[IS(H ,θ)] is computable.
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Behavior Policy Gradient Theorem

Theorem

∂

∂θ
MSE(IS(H ,θ)) = Eπθ

[
− IS(H ,θ)2

L∑
t=0

∂

∂θ
log (πθ(At |St))

]
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Empirical Results

Cartpole Swing-up Acrobot
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GridWorld Results

High Variance Policy Low Variance Policy
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Variance Reduction
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Additional Work

Investigated an extension to the doubly-robust
off-policy estimator.2

Investigated where BPG is most effective
empirically.

2[Jiang and Li(2016), Thomas and Brunskill(2016)]
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Conclusion

Behavior policy search makes off-policy evaluation
more accurate than on-policy evaluation.

Behavior Policy Gradient is an effective behavior
policy search method.
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Open Questions

1 Can behavior policy search improve policy
improvement?

2 Are there better measures of a good behavior
policy?

3 Is the final behavior policy found by BPG
applicable to other target policies?
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Thanks for your attention!
Questions?
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Doubly robust off-policy evaluation for reinforcement
learning.
arXiv preprint arXiv:1511.03722, 2016.

P.S. Thomas and Emma Brunskill.
Data-efficient off-policy policy evaluation for reinforcement
learning.
arXiv preprint arXiv:1604.00923, 2016.

Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum UT Austin

Data-efficient Policy Evaluation through Behavior Policy Search 20



Prior Work: Importance Sampling
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