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| Deep RL’s major successes

e Board games, video games, recommendation systems,
e Suggest DRL’s potential for controlling robotic systems
e But, real world robotics presents significant challenges
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Deep Reinforcement Learning in Robotics

A Survey of Real-World Successes

e Goal: comprehensive evaluation of progress of DRL in real-world
robotics

e (Categorize papers based on
o Robotic Competency
o Problem formulation
o Solution method

o Level of real-world success
e Assess maturity across domains
e |dentify general trends and key open challenges
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I Taxonomy

Level Deployed on
5 commercialized products

218 Validated under diverse
4 real-world conditions

e |nspired by “Technology Readiness Levels” _ _
52510 Validated under confined
3 real-world conditions

e |evel of Real-World Success

Level | Validated under diverse
2 lab conditions

Level | Validated under limited

1 lab conditions
Level Validated only in
0 simulation environments
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| Taxonomy

e (Competencies surveyed:
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Mobility

Manipulation

Interaction with other agents
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Locomotion

Legged Locomotion
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Quadruped Biped
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Quadrotor Flight Control
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Peter Stone, UT



T—e-

Locomotion

Key Takeaways

e RL has enabled mature quadrupedal locomotion
o Bipedal, less so - dynamics are harder, higher DoF

o Hardware accessibility matters
e |ots of zero-shot sim-to-real & privileged information
e (Open questions:

o Efficient & safe real-world learning

o Integrating locomotion with downstream tasks

Peter Stone, UT



Navigation
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Navigation

Key Takeaways

e For indoor nav, end-to-end RL excels in simulation
e But, most successful real-world systems are modular
e Agile navigation: Jointly learning navigation and low-level control

e QOpen questions:
o How much of the navigation stack should we learn?
o How do we effectively jointly learn navigation & locomotion?

o Safety critical applications (e.g., autonomous driving)

Peter Stone, UT

10



Manipulation
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Pick-and-place

Contact-rich

Pick-and-place

Grasping
End-to-end 54 , 113
Pick-and-place - - 121,

Assembly

126 ,

Contact-rich

Articulated Objects

Deformable Objects

In-hand

Non-prehensile

109 ,

134 ,

J

127

118,

_ 081, ‘109, [10], 111, [H13]
, [1i4, [115, (116, (117,

b

118,

122, IS, B 125
B8 (120 (80
122 [N, 1132 , 1881

135 , (136, 87
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Manipulation

Key Takeaways

e RL is more successful when tasks are constrained, enumerable a
priori

O

O

E.g., grasping, in-hand manipulation; cf. open-world pick-and-place

Allows for zero-shot sim-to-real & dense reward design

e Scaling to the open-world will require:
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Scaling simulation assets & tasks

Multi-task, meta-, lifelong learning

Autonomous real-world learning (e.g, reward, resets)
Learning from human video

Leveraging demonstrations
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Manipulation (cont.)

Key Takeaways

e (Open questions:
o How to integrate effective priors? Symmetry? Collision-avoidance?
© How to put it all together?
m  Most works study one isolated subtask with specific action spaces

®m How do we integrate these abilities?

Peter Stone, UT 13



MoMa

£ | Robln
TI= | romer mreracTve
. Short-Horizon Long-Horizon
Learning OSC g

Interactive Tasks Interactlve Tasks

Environment Perception &

Object Interaction

Long-Horizon Reasoning &
Partial Observability

WBC

Short-Horizon | 158 89, 160 , 161 ,

Long-Hor

1zon

152 , 153 - 155
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MoMa

Key Takeaways

e Some initial successes, especially in short-horizon tasks, often
sim-to-real

e Action space is critical, diverse morphologies

e (Open questions:
o Multi-tasking
o Long-term memory

o Safe exploration

Peter Stone, UT
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| HRI

Physical Human-Robot Interaction (pHRI)

Non-Collaborative Collaborative Shared Autonomy
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Collaborative pHRI 173, 172, 174, 180
Non-collaborative pHRI 175, 176 ,
Shared Autonomy , 182, 183

Peter Stone, UT Limited Lab , | Diverse Lab , [ Limited Real|, and [Diverse Reall
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HRI

Key Takeaways

e Fewer successes than “single-robot” competencies
e Hard to collect human-like data

o Non-Markovian
o Limited rationality

o Expensive

e Future directions:
o Enable real-world learning alongside humans

o Develop realistic human behavior simulation

Peter Stone, UT
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| Multi-Robot
Multi-Robot Interaction Examples
Collision Avoidance Multi-Robot Manipulation Robot Soccer

Multi-Robot Collision Avoidance 184, 185, 187, 188, 189
Multi-Robot Loco-Manipulation 190
Robot Soccer 191

Limated Lab , Diverse Lab , _, and _

Peter Stone, UT 1o



(9] - - |=]
£3 | RobIn
"§.<:: TTTTTTTTTTTTTTTT
®<—, | INTELLIGENCE LAB

Multi-Robot

Key Takeaways

e Limited successes in cooperative “homogeneous” settings

o E.qg., collision-avoidance
e Challenges in complexity & scalability
e C(ritical areas:

o Communication between agents

o Convergence & stability

o General, non-cooperative settings

Peter Stone, UT
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General Trends

e Mature domains:

o Locomotion, some navigation & manipulation

e |ess mature domains:
o MoMA, HRI, Multi-robot

e Mature solutions are commonly sim-to-real
o E.g., Locomotion, navigation, grasping, in-hand manipulation
o Stable, straightforward to simulate
o Dense, engineered reward functions
o On-policy is feasible
o Scalability?
e Without sim, human demos can mitigate exploration challenge
Peter Stone, UT
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Key Future Directions

e |Improving stability & sample-efficiency of RL algorithms
e Real-world learning

o Gathering data: exploration, reward design, ...
o Sample-efficiency & transfer

e |ong-horizon tasks
o What skills should the robot learn?

© How should they be combined?

Peter Stone, UT 2t
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Key Future Directions (cont.)

e Principled approaches for RL systems
o Reward design, action space choice

o Integration with classical model-based tools

e Benchmarking real-world success

o Need standard platforms and test problems

e |everaging Foundation Models
o Avenue toward stronger generalization, language-conditioning

o Possibility for reward design, simulation task & asset creation, etc.

Peter Stone, UT
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Application Low-Level Mid- Level High-Level == =
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Locomotion 27, 28, 29, 30, —
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161, [i7L], 1157
170, 165

HRI 175, 176 , 177, , 174,
, 179, 180 182, 183
Multi-Robot 184 , 185, 187, 189
Interaction 188, 190, 191

Peter Stone, UT Table 1: Categorizing Literature based on Problem Formulation
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Application  Zero-shot Sim-to-Real Few-shot Sim-to-Real No Simulator \'-—\é: INreLLICENCE A8

Locomotion |27, 28, 29,30 IR B3], 54

) i
Navigation I {731, , 90, , 192

Manipulation X 54 , F1094, -,—
pi= Jiisy 1
81 i, s,
[119 . 121,

MoMa

158 , 00 16&7

HRI 1528, , (174, 182 5 , 180
175, 176 , 177,
179
Multi-Robot 184, 185, 187,
Interaction 188, 189, 190,
191

Peter Stone, UT Table 3: Categorizing Literature based on Solution Approach 24
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