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Deep RL’s major successes

● Board games, video games, recommendation systems, …
● Suggest DRL’s potential for controlling robotic systems
● But, real world robotics presents significant challenges
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Deep Reinforcement Learning in Robotics

● Goal: comprehensive evaluation of progress of DRL in real-world 
robotics

● Categorize papers based on 
○ Robotic Competency
○ Problem formulation
○ Solution method
○ Level of real-world success

● Assess maturity across domains 
● Identify general trends and key open challenges
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A Survey of Real-World Successes
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Taxonomy

5

● Level of Real-World Success
● Inspired by “Technology Readiness Levels”
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Taxonomy
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● Competencies surveyed: 
○ Mobility
○ Manipulation
○ Interaction with other agents
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Locomotion
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Locomotion
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Key Takeaways

● RL has enabled mature quadrupedal locomotion
○ Bipedal, less so – dynamics are harder, higher DoF
○ Hardware accessibility matters

● Lots of zero-shot sim-to-real & privileged information
● Open questions:

○ Efficient & safe real-world learning
○ Integrating locomotion with downstream tasks
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Navigation
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Key Takeaways

● For indoor nav, end-to-end RL excels in simulation 
● But, most successful real-world systems are modular 
● Agile navigation: Jointly learning navigation and low-level control

● Open questions:
○ How much of the navigation stack should we learn? 
○ How do we effectively jointly learn navigation & locomotion? 
○ Safety critical applications (e.g., autonomous driving)
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Manipulation
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Manipulation
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Key Takeaways

● RL is more successful when tasks are constrained, enumerable a 
priori

○ E.g., grasping, in-hand manipulation; cf. open-world pick-and-place 
○ Allows for zero-shot sim-to-real & dense reward design 

● Scaling to the open-world will require: 
○ Scaling simulation assets & tasks
○ Multi-task, meta-, lifelong learning
○ Autonomous real-world learning (e.g, reward, resets) 
○ Learning from human video
○ Leveraging demonstrations
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Manipulation (cont.)
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Key Takeaways

● Open questions: 
○ How to integrate effective priors? Symmetry? Collision-avoidance? 
○ How to put it all together? 

■ Most works study one isolated subtask with specific action spaces
■ How do we integrate these abilities? 
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MoMa
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Key Takeaways

● Some initial successes, especially in short-horizon tasks, often 
sim-to-real 

● Action space is critical, diverse morphologies  
● Open questions: 

○ Multi-tasking
○ Long-term memory 
○ Safe exploration
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HRI
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Key Takeaways

● Fewer successes than “single-robot” competencies 
● Hard to collect human-like data 

○ Non-Markovian
○ Limited rationality 
○ Expensive 

● Future directions: 
○ Enable real-world learning alongside humans 
○ Develop realistic human behavior simulation
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Multi-Robot

18



Peter Stone, UT 
Austin

Multi-Robot
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Key Takeaways

● Limited successes in cooperative “homogeneous” settings
○ E.g., collision-avoidance 

● Challenges in complexity & scalability 
● Critical areas: 

○ Communication between agents
○ Convergence & stability 
○ General, non-cooperative settings 
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General Trends

● Mature domains:
○ Locomotion, some navigation & manipulation

● Less mature domains: 
○ MoMA, HRI, Multi-robot

● Mature solutions are commonly sim-to-real 
○ E.g., Locomotion, navigation, grasping, in-hand manipulation
○ Stable, straightforward to simulate
○ Dense, engineered reward functions
○ On-policy is feasible
○ Scalability? 

● Without sim, human demos can mitigate exploration challenge 
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Key Future Directions

● Improving stability & sample-efficiency of RL algorithms
● Real-world learning 

○ Gathering data: exploration, reward design, … 
○ Sample-efficiency & transfer

● Long-horizon tasks 
○ What skills should the robot learn? 
○ How should they be combined? 
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Key Future Directions (cont.) 

● Principled approaches for RL systems
○ Reward design, action space choice
○ Integration with classical model-based tools

 
● Benchmarking real-world success

○ Need standard platforms and test problems
 

● Leveraging Foundation Models
○ Avenue toward stronger generalization, language-conditioning 
○ Possibility for reward design, simulation task & asset creation, etc. 
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Contact:   pstone@cs.utexas.edu  

Deep Reinforcement Learning in Robotics
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