Difference between Binary Search Tree and Binary Heap
Last Updated :
23 Jul, 2025
1. Binary Search Tree :
An acyclic graph is commonly used to illustrate a Binary Search Tree. The tree is made up of nodes. Each node in a binary tree has no more than two children. Every node's value is strictly higher than the value of its left child and strictly lower than the value of its right child, according to the BST. That is, we can iterate through all of the BST values in sorted order. Additionally, duplicate values are not permitted in this data structure.
There are two types of Binary Search Trees: balanced and unbalanced.
Assume that the number of nodes in a BST is n. O(n) is the worst case scenario for insert and removal operations. However, in a balanced Binary Search Tree, such as AVL or Red-Black Tree, similar operations have a time complexity of O(log(n)). Another important point to remember is that constructing a BST with n nodes takes O(n * log(n)) time. We must insert a node n times, each of which costs O(log(n)). The main benefit of a Binary Search Tree is that we can traverse it in O(n) time and receive all of our values in sorted order.

Code:
C++
#include <iostream>
using namespace std;
// Node structure
struct Node {
int data;
Node* left;
Node* right;
Node(int val) : data(val), left(nullptr), right(nullptr) {}
};
// BST class
class BST {
public:
BST() : root(nullptr) {}
// Function to insert a node
void insert(int val) {
root = insertRec(root, val);
}
// Function to search for a node
bool search(int val) {
return searchRec(root, val);
}
// Function to print inorder traversal
void inorder() {
inorderRec(root);
cout << endl;
}
private:
Node* root;
// Recursive function to insert a node
Node* insertRec(Node* node, int val) {
// If the tree is empty, return a new node
if (node == nullptr) {
return new Node(val);
}
// Otherwise, recur down the tree
if (val < node->data) {
node->left = insertRec(node->left, val);
} else if (val > node->data) {
node->right = insertRec(node->right, val);
}
// Return the (unchanged) node pointer
return node;
}
// Recursive function to search a node
bool searchRec(Node* node, int val) {
// Base cases: node is null or value is present at node
if (node == nullptr || node->data == val) {
return node != nullptr;
}
// Value is greater than node's data
if (val > node->data) {
return searchRec(node->right, val);
}
// Value is smaller than node's data
return searchRec(node->left, val);
}
// Recursive function for inorder traversal
void inorderRec(Node* node) {
if (node == nullptr) {
return;
}
// Recur on left child
inorderRec(node->left);
// Print node's data
cout << node->data << " ";
// Recur on right child
inorderRec(node->right);
}
};
int main() {
BST tree;
// Inserting nodes into the BST
tree.insert(8);
tree.insert(3);
tree.insert(10);
tree.insert(1);
tree.insert(6);
tree.insert(14);
tree.insert(4);
tree.insert(7);
tree.insert(13);
// Printing inorder traversal
cout << "Inorder traversal of the BST: ";
tree.inorder();
// Searching for values in the BST
cout << "Searching for 10 in the BST: " << (tree.search(10) ? "Found" : "Not Found") << endl;
cout << "Searching for 5 in the BST: " << (tree.search(5) ? "Found" : "Not Found") << endl;
return 0;
}
OutputInorder traversal of the BST: 1 3 4 6 7 8 10 13 14
Searching for 10 in the BST: Found
Searching for 5 in the BST: Not Found
2. Heap Tree :
The Heap is a Complete Binary Tree.
If the distance between a node and the root node is k, the node is at level k of the tree. The root's level is zero. At level k, the maximum number of nodes that can exist is 2^k. A Complete Binary Tree has the maximum number of nodes at each level. Except for the last layer, which must be filled from left to right as well. It's critical to remember that the Complete Binary Tree is always balanced.
The Heap is not the same as a Binary Search Tree. The Heap, on the other hand, is not an ordered data structure. The heap is commonly represented as an array of numbers in computer memory. It's possible to have a Min-Heap or a Max-Heap heap. Although the features of the Min- and Max-Heaps are nearly identical, the root of the tree for the Max-Heap is the biggest number and the smallest for the Min-Heap. Similarly, the basic rule of the Max-Heap is that each node's subtree has values that are less than or equal to the root node. The Min-Heap, on the other hand, is the polar opposite. It also implies that the Heap accepts duplicates.
Binary Search Tree vs Heap :
The fundamental distinction is that whereas the Binary Search Tree does not allow duplicates, the Heap allows. The BST is ordered, while Heap is not. So, if order is important, BST is the way to go. If an order isn't important, but we need to know that inserting and removing data will take O(log(n)) time, the Heap assures that this will happen. If the tree is fully unbalanced, this might take up to O(n) time in a Binary Search Tree (chain is the worst case). In addition, although Heap may be built in linear time, the BST requires O(n * log(n)) to be built.
The PriorityQueue and TreeMap are Java's implementations of these structures. The backbone of TreeMap is a balanced binary search tree. A Red-Black Tree is used to implement it.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem