Find maximum (or minimum) sum of a subarray of size k
Last Updated :
13 Aug, 2025
Given an array of integers arr[] and an integer k, find the maximum possible sum among all contiguous subarrays of size exactly k.
A subarray is a sequence of consecutive elements from the original array. Return the maximum sum that can be obtained from any such subarray of length k.
Examples:
Input : arr[] = [100, 200, 300, 400], k = 2
Output : 700
Explanation: We get maximum sum by adding subarray [300,400] of size 2
Input : arr[] = [1, 4, 2, 10, 23, 3, 1, 0, 20], k = 4
Output : 39
Explanation: We get maximum sum by adding subarray [4, 2, 10, 23] of size 4.
Input : arr[] = [2, 3], k = 1
Output : 3
Explanation: The subarrays of size 1 are [2] and [3]. The maximum sum is 3.
[Naive Approach] Fixed-Size Window Brute Force - O(n × k) time and O(1) space
The idea is to iterate over all possible subarrays of size k and calculate their sums one by one. For each subarray, compare its sum with the current maximum and update accordingly.
C++
#include <iostream>
#include <vector>
using namespace std;
int maxSubarraySum(vector<int>& arr, int k) {
int n = arr.size();
int maxSum = 0;
// check all subarrays of size k
for (int i = 0; i <= n - k; i++) {
int currSum = 0;
// compute sum of current subarray
for (int j = 0; j < k; j++) {
currSum += arr[i + j];
}
// update maximum sum
maxSum = max(maxSum, currSum);
}
return maxSum;
}
int main() {
vector<int> arr = {2, 1, 5, 1, 3, 2};
int k = 3;
cout << maxSubarraySum(arr, k) << endl;
return 0;
}
Java
class GfG {
// check all subarrays of size k
static int maxSubarraySum(int[] arr, int k) {
int n = arr.length;
int maxSum = 0;
for (int i = 0; i <= n - k; i++) {
int currSum = 0;
// compute sum of current subarray
for (int j = 0; j < k; j++) {
currSum += arr[i + j];
}
// update maximum sum
maxSum = Math.max(maxSum, currSum);
}
return maxSum;
}
public static void main(String[] args) {
int[] arr = {2, 1, 5, 1, 3, 2};
int k = 3;
System.out.println(maxSubarraySum(arr, k));
}
}
Python
def maxSubarraySum(arr, k):
n = len(arr)
maxSum = 0
# check all subarrays of size k
for i in range(n - k + 1):
currSum = 0
# compute sum of current subarray
for j in range(k):
currSum += arr[i + j]
# update maximum sum
maxSum = max(maxSum, currSum)
return maxSum
if __name__ == "__main__":
arr = [2, 1, 5, 1, 3, 2]
k = 3
print(maxSubarraySum(arr, k))
C#
using System;
class GfG {
// check all subarrays of size k
static int maxSubarraySum(int[] arr, int k) {
int n = arr.Length;
int maxSum = 0;
for (int i = 0; i <= n - k; i++) {
int currSum = 0;
// compute sum of current subarray
for (int j = 0; j < k; j++) {
currSum += arr[i + j];
}
// update maximum sum
maxSum = Math.Max(maxSum, currSum);
}
return maxSum;
}
static void Main() {
int[] arr = {2, 1, 5, 1, 3, 2};
int k = 3;
Console.WriteLine(maxSubarraySum(arr, k));
}
}
JavaScript
function maxSubarraySum(arr, k) {
let n = arr.length;
let maxSum = 0;
// check all subarrays of size k
for (let i = 0; i <= n - k; i++) {
let currSum = 0;
// compute sum of current subarray
for (let j = 0; j < k; j++) {
currSum += arr[i + j];
}
// update maximum sum
maxSum = Math.max(maxSum, currSum);
}
return maxSum;
}
// Driver Code
let arr = [2, 1, 5, 1, 3, 2];
let k = 3;
console.log(maxSubarraySum(arr, k));
[Better Approach - 1] Using Prefix Sum - O(n) Time and O(n) Space
The idea is to precompute the prefix sum array where each element at index i stores the sum of elements from index 0 to i-1. Using this, we can compute the sum of any subarray in constant time O(1) using the difference of two prefix values. This eliminates the need to iterate over each subarray element repeatedly.
C++
#include <iostream>
#include <vector>
using namespace std;
int maxSubarraySum(vector<int>& arr, int k) {
int n = arr.size();
vector<int> prefix(n + 1, 0);
// build prefix sum array
for (int i = 0; i < n; i++) {
prefix[i + 1] = prefix[i] + arr[i];
}
int maxSum = 0;
// compute sum of each subarray of size k
// using prefix array
for (int i = 0; i <= n - k; i++) {
int j = i + k - 1;
int currSum = prefix[j + 1] - prefix[i];
// update maximum sum
maxSum = max(maxSum, currSum);
}
return maxSum;
}
int main() {
vector<int> arr = {2, 1, 5, 1, 3, 2};
int k = 3;
cout << maxSubarraySum(arr, k) << endl;
return 0;
}
Java
class GfG {
static int maxSubarraySum(int[] arr, int k) {
int n = arr.length;
int[] prefix = new int[n + 1];
// build prefix sum array
for (int i = 0; i < n; i++) {
prefix[i + 1] = prefix[i] + arr[i];
}
int maxSum = 0;
// compute sum of each subarray of size k
// using prefix array
for (int i = 0; i <= n - k; i++) {
int j = i + k - 1;
int currSum = prefix[j + 1] - prefix[i];
// update maximum sum
maxSum = Math.max(maxSum, currSum);
}
return maxSum;
}
public static void main(String[] args) {
int[] arr = {2, 1, 5, 1, 3, 2};
int k = 3;
System.out.println(maxSubarraySum(arr, k));
}
}
Python
def maxSubarraySum(arr, k):
n = len(arr)
prefix = [0] * (n + 1)
# build prefix sum array
for i in range(n):
prefix[i + 1] = prefix[i] + arr[i]
maxSum = 0
# compute sum of each subarray of size k
# using prefix array
for i in range(n - k + 1):
j = i + k - 1
currSum = prefix[j + 1] - prefix[i]
# update maximum sum
maxSum = max(maxSum, currSum)
return maxSum
if __name__ == "__main__":
arr = [2, 1, 5, 1, 3, 2]
k = 3
print(maxSubarraySum(arr, k))
C#
using System;
class GfG {
static int maxSubarraySum(int[] arr, int k) {
int n = arr.Length;
int[] prefix = new int[n + 1];
// build prefix sum array
for (int i = 0; i < n; i++) {
prefix[i + 1] = prefix[i] + arr[i];
}
int maxSum = 0;
// compute sum of each subarray of size k
// using prefix array
for (int i = 0; i <= n - k; i++) {
int j = i + k - 1;
int currSum = prefix[j + 1] - prefix[i];
// update maximum sum
maxSum = Math.Max(maxSum, currSum);
}
return maxSum;
}
static void Main() {
int[] arr = {2, 1, 5, 1, 3, 2};
int k = 3;
Console.WriteLine(maxSubarraySum(arr, k));
}
}
JavaScript
function maxSubarraySum(arr, k) {
const n = arr.length;
const prefix = new Array(n + 1).fill(0);
// build prefix sum array
for (let i = 0; i < n; i++) {
prefix[i + 1] = prefix[i] + arr[i];
}
let maxSum = 0;
// compute sum of each subarray of size k
// using prefix array
for (let i = 0; i <= n - k; i++) {
const j = i + k - 1;
const currSum = prefix[j + 1] - prefix[i];
// update maximum sum
maxSum = Math.max(maxSum, currSum);
}
return maxSum;
}
// Driver Code
const arr = [2, 1, 5, 1, 3, 2];
const k = 3;
console.log(maxSubarraySum(arr, k));
[Better Approach - 2] Sliding Window using Queue - O(n) Time and O(k) Space
The idea is to use a queue to maintain a window of the last k elements as we iterate through the array. We keep track of the current window sum by adding the new element to the sum and removing the oldest element (from the front of the queue) once the size exceeds k. At each step where the window size is exactly k, we update the maximum sum encountered so far.
This ensures that we process each element exactly once and maintain the sliding window efficiently.
C++
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
int maxSubarraySum(vector<int>& arr, int k) {
int n = arr.size();
queue<int> q;
int sum = 0, maxSum = 0;
for (int i = 0; i < n; i++) {
sum += arr[i];
q.push(arr[i]);
// maintain window of size k
if (q.size() > k) {
sum -= q.front();
q.pop();
}
// update maximum when window size becomes k
if (q.size() == k) {
maxSum = max(maxSum, sum);
}
}
return maxSum;
}
int main() {
vector<int> arr = {2, 1, 5, 1, 3, 2};
int k = 3;
cout << maxSubarraySum(arr, k) << endl;
return 0;
}
Java
import java.util.LinkedList;
import java.util.Queue;
class GfG {
static int maxSubarraySum(int[] arr, int k) {
int n = arr.length;
Queue<Integer> q = new LinkedList<>();
int sum = 0, maxSum = 0;
for (int i = 0; i < n; i++) {
sum += arr[i];
q.add(arr[i]);
// maintain window of size k
if (q.size() > k) {
sum -= q.poll();
}
// update maximum when window size becomes k
if (q.size() == k) {
maxSum = Math.max(maxSum, sum);
}
}
return maxSum;
}
public static void main(String[] args) {
int[] arr = {2, 1, 5, 1, 3, 2};
int k = 3;
System.out.println(maxSubarraySum(arr, k));
}
}
Python
from collections import deque
def maxSubarraySum(arr, k):
q = deque()
sum = 0
maxSum = 0
for num in arr:
sum += num
q.append(num)
# maintain window of size k
if len(q) > k:
sum -= q.popleft()
# update maximum when window size becomes k
if len(q) == k:
maxSum = max(maxSum, sum)
return maxSum
if __name__ == "__main__":
arr = [2, 1, 5, 1, 3, 2]
k = 3
print(maxSubarraySum(arr, k))
C#
using System;
using System.Collections.Generic;
class GfG {
static int maxSubarraySum(int[] arr, int k) {
Queue<int> q = new Queue<int>();
int sum = 0, maxSum = 0;
for (int i = 0; i < arr.Length; i++) {
sum += arr[i];
q.Enqueue(arr[i]);
// maintain window of size k
if (q.Count > k) {
sum -= q.Dequeue();
}
// update maximum when window size becomes k
if (q.Count == k) {
maxSum = Math.Max(maxSum, sum);
}
}
return maxSum;
}
static void Main() {
int[] arr = {2, 1, 5, 1, 3, 2};
int k = 3;
Console.WriteLine(maxSubarraySum(arr, k));
}
}
JavaScript
function maxSubarraySum(arr, k) {
let q = [];
let sum = 0;
let maxSum = 0;
for (let i = 0; i < arr.length; i++) {
sum += arr[i];
q.push(arr[i]);
// maintain window of size k
if (q.length > k) {
sum -= q.shift();
}
// update maximum when window size becomes k
if (q.length === k) {
maxSum = Math.max(maxSum, sum);
}
}
return maxSum;
}
// Driver Code
let arr = [2, 1, 5, 1, 3, 2];
let k = 3;
console.log(maxSubarraySum(arr, k));
[Expected Approach] Optimized Sliding Window - O(n) Time and O(1) Space
The idea is to use a sliding window of size k to efficiently compute the maximum sum of any subarray of size k.
First, calculate the sum of the initial window of size k.
Then, slide the window by one element at a time: subtract the element that goes out of the window and add the new element that comes in.
Step by Step Implementation:
- Calculate the sum of the first k elements and store it as currSum.
- Initialize maxSum = currSum.
- For each index i from k to n - 1, update the window by doing currSum = currSum + arr[i] - arr[i - k].
- This adds the new element arr[i] and removes the element that slid out arr[i - k].
- Update maxSum = max(maxSum, currSum) after each step.
- After the loop, return maxSum.
C++
#include <iostream>
#include <vector>
using namespace std;
int maxSubarraySum(vector<int>& arr, int k) {
int n = arr.size();
if (n < k) return -1;
// compute sum of first window
int windowSum = 0;
for (int i = 0; i < k; i++) {
windowSum += arr[i];
}
int maxSum = windowSum;
// slide the window
for (int i = k; i < n; i++) {
windowSum += arr[i] - arr[i - k];
maxSum = max(maxSum, windowSum);
}
return maxSum;
}
int main() {
vector<int> arr = {2, 1, 5, 1, 3, 2};
int k = 3;
cout << maxSubarraySum(arr, k) << endl;
return 0;
}
Java
class GfG {
static int maxSubarraySum(int[] arr, int k) {
int n = arr.length;
if (n < k) return -1;
// compute sum of first window
int windowSum = 0;
for (int i = 0; i < k; i++) {
windowSum += arr[i];
}
int maxSum = windowSum;
// slide the window
for (int i = k; i < n; i++) {
windowSum += arr[i] - arr[i - k];
maxSum = Math.max(maxSum, windowSum);
}
return maxSum;
}
public static void main(String[] args) {
int[] arr = {2, 1, 5, 1, 3, 2};
int k = 3;
System.out.println(maxSubarraySum(arr, k));
}
}
Python
def maxSubarraySum(arr, k):
n = len(arr)
if n < k:
return -1
# compute sum of first window
windowSum = sum(arr[:k])
maxSum = windowSum
# slide the window
for i in range(k, n):
windowSum += arr[i] - arr[i - k]
maxSum = max(maxSum, windowSum)
return maxSum
if __name__ == "__main__":
arr = [2, 1, 5, 1, 3, 2]
k = 3
print(maxSubarraySum(arr, k))
C#
using System;
class GfG {
static int maxSubarraySum(int[] arr, int k) {
int n = arr.Length;
if (n < k) return -1;
// compute sum of first window
int windowSum = 0;
for (int i = 0; i < k; i++) {
windowSum += arr[i];
}
int maxSum = windowSum;
// slide the window
for (int i = k; i < n; i++) {
windowSum += arr[i] - arr[i - k];
maxSum = Math.Max(maxSum, windowSum);
}
return maxSum;
}
static void Main(string[] args) {
int[] arr = {2, 1, 5, 1, 3, 2};
int k = 3;
Console.WriteLine(maxSubarraySum(arr, k));
}
}
JavaScript
function maxSubarraySum(arr, k) {
let n = arr.length;
if (n < k) return -1;
// compute sum of first window
let windowSum = 0;
for (let i = 0; i < k; i++) {
windowSum += arr[i];
}
let maxSum = windowSum;
// slide the window
for (let i = k; i < n; i++) {
windowSum += arr[i] - arr[i - k];
maxSum = Math.max(maxSum, windowSum);
}
return maxSum;
}
// Driver Code
let arr = [2, 1, 5, 1, 3, 2];
let k = 3;
console.log(maxSubarraySum(arr, k));
PROBLEM OF THE DAY : 11/12/2023 | Max Sum Subarray of size K
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem