Subtree with given sum in a Binary Tree
Last Updated :
23 Jul, 2025
You are given a binary tree and a given sum. The task is to check if there exists a subtree whose sum of all nodes is equal to the given sum.
Examples:
Input : key = 11
Output: True
Explanation: sum of all nodes of subtree {2, 4, 5} = 11.
Input : key = 6
Output: False
Explanation: No subtree whose sum of all nodes = 6.
[Expected Approach - 1] Using Recursion - O(n) Time and O(h) Space
The idea is to traverse the binary tree recursively, calculating the sum of the subtree rooted at each node. At each node, we compute the sum of its left and right subtrees and add the node's value itself. If the sum of any subtree matches the given key sum, we mark it as found. We use a helper function subtreeSum() to compute the sum of each subtree and a flag foundSum to track if the key sum is found.
Below is the implementation of the above approach:
C++
// C++ program to find if there is a subtree with
// given sum
#include <iostream>
using namespace std;
class Node {
public:
int data;
Node* left;
Node* right;
Node(int x) {
data = x;
left = nullptr;
right = nullptr;
}
};
// Function to calculate the sum of the subtree rooted at the given node
int subtreeSum(Node* root, int& foundSum, int target) {
// Base case: If the node is NULL, return 0
if (root == nullptr)
return 0;
// Calculate the sum of the current subtree
int currentSum = root->data +
subtreeSum(root->left, foundSum, target) +
subtreeSum(root->right, foundSum, target);
// If the current subtree sum matches the target,
// set foundSum to 1
if (currentSum == target) {
foundSum = 1;
}
// Return the current subtree sum
return currentSum;
}
// Function to check if there is a subtree with the given sum
bool hasSubtreeWithGivenSum(Node* root, int sum) {
int foundSum = 0;
// Traverse the tree and check for the target sum
subtreeSum(root, foundSum, sum);
// Return true if a subtree with the given sum was found
return foundSum == 1;
}
int main() {
// Creating the given binary tree
// 1
// / \
// 3 6
// / \ /
// 5 9 8
Node* root = new Node(1);
root->left = new Node(3);
root->right = new Node(6);
root->left->left = new Node(5);
root->left->right = new Node(9);
root->right->left = new Node(8);
if(hasSubtreeWithGivenSum(root, 17)) {
cout << "True";
}
else cout << "False";
return 0;
}
C
// C program to find if there is a subtree with
// given sum
#include <stdio.h>
#include <stdlib.h>
struct Node {
int data;
struct Node* left;
struct Node* right;
};
// Function to calculate the sum of the subtree rooted at the given node
int subtreeSum(struct Node* root, int* foundSum, int target) {
// Base case: If the node is NULL, return 0
if (root == NULL)
return 0;
// Calculate the sum of the current subtree
int currentSum = root->data +
subtreeSum(root->left, foundSum, target) +
subtreeSum(root->right, foundSum, target);
// If the current subtree sum matches the target,
// set foundSum to 1
if (currentSum == target) {
*foundSum = 1;
}
// Return the current subtree sum
return currentSum;
}
// Function to check if there is a subtree with the given sum
int hasSubtreeWithGivenSum(struct Node* root, int sum) {
int foundSum = 0;
// Traverse the tree and check for the target sum
subtreeSum(root, &foundSum, sum);
// Return true if a subtree with the given sum was found
return foundSum == 1;
}
struct Node* createNode(int x) {
struct Node* newNode =
(struct Node*)malloc(sizeof(struct Node));
newNode->data = x;
newNode->left = NULL;
newNode->right = NULL;
return newNode;
}
int main() {
// Creating the given binary tree
// 1
// / \
// 3 6
// / \ /
// 5 9 8
struct Node* root = createNode(1);
root->left = createNode(3);
root->right = createNode(6);
root->left->left = createNode(5);
root->left->right = createNode(9);
root->right->left = createNode(8);
if(hasSubtreeWithGivenSum(root, 17)) {
printf("True");
}
else printf("False");
return 0;
}
Java
// Java program to find if there is a subtree with
// given sum
class Node {
int data;
Node left, right;
Node(int x) {
data = x;
left = right = null;
}
}
class GfG {
// Function to calculate the sum of the subtree
// rooted at the given node
static int subtreeSum(Node root, boolean[] foundSum, int target) {
// Base case: If the node is NULL, return 0
if (root == null)
return 0;
// Calculate the sum of the current subtree
int currentSum = root.data +
subtreeSum(root.left, foundSum, target) +
subtreeSum(root.right, foundSum, target);
// If the current subtree sum matches the target,
// set foundSum to true
if (currentSum == target) {
foundSum[0] = true;
}
// Return the current subtree sum
return currentSum;
}
// Function to check if there is a subtree with the given sum
static boolean hasSubtreeWithGivenSum(Node root, int sum) {
boolean[] foundSum = new boolean[1];
// Traverse the tree and check for the target sum
subtreeSum(root, foundSum, sum);
// Return true if a subtree with the given sum was found
return foundSum[0];
}
public static void main(String[] args) {
// Creating the given binary tree
// 1
// / \
// 3 6
// / \ /
// 5 9 8
Node root = new Node(1);
root.left = new Node(3);
root.right = new Node(6);
root.left.left = new Node(5);
root.left.right = new Node(9);
root.right.left = new Node(8);
System.out.println(hasSubtreeWithGivenSum(root, 17));
}
}
Python
# Python program to find if there is a subtree with
# given sum
# Node definition for a binary tree
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
# Function to calculate the sum of the subtree
# rooted at the given node
def subtreeSum(root, foundSum, target):
# Base case: If the node is NULL, return 0
if root is None:
return 0
# Calculate the sum of the current subtree
currentSum = (root.data +
subtreeSum(root.left, foundSum, target) +
subtreeSum(root.right, foundSum, target))
# If the current subtree sum matches the target,
# set foundSum to True
if currentSum == target:
foundSum[0] = True
# Return the current subtree sum
return currentSum
# Function to check if there is a subtree with the given sum
def hasSubtreeWithGivenSum(root, sum):
foundSum = [False]
# Traverse the tree and check for the target sum
subtreeSum(root, foundSum, sum)
# Return true if a subtree with the given sum was found
return foundSum[0]
if __name__ == "__main__":
# Creating the given binary tree
# 1
# / \
# 3 6
# / \ /
# 5 9 8
root = Node(1)
root.left = Node(3)
root.right = Node(6)
root.left.left = Node(5)
root.left.right = Node(9)
root.right.left = Node(8)
print(hasSubtreeWithGivenSum(root, 17))
C#
// C# program to find if there is a subtree with
// given sum
using System;
class Node {
public int data;
public Node left, right;
public Node(int x) {
data = x;
left = right = null;
}
}
class GfG {
// Function to calculate the sum of the subtree
// rooted at the given node
static int SubtreeSum(Node root, ref bool foundSum, int target) {
// Base case: If the node is NULL, return 0
if (root == null)
return 0;
// Calculate the sum of the current subtree
int currentSum = root.data +
SubtreeSum(root.left, ref foundSum, target) +
SubtreeSum(root.right, ref foundSum, target);
// If the current subtree sum matches the target,
// set foundSum to true
if (currentSum == target) {
foundSum = true;
}
// Return the current subtree sum
return currentSum;
}
// Function to check if there is a subtree with the given sum
static bool HasSubtreeWithGivenSum(Node root, int sum) {
bool foundSum = false;
// Traverse the tree and check for the target sum
SubtreeSum(root, ref foundSum, sum);
// Return true if a subtree with the given sum was found
return foundSum;
}
static void Main(string[] args) {
// Creating the given binary tree
// 1
// / \
// 3 6
// / \ /
// 5 9 8
Node root = new Node(1);
root.left = new Node(3);
root.right = new Node(6);
root.left.left = new Node(5);
root.left.right = new Node(9);
root.right.left = new Node(8);
Console.WriteLine(HasSubtreeWithGivenSum(root, 17));
}
}
JavaScript
// JavaScript program to find if there is a subtree with
// given sum
// Node definition for a binary tree
class Node {
constructor(x) {
this.data = x;
this.left = null;
this.right = null;
}
}
// Function to calculate the sum of the subtree
// rooted at the given node
function subtreeSum(root, foundSum, target) {
// Base case: If the node is NULL, return 0
if (root === null)
return 0;
// Calculate the sum of the current subtree
let currentSum = root.data +
subtreeSum(root.left, foundSum, target) +
subtreeSum(root.right, foundSum, target);
// If the current subtree sum matches the target,
// set foundSum to true
if (currentSum === target) {
foundSum.value = true;
}
// Return the current subtree sum
return currentSum;
}
// Function to check if there is a subtree with the given sum
function hasSubtreeWithGivenSum(root, sum) {
let foundSum = { value: false };
// Traverse the tree and check for the target sum
subtreeSum(root, foundSum, sum);
// Return true if a subtree with the given sum was found
return foundSum.value;
}
// Creating the given binary tree
// 1
// / \
// 3 6
// / \ /
// 5 9 8
let root = new Node(1);
root.left = new Node(3);
root.right = new Node(6);
root.left.left = new Node(5);
root.left.right = new Node(9);
root.right.left = new Node(8);
console.log(hasSubtreeWithGivenSum(root, 17));
Time Complexity: O(n), As we are visiting every node once.
Auxiliary space: O(h), here h is the height of the tree and the extra space is used due to the recursion call stack.
[Expected Approach - 2] Using HashMap- O(n) Time and O(n) Space
The idea is to use an iterative depth-first traversal of the binary tree while maintaining a running sum of the node values encountered so far. We will use a hashmap to keep track of the prefix sums encountered during the traversal.
Follow the steps below to solve the problem:
- Start with the root node of the binary tree and push it onto the stack.
- While the stack is not empty, repeatedly:
- Pop the top node from the stack.
- Update the running sum by adding the current node’s value.
- Check if (current sum - target sum) exists in the prefixSumMap. If it does, it means there is a subtree with the required sum.
- Add or update the current running sum in the prefixSumMap to keep track of sums encountered.
- Push the right and left children of the current node onto the stack (if they exist) to continue the traversal.
Below is the implementation of the above approach:
C++
// C++ program to find if there is a subtree with
// given sum
#include <bits/stdc++.h>
using namespace std;
class Node {
public:
int val;
Node* left;
Node* right;
Node(int x) {
val = x;
left = nullptr;
right = nullptr;
}
};
// Function to check if there is a subtree with the given sum
bool hasSubtreeWithGivenSum(Node* root, int target) {
if (root == nullptr)
return false;
// Map to store the prefix sums
unordered_map<int, int> prefixSumMap;
prefixSumMap[0] = 1;
int sum = 0;
stack<Node*> st;
st.push(root);
// Iterative depth-first traversal
while (!st.empty()) {
Node* curr = st.top();
st.pop();
// Update the running sum with the
// current node's value
sum += curr->val;
// Check if we have encountered (sum - target) before
if (prefixSumMap.find(sum - target) != prefixSumMap.end()) {
return true;
}
// Add the current running sum to the map
prefixSumMap[sum] = 1;
// Traverse the right and left children
if (curr->right) {
st.push(curr->right);
}
if (curr->left) {
st.push(curr->left);
}
}
// If no subtree with the given sum is found
return false;
}
int main() {
// Creating the given binary tree
// 1
// / \
// 3 6
// / \ /
// 5 9 8
Node* root = new Node(1);
root->left = new Node(3);
root->right = new Node(6);
root->left->left = new Node(5);
root->left->right = new Node(9);
root->right->left = new Node(8);
if(hasSubtreeWithGivenSum(root, 17)) {
cout << "True";
}
else cout << "False";
return 0;
}
Java
// Java program to find if there is a subtree with
// given sum
import java.util.HashMap;
import java.util.Stack;
class Node {
int val;
Node left, right;
Node(int x) {
val = x;
left = null;
right = null;
}
}
// Function to check if there is a subtree
// with the given sum
class GfG {
static boolean hasSubtreeWithGivenSum(Node root, int target) {
if (root == null)
return false;
// Map to store the prefix sums
HashMap<Integer, Integer> prefixSumMap = new HashMap<>();
prefixSumMap.put(0, 1);
int sum = 0;
Stack<Node> st = new Stack<>();
st.push(root);
// Iterative depth-first traversal
while (!st.isEmpty()) {
Node curr = st.pop();
// Update the running sum with the current node's value
sum += curr.val;
// Check if we have encountered (sum - target) before
if (prefixSumMap.containsKey(sum - target)) {
return true;
}
// Add the current running sum to the map
prefixSumMap.put(sum, 1);
// Traverse the right and left children
if (curr.right != null) {
st.push(curr.right);
}
if (curr.left != null) {
st.push(curr.left);
}
}
// If no subtree with the given sum is found
return false;
}
public static void main(String[] args) {
// Creating the given binary tree
// 1
// / \
// 3 6
// / \ /
// 5 9 8
Node root = new Node(1);
root.left = new Node(3);
root.right = new Node(6);
root.left.left = new Node(5);
root.left.right = new Node(9);
root.right.left = new Node(8);
System.out.println(hasSubtreeWithGivenSum(root, 17));
}
}
Python
# Python program to find if there is a subtree with
# given sum
class Node:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
# Function to check if there is a subtree with the given sum
def has_subtree_with_given_sum(root, target):
if root is None:
return False
# Map to store the prefix sums
prefix_sum_map = {0: 1}
sum = 0
stack = [root]
# Iterative depth-first traversal
while stack:
curr = stack.pop()
# Update the running sum with the current node's value
sum += curr.val
# Check if we have encountered (sum - target) before
if (sum - target) in prefix_sum_map:
return True
# Add the current running sum to the map
prefix_sum_map[sum] = 1
# Traverse the right and left children
if curr.right:
stack.append(curr.right)
if curr.left:
stack.append(curr.left)
# If no subtree with the given sum is found
return False
# Creating the given binary tree
# 1
# / \
# 3 6
# / \ /
# 5 9 8
root = Node(1)
root.left = Node(3)
root.right = Node(6)
root.left.left = Node(5)
root.left.right = Node(9)
root.right.left = Node(8)
print(has_subtree_with_given_sum(root, 17))
C#
// C# program to find if there is a subtree with
// given sum
using System;
using System.Collections.Generic;
class Node {
public int Val;
public Node Left;
public Node Right;
public Node(int x) {
Val = x;
Left = null;
Right = null;
}
}
// Function to check if there is a subtree
// with the given sum
class GfG {
static bool HasSubtreeWithGivenSum(Node root, int target) {
if (root == null)
return false;
// Map to store the prefix sums
Dictionary<int, int> prefixSumMap = new Dictionary<int, int>();
prefixSumMap[0] = 1;
int sum = 0;
Stack<Node> stack = new Stack<Node>();
stack.Push(root);
// Iterative depth-first traversal
while (stack.Count > 0) {
Node curr = stack.Pop();
// Update the running sum with the current node's value
sum += curr.Val;
// Check if we have encountered (sum - target) before
if (prefixSumMap.ContainsKey(sum - target)) {
return true;
}
// Add the current running sum to the map
prefixSumMap[sum] = 1;
// Traverse the right and left children
if (curr.Right != null) {
stack.Push(curr.Right);
}
if (curr.Left != null) {
stack.Push(curr.Left);
}
}
// If no subtree with the given sum is found
return false;
}
static void Main() {
// Creating the given binary tree
// 1
// / \
// 3 6
// / \ /
// 5 9 8
Node root = new Node(1);
root.Left = new Node(3);
root.Right = new Node(6);
root.Left.Left = new Node(5);
root.Left.Right = new Node(9);
root.Right.Left = new Node(8);
Console.WriteLine(HasSubtreeWithGivenSum(root, 17));
}
}
JavaScript
// JavaScript program to find if there is a subtree with
// given sum
class Node {
constructor(x) {
this.val = x;
this.left = null;
this.right = null;
}
}
// Function to check if there is a subtree with the given sum
function hasSubtreeWithGivenSum(root, target) {
if (root === null) return false;
// Map to store the prefix sums
const prefixSumMap = new Map();
prefixSumMap.set(0, 1);
let sum = 0;
const stack = [root];
// Iterative depth-first traversal
while (stack.length > 0) {
const curr = stack.pop();
// Update the running sum with the current node's value
sum += curr.val;
// Check if we have encountered (sum - target) before
if (prefixSumMap.has(sum - target)) {
return true;
}
// Add the current running sum to the map
prefixSumMap.set(sum, 1);
// Traverse the right and left children
if (curr.right) {
stack.push(curr.right);
}
if (curr.left) {
stack.push(curr.left);
}
}
// If no subtree with the given sum is found
return false;
}
// Creating the given binary tree
// 1
// / \
// 3 6
// / \ /
// 5 9 8
const root = new Node(1);
root.left = new Node(3);
root.right = new Node(6);
root.left.left = new Node(5);
root.left.right = new Node(9);
root.right.left = new Node(8);
console.log(hasSubtreeWithGivenSum(root, 17));
Time complexity : O(n), As we are visiting every node once.
Auxiliary Space : O(n)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem