Estimating the value of Pi using Monte Carlo | Parallel Computing Method Last Updated : 23 Jul, 2025 Comments Improve Suggest changes Like Article Like Report Given two integers N and K representing number of trials and number of total threads in parallel processing. The task is to find the estimated value of PI using the Monte Carlo algorithm using the Open Multi-processing (OpenMP) technique of parallelizing sections of the program. Examples: Input: N = 100000, K = 8 Output: Final Estimation of Pi = 3.146600 Input: N = 10, K = 8Output: Final Estimation of Pi = 3.24 Input: N = 100, K = 8Output: Final Estimation of Pi = 3.0916 Approach: The above given problem Estimating the value of Pi using Monte Carlo is already been solved using standard algorithm. Here the idea is to use parallel computing using OpenMp to solve the problem. Follow the steps below to solve the problem: Initialize 3 variables say x, y, and d to store the X and Y co-ordinates of a random point and the square of the distance of the random point from origin.Initialize 2 variables say pCircle and pSquare with values 0 to store the points lying inside circle of radius 0.5 and square of side length 1.Now starts the parallel processing with OpenMp together with reduction() of the following section:Iterate over the range [0, N] and find x and y in each iteration using srand48() and drand48() then find the square of distance of point (x, y) from origin and then if the distance is less than or equal to 1 then increment pCircle by 1.In each iteration of the above step, increment the count of pSquare by 1.Finally, after the above step calculate the value of estimated pi as below and then print the obtained value. Pi = 4.0 * ((double)pCircle / (double)(pSquare)) Below is the implementation of the above approach: C++ // C++ program for the above approach #include <iostream> using namespace std; // Function to find estimated // value of PI using Monte // Carlo algorithm void monteCarlo(int N, int K) { // Stores X and Y coordinates // of a random point double x, y; // Stores distance of a random // point from origin double d; // Stores number of points // lying inside circle int pCircle = 0; // Stores number of points // lying inside square int pSquare = 0; int i = 0; // Parallel calculation of random // points lying inside a circle #pragma omp parallel firstprivate(x, y, d, i) reduction(+ : pCircle, pSquare) num_threads(K) { // Initializes random points // with a seed srand48((int)time(NULL)); for (i = 0; i < N; i++) { // Finds random X co-ordinate x = (double)drand48(); // Finds random X co-ordinate y = (double)drand48(); // Finds the square of distance // of point (x, y) from origin d = ((x * x) + (y * y)); // If d is less than or // equal to 1 if (d <= 1) { // Increment pCircle by 1 pCircle++; } // Increment pSquare by 1 pSquare++; } } // Stores the estimated value of PI double pi = 4.0 * ((double)pCircle / (double)(pSquare)); // Prints the value in pi cout << "Final Estimation of Pi = "<< pi; } // Driver Code int main() { // Input int N = 100000; int K = 8; // Function call monteCarlo(N, K); } // This code is contributed by shivanisinghss2110 C // C program for the above approach #include <omp.h> #include <stdio.h> #include <stdlib.h> #include <time.h> // Function to find estimated // value of PI using Monte // Carlo algorithm void monteCarlo(int N, int K) { // Stores X and Y coordinates // of a random point double x, y; // Stores distance of a random // point from origin double d; // Stores number of points // lying inside circle int pCircle = 0; // Stores number of points // lying inside square int pSquare = 0; int i = 0; // Parallel calculation of random // points lying inside a circle #pragma omp parallel firstprivate(x, y, d, i) reduction(+ : pCircle, pSquare) num_threads(K) { // Initializes random points // with a seed srand48((int)time(NULL)); for (i = 0; i < N; i++) { // Finds random X co-ordinate x = (double)drand48(); // Finds random X co-ordinate y = (double)drand48(); // Finds the square of distance // of point (x, y) from origin d = ((x * x) + (y * y)); // If d is less than or // equal to 1 if (d <= 1) { // Increment pCircle by 1 pCircle++; } // Increment pSquare by 1 pSquare++; } } // Stores the estimated value of PI double pi = 4.0 * ((double)pCircle / (double)(pSquare)); // Prints the value in pi printf("Final Estimation of Pi = %f\n", pi); } // Driver Code int main() { // Input int N = 100000; int K = 8; // Function call monteCarlo(N, K); } Java // Java implementation of the approach import java.util.*; class GFG { // Function to find estimated // value of PI using Monte // Carlo algorithm static void monteCarlo(int N, int K) { // Stores X and Y coordinates // of a random point double x, y; // Stores distance of a random // point from origin double d; // Stores number of points // lying inside circle int pCircle = 0; // Stores number of points // lying inside square int pSquare = 0; // Initializes random points // with a seed Random rand = new Random(); // Loop through each iteration for (int i = 0; i < N; i++) { // Finds random X co-ordinate x = rand.nextDouble(); // Finds random Y co-ordinate y = rand.nextDouble(); // Finds the square of distance // of point (x, y) from origin d = ((x * x) + (y * y)); // If d is less than or equal to 1 if (d <= 1) { // Increment pCircle by 1 pCircle++; } // Increment pSquare by 1 pSquare++; } // Stores the estimated value of PI double pi = 4.0 * ((double)pCircle / (double)(pSquare)); // Prints the value of pi System.out.println("Final Estimation of Pi = " + pi); } // Driver Code public static void main(String[] args) { // Input int N = 100000; int K = 8; // Function call monteCarlo(N, K); } } // This code is contributed by phasing17 Python3 # Python3 program for the above approach import random import time # Function to find estimated # value of PI using Monte # Carlo algorithm def monteCarlo(N, K): # Stores X and Y coordinates # of a random point x = 0 y = 0 # Stores distance of a random # point from origin d = 0 # Stores number of points # lying inside circle pCircle = 0 # Stores number of points # lying inside square pSquare = 0 # Initializes random points # with a seed random.seed(time.time()) for i in range(N): # Finds random X co-ordinate x = random.random() # Finds random X co-ordinate y = random.random() # Finds the square of distance # of point (x, y) from origin d = (x * x) + (y * y) # If d is less than or # equal to 1 if d <= 1: # Increment pCircle by 1 pCircle += 1 # Increment pSquare by 1 pSquare += 1 # Stores the estimated value of PI pi = 4.0 * (pCircle / pSquare) # Prints the value in pi print("Final Estimation of Pi = ", pi) # Driver Code # Input N = 100000 K = 8 # Function call monteCarlo(N, K) # This code is contributed by phasing17. C# // C# equivalent of the above code using System; namespace MonteCarloPi { class GFG { // Function to find estimated // value of PI using Monte // Carlo algorithm static void monteCarlo(int N, int K) { // Stores X and Y coordinates // of a random point double x, y; // Stores distance of a random // point from origin double d; // Stores number of points // lying inside circle int pCircle = 0; // Stores number of points // lying inside square int pSquare = 0; // Initializes random points // with a seed Random rand = new Random(); // Loop through each iteration for (int i = 0; i < N; i++) { // Finds random X co-ordinate x = rand.NextDouble(); // Finds random Y co-ordinate y = rand.NextDouble(); // Finds the square of distance // of point (x, y) from origin d = ((x * x) + (y * y)); // If d is less than or equal to 1 if (d <= 1) { // Increment pCircle by 1 pCircle++; } // Increment pSquare by 1 pSquare++; } // Stores the estimated value of PI double pi = 4.0 * ((double)pCircle / (double)(pSquare)); // Prints the value of pi Console.WriteLine("Final Estimation of Pi = " + pi); } // Driver Code static void Main(string[] args) { // Input int N = 100000; int K = 8; // Function call monteCarlo(N, K); } } } // This code is contributed by phasing17 JavaScript // JS program for the above approach // Function to find estimated value of PI using Monte Carlo algorithm function monteCarlo(N, K) { // Stores X and Y coordinates of a random point let x = 0; let y = 0; // Stores distance of a random point from origin let d = 0; // Stores number of points lying inside circle let pCircle = 0; // Stores number of points lying inside square let pSquare = 0; let pi; for (let i = 0; i < N; i++) { // Finds random X co-ordinate x = Math.random(); // Finds random Y co-ordinate y = Math.random(); // Finds the square of distance of point (x, y) from origin d = (x * x) + (y * y); // If d is less than or equal to 1 if (d <= 1) { // Increment pCircle by 1 pCircle++; } // Increment pSquare by 1 pSquare++; // Stores the estimated value of PI pi = 4.0 * (pCircle / pSquare); } // Prints the value of pi console.log("Final Estimation of Pi = " + pi); } // Driver Code // Input const N = 100000; const K = 8; // Function call monteCarlo(N, K); // This code is contributed by phasing17. OutputFinal Estimation of Pi = 3.146600Output of above C program Time Complexity: O(N*K)Auxiliary Space: O(1) Comment More infoAdvertise with us S SAKSHIKULSHRESHTHA Follow Improve Article Tags : DSA Similar Reads Basics & PrerequisitesLogic Building ProblemsLogic building is about creating clear, step-by-step methods to solve problems using simple rules and principles. Itâs the heart of coding, enabling programmers to think, reason, and arrive at smart solutions just like we do.Here are some tips for improving your programming logic: Understand the pro 2 min read Analysis of AlgorithmsAnalysis of Algorithms is a fundamental aspect of computer science that involves evaluating performance of algorithms and programs. Efficiency is measured in terms of time and space.BasicsWhy is Analysis Important?Order of GrowthAsymptotic Analysis Worst, Average and Best Cases Asymptotic NotationsB 1 min read Data StructuresArray Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous 3 min read String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut 2 min read Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The 2 min read Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List: 2 min read Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first 2 min read Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems 2 min read Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most 4 min read Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of 3 min read Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this 15+ min read AlgorithmsSearching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input 2 min read Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ 3 min read Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution 14 min read Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get 3 min read Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net 3 min read Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of 3 min read Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit 4 min read AdvancedSegment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree 3 min read Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i 2 min read GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br 2 min read Interview PreparationInterview CornerThis article serves as your one-stop guide to interview preparation, designed to help you succeed across different experience levels and company expectations. Here is what you should expect in a Tech Interview, please remember the following points:Tech Interview Preparation does not have any fixed s 3 min read GfG160Are you preparing for technical interviews and would like to be well-structured to improve your problem-solving skills? Well, we have good news for you! GeeksforGeeks proudly presents GfG160, a 160-day coding challenge starting on 15th November 2024. In this event, we will provide daily coding probl 3 min read Practice ProblemGeeksforGeeks Practice - Leading Online Coding PlatformGeeksforGeeks Practice is an online coding platform designed to help developers and students practice coding online and sharpen their programming skills with the following features. GfG 160: This consists of most popular interview problems organized topic wise and difficulty with with well written e 6 min read Problem of The Day - Develop the Habit of CodingDo you find it difficult to develop a habit of Coding? If yes, then we have a most effective solution for you - all you geeks need to do is solve one programming problem each day without any break, and BOOM, the results will surprise you! Let us tell you how:Suppose you commit to improve yourself an 5 min read Like