class Graph:
def __init__(self, vertices):
self.V = vertices # Number of vertices
self.graph = [] # List to store graph edges
def add_edge(self, u, v, w):
self.graph.append([u, v, w])
def find(self, parent, i):
if parent[i] == i:
return i
return self.find(parent, parent[i])
def union(self, parent, rank, x, y):
root_x = self.find(parent, x)
root_y = self.find(parent, y)
if rank[root_x] < rank[root_y]:
parent[root_x] = root_y
elif rank[root_x] > rank[root_y]:
parent[root_y] = root_x
else:
parent[root_y] = root_x
rank[root_x] += 1
def boruvka_mst(self):
parent = []
rank = []
mst_weight = 0
num_of_trees = self.V
mst_edges = []
for node in range(self.V):
parent.append(node)
rank.append(0)
while num_of_trees > 1:
cheapest = [-1] * self.V
for u, v, w in self.graph:
set1 = self.find(parent, u)
set2 = self.find(parent, v)
if set1 != set2:
if cheapest[set1] == -1 or cheapest[set1][2] > w:
cheapest[set1] = [u, v, w]
if cheapest[set2] == -1 or cheapest[set2][2] > w:
cheapest[set2] = [u, v, w]
for node in range(self.V):
if cheapest[node] != -1:
u, v, w = cheapest[node]
set1 = self.find(parent, u)
set2 = self.find(parent, v)
if set1 != set2:
mst_weight += w
self.union(parent, rank, set1, set2)
mst_edges.append([u, v, w])
num_of_trees -= 1
print("Weight of MST is", mst_weight)
print("Edges in MST are:")
for u, v, weight in mst_edges:
print(f"{u} -- {v} == {weight}")
# Example usage
g = Graph(4)
g.add_edge(0, 1, 10)
g.add_edge(0, 2, 6)
g.add_edge(0, 3, 5)
g.add_edge(1, 3, 15)
g.add_edge(2, 3, 4)
g.boruvka_mst()