An Overview of Python with
Functional Programming
Adam Getchell
PHY 210
Attributes
• Portable, interpreted, object-oriented, strongly- and dynamically-typed, extensible
– Can write extensions to Python in C/C++
– Links to operating system functions using modules
• Open sourced, developed and supported by the Python Organization (http://www.python.org)
• Freely available on most platforms (Windows, Unix, Linux, *BSD, MacOS)
• Supports procedural, object-oriented, and functional programming
• Huge number of add-on modules available
– Numarray provides capabilities similar to MatLab, IDL, or Octave
• http://www.stsci.edu/resources/software_hardware/numarray
– SciPy implements plotting, parallel computation, FFT, ODE solvers, and linear algebra/LAPACK/BLAS routines from
http://www.netlib.org using thin python wrappers over C or FORTRAN code (and using WEAVE allows direct inlining
of C/C++ code within Python)
• http://www.scipy.org/
– mxODBC provides ODBC database connectivity (e.g. Oracle, SQLServer, mySQL, PostgreSQL, DB2, Sybase)
• http://www.egenix.com/files/python/mxODBC.html
– ReportLab Open Source PDF Library generates PDF files
• http://www.reportlab.org/
– PyXML parses/handles XML with DOM, SAX, XPath/XPointer
• http://pyxml.sourceforge.net/topics/download.html
– Jython implements Python on top of Java, gaining access to the Java platform with Python syntax
• http://www.jython.org
– wxPython implements a cross-platform GUI library for GUI applications
• http://www.wxpython.org/
– MatPlotLib is a cross platform Python 2D plotting library which produces publication quality figures in a variety of
hardcopy formats and interactive GUI environments
• http://matplotlib.sourceforge.net
• Runs large-scale software projects
– Google
– Hubble Space Telescope data processing pipeline
– Zope and Plone
Tokens and Structure
Code Pattern C Python
Statements Unlimited length, terminated with “;”
Code blocks delineated by { }
One statement per line, unless explicitly joined by  or implicitly joined across (), [], or {}
Code blocks delineated by indentation level (tabs)
Comment /* Comment */ # Comment to end of line unless line joined implicitly
Variables Explicitly declared (statically typed)
int, long int, double, float, etc
Objects have identity, type, and value. Identity is memory address, type determines
supported methods and whether the object can be changed (mutable).
Variables dynamically typed at runtime
Boolean, int (equivalent to long), decimal, float, imaginary, Iterators, strings, Unicode
strings, tuples, lists, buffers, xrange, set, frozenset, dictionaries,
Scoping Global variables declared prior to main()
Local variables declared in each procedure
Statically scoped block structure (local, global, built-in) with static lexical scoping. Lexical
scoping defaults to namespace of enclosing function or class
Functions Type and arguments declared Name and parameters must be declared; can take variable list of arguments using varargs()
Functions are first-class elements of language supporting Functional Programming using List
Comprehensions, lambda, map(), reduce(), filter() and Generators with yield()
Matrices A[i][j] Vector = array([1,2,3,4,5]) # from numarray
Matrix = array([1,2],[3,4]) # from numarray
Tuple = ( 1, 2, “three” ) # immutable, ordered, faster than list
List = [ 4, 5, Tuple ] # mutable, ordered, expands dynamically as needed
Dictionary = { “key1”: “value1”, “key2”: “value2” } # mutable, unordered
Open Files Input_file=fopen(filename, “r”)
Output_file=fopen(filename, “w”)
f = open("/music/_singles/kairo.mp3", "rb") # read binary mode
g = open(“/temp/outputfile.txt”, “a”) # append mode
h = open(“/temp/outputfile.txt”, “w”) # overwrite mode
Input scanf(stdin, “ %lf “, &var)
fscanf(input_file, “ %lf “, &var)
s = raw_input(“Who goes there?”) or sys.stdin.readline()
s = f.read() or f.readlines()
Output printf(stdout, “ %lf “, var)
printf(stdout, “ %lf “, var)
print s
Relational
Operators
==, >=, <=, !=, <, > Python supports operator overloading
==,>=,<=,!=,<>, <, >, is, is not
Logical Operators &&, ||, ! and, or, not
Bitwise Operators &, |, ^, ~, >>, << &, |, ^, ~, >>, <<
Tokens and Structure part II
Code Pattern C Python
Pointers Declaration: int *p (p is the address of an
integer, it points to an integer)
int *p, value, var;
var = 10;
p = &var;
Value = *p (Value = 10)
Python does not directly have pointers
However, everything in Python is an object
Objects are passed by reference and can be compared using is and is not operators, which
tests for equality by looking at object identity (memory address)
Python modules and C-extensions can handle the encapsulation of C-pointers in Python objects
If Statements if (i<N)
statements;
else if (i>N)
statements;
else
statements;
if i<N:
statements
elif i>N:
statements
else:
statements
For Statements for (i=0; i < N; i++)
statements;
for i in range(N):
statements
While Statements while (i<N)
statements;
while i < N:
statements
Including files #include <stdio.h> import sys
Exception
Handling
None for arg in sys.argv[1:]:
try:
f = open(arg, 'r')
except IOError:
print 'cannot open', arg
else:
print arg, 'has', len(f.readlines()), 'lines‘
f.close()
Classes None class MyClass:
"A simple example class“
i = 12345
def f(self):
return 'hello world'
Tokens and Structure part III
Code Pattern C Python
Compound Data
Type Operations
None >>> a = ['spam', 'eggs', 100, 1234]
>>> a ['spam', 'eggs', 100, 1234]
>>> a[0]
'spam'
>>> a[3]
1234
>>> a[-2]
100
>>> a[1:-1]
['eggs', 100]
>>> a[:2] + ['bacon', 2*2]
['spam', 'eggs', 'bacon', 4]
>>> 3*a[:3] + ['Boe!']
['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boe!']
Multiple
Inheritance
None class DerivedClassName(Base1, Base2, Base3):
statements
Structs typedef struct
{
int x;
int array[100];
} Foo; /* note semi-colon here */
class Employee:
pass
john = Employee() # Create an empty employee record
# Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab‘
john.salary = 1000
Iterators None for element in [1, 2, 3]:
print element
The for loop calls iter() on element
Generators None def reverse(data):
for index in range(len(data)-1, -1, -1):
yield data[index]
>>> for char in reverse('golf'):
... print char
...
f
l
o
g
Script
# Need this to run console commands
import os
# Need this to send email
import smtplib
# Need this to process email
from email.MIMEText import MIMEText
# Need this for time
from time import strftime
# First, run the webchecker script and write results to file
os.system("webchecker.py -q http://169.237.48.10 > results.txt")
# Get local time
runtime = strftime('%a %d %b %Y %H:%M:%S')
# Open the file
fp = open("results.txt")
# Create message
msg = MIMEText(fp.read())
fp.close()
me = "Webnanny"
you = "AdamG@hrrm.ucdavis.edu"
msg['Subject'] = 'www.hr.ucdavis.edu link check %s' % runtime
msg['From'] = me
msg['To']= you
server = smtplib.SMTP('hrrm.ucdavis.edu')
server.set_debuglevel(1)
#server.connect()
server.sendmail(me, you, msg.as_string())
server.quit()
Procedural Program
"""Delete files older than AGING constant using os.path.walk"""
import sys, os, time
AGING = 172800 # Default 2 days
def lister(dummy, dirName, filesInDir):
print '[' + dirName + ']'
for fname in filesInDir:
path = os.path.join(dirName, fname)
if not os.path.isdir(path):
print path, time.ctime(os.stat(path).st_mtime), fileage(path),
prune(path)
purge(path)
def fileage(file):
curtime = time.time()
modtime = os.stat(file).st_mtime
age = curtime - modtime
return age
def prune(file):
if fileage(file) > AGING:
return ("T")
else:
return ("File should not be deleted")
def purge(file):
if prune(file) == "T":
os.remove(file)
if __name__ == '__main__':
os.path.walk(sys.argv[1], lister, None)
Object Oriented Program
class Employee:
def __init__(self, name, salary = 0):
self.name = name
self.salary = salary
def giveRaise(self, percent):
self.salary += self.salary * percent
def work(self):
print self.name, "does stuff"
def __repr__(self):
return "<Employee: name=%s, salary=%s>" % (self.name, self.salary)
class Chef(Employee):
def __init__(self, name):
Employee.__init__(self, name, 50000)
def work(self):
print self.name, "makes food"
class Server(Employee):
def __init__(self, name):
Employee.__init__(self, name, 40000)
def work(self):
print self.name, "interfaces with customers"
class PizzaRobot(Chef):
def __init__(self, name):
Chef.__init__(self,name)
def work(self):
print self.name, "makes pizza"
if __name__ == "__main__":
bob = PizzaRobot('bob')
print bob
bob.giveRaise(0.2)
print bob; print
for klass in Employee, Chef, Server, PizzaRobot:
obj = klass(klass.__name__)
obj.work()
Functional Programming
• Functions are first class objects. Everything done with "data" can be done with
functions (e.g. passing a function to another function).
• Recursion is used as the primary control structure. This allows the compiler to
determine the layout of program statements rather than the programmer (e.g., loops
don’t have to be “unrolled” for efficiency)
• There is a focus on LIST Processing (for example, the name Lisp). Lists are often used
with recursion on sub-lists as a substitute for loops.
• "Pure" functional languages eschew side-effects. This excludes the almost ubiquitous
pattern in imperative languages of assigning first one, then another value to the same
variable to track the program state.
• FP either discourages or outright disallows statements, and instead works with the
evaluation of expressions (in other words, functions plus arguments). In the pure case,
one program is one expression (plus supporting definitions).
• FP worries about what is to be computed rather than how it is to be computed.
• FP uses "higher order" functions (functions that operate on functions that operate on
functions) [1]
• Note: “Currying” allows functions of more than one variable to be converted to
composite functions of one variable, e.g. F(x,y,z) = g(x) ◦ h(y) ◦ i(z)
Functional Code
Code Pattern Procedural Functional
If Statements if i=1:
namenum(i)='one'
elif i=2:
namenum(i)='two'
else:
namenum(i)='other'
>>> pr = lambda s:s
>>> namenum = lambda x: (x==1 and pr("one")) 
.... or (x==2 and pr("two")) 
.... or (pr("other"))
>>> namenum(1)
'one'
>>> namenum(2)
'two'
>>> namenum(3)
'other'
For Statements for e in list: func(e) map(func, list)
While Statements while <cond>:
<pre-suite>
if <break_condition>:
break
else:
<suite>
def while_block():
<pre-suite>
if <break_condition>:
return 1
else:
<suite>
return 0
while_FP = lambda: (<cond> and while_block()) or while_FP()
Example Program xs = (1,2,3,4)
ys = (10,15,3,22)
bigmuls = []
# ...more stuff...
for x in xs:
for y in ys:
# ...more stuff...
if x*y > 25:
bigmuls.append((x,y))
# ...more stuff...
# ...more stuff...
print bigmuls
# No side-effects possible
bigmuls = lambda xs,ys: filter(lambda (x,y):x*y > 25, combine(xs,ys))
combine = lambda xs,ys: map(None, xs*len(ys), dupelms(ys,len(xs))) dupelms
= lambda lst,n: reduce(lambda s,t:s+t, map(lambda l,n=n: [l]*n, lst))
print bigmuls((1,2,3,4),(10,15,3,22)) #replace with list comprehension
List
Comprehensions
None print [(x,y) for x in (1,2,3,4) for y in (10,15,3,22) if x*y > 25]
Functional Code part II
Code Pattern C Python
QuickSort void q_sort( input_type a[], int left, int right )
{
int i, j;
input_type pivot;
if (left + CUTOFF <= right) {
/* CUTOFF should be 20 but example is 2 */
pivot = median3( a, left, right );
i = left; j = right-1; /* why? */
for (;;) {
while (a[++i] < pivot);
while (a[--j] > pivot);
if (i < j)
swap( &a[i], &a[j] );
else
break;
}
swap( &a[i], &a[right-1] ); /* why? */
q_sort( a, left, i-1 );
q_sort( a, i+1, right);
}
}
void quick_sort( input_type a[], int n ) {
q_sort( a, 1, n);
insertion_sort( a, n );
/* n<=20: insertion is better, use CUTOFF */ }
def qsort(L):
if L == []: return []
return qsort([x for x in L[1:] if x< L[0] ]) + L[0:1] + 
qsort([x for x in L[1:] if x>=L[0] ])
References
1. ActivePython from ActiveState
– http://www.activestate.com/Products/ActivePython/
1. Charming Python: Functional programming in Python, Part 1
– http://www-106.ibm.com/developerworks/library/l-prog.html
1. Currying: From Wikipedia
– http://en.wikipedia.org/wiki/Currying
1. Enhanced Python Distribution from EnThought
– http://www.enthought.com/python/
1. MatPlotLib: SourceForge
– http://matplotlib.sourceforge.net/
1. Numarray: Space Telescope Science Institute
– http://www.stsci.edu/resources/software_hardware/numarray
1. Python - Object/Type Structures
– http://wiki.cs.uiuc.edu/cs427/Python+-+Object%2FType+Structures
1. Python Software Foundation
1. http://www.python.org/
1. Python Programming Language: From Wikipedia
– http://en.wikipedia.org/wiki/Python_programming_language

More Related Content

PDF
Functional programming in Python
PDF
Functional Python Webinar from October 22nd, 2014
PDF
Thinking in Functions: Functional Programming in Python
PPTX
Advance python programming
PPTX
C and C++ functions
PPT
Functions in C++
PPTX
Learning C++ - Functions in C++ 3
PPTX
Functions in C++
Functional programming in Python
Functional Python Webinar from October 22nd, 2014
Thinking in Functions: Functional Programming in Python
Advance python programming
C and C++ functions
Functions in C++
Learning C++ - Functions in C++ 3
Functions in C++

What's hot (18)

PDF
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
PPT
C++ functions presentation by DHEERAJ KATARIA
PPT
C++ Function
PPT
Functions in C++
PPTX
Function C++
PPT
Functions in C++
PPT
Functions in c++
PPTX
Functions in c++
PPT
16717 functions in C++
 
PPT
C++ functions
PPT
C++ functions
PPTX
functions of C++
PDF
Introduction to functional programming (In Arabic)
PPT
C++ Functions
PPT
Function overloading(C++)
PPT
Lecture#6 functions in c++
PPT
FUNCTIONS IN c++ PPT
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
C++ functions presentation by DHEERAJ KATARIA
C++ Function
Functions in C++
Function C++
Functions in C++
Functions in c++
Functions in c++
16717 functions in C++
 
C++ functions
C++ functions
functions of C++
Introduction to functional programming (In Arabic)
C++ Functions
Function overloading(C++)
Lecture#6 functions in c++
FUNCTIONS IN c++ PPT
Ad

Similar to An Overview Of Python With Functional Programming (20)

PDF
First Steps in Python Programming
ODP
Programming Under Linux In Python
PDF
Functional programming in Python 1st Edition David Mertz
PDF
Python functional programming
PPT
python language programming presentation
PPTX
An Introduction : Python
PPT
C463_02_python.ppt
PPT
C463_02_python.ppt
PPT
python within 50 page .ppt
PPT
Python Kick Start
PPT
FALLSEM2022-23_ITA3007_ETH_VL2022230100613_Reference_Material_I_23-09-2022_py...
PDF
Python Foundation – A programmer's introduction to Python concepts & style
PDF
Functional python
PDF
Introduction to python
PDF
Python Part 1
PDF
Tutorial on-python-programming
PPT
python presentation lists,strings,operation
PDF
Functional programming in Python 1st Edition David Mertz
PDF
A tour of Python
PDF
An overview of Python 2.7
First Steps in Python Programming
Programming Under Linux In Python
Functional programming in Python 1st Edition David Mertz
Python functional programming
python language programming presentation
An Introduction : Python
C463_02_python.ppt
C463_02_python.ppt
python within 50 page .ppt
Python Kick Start
FALLSEM2022-23_ITA3007_ETH_VL2022230100613_Reference_Material_I_23-09-2022_py...
Python Foundation – A programmer's introduction to Python concepts & style
Functional python
Introduction to python
Python Part 1
Tutorial on-python-programming
python presentation lists,strings,operation
Functional programming in Python 1st Edition David Mertz
A tour of Python
An overview of Python 2.7
Ad

More from Adam Getchell (14)

PDF
GenAI: Topic list generated by ChatGPT 4.0
PDF
AI for Research and Education for Pomology
PDF
AI in Action: UC AI Innovation Virtual Share Fair
PDF
PCI Compliance in the Cloud: A working example
PDF
April 2015 APS presentation
PDF
Cloud Applications at UC Davis
PDF
Background independent quantum gravity
PDF
Agent based modeling-presentation
PDF
Newtonian limit in cdt
PDF
UC Davis Active Directory Unified Communications Design Whitepaper
PDF
Agile Secure Cloud Application Development Management
PPT
Defending Your Network
PPTX
Secure Dot Net Programming
PPTX
Quantum Gravity
GenAI: Topic list generated by ChatGPT 4.0
AI for Research and Education for Pomology
AI in Action: UC AI Innovation Virtual Share Fair
PCI Compliance in the Cloud: A working example
April 2015 APS presentation
Cloud Applications at UC Davis
Background independent quantum gravity
Agent based modeling-presentation
Newtonian limit in cdt
UC Davis Active Directory Unified Communications Design Whitepaper
Agile Secure Cloud Application Development Management
Defending Your Network
Secure Dot Net Programming
Quantum Gravity

An Overview Of Python With Functional Programming

  • 1. An Overview of Python with Functional Programming Adam Getchell PHY 210
  • 2. Attributes • Portable, interpreted, object-oriented, strongly- and dynamically-typed, extensible – Can write extensions to Python in C/C++ – Links to operating system functions using modules • Open sourced, developed and supported by the Python Organization (http://www.python.org) • Freely available on most platforms (Windows, Unix, Linux, *BSD, MacOS) • Supports procedural, object-oriented, and functional programming • Huge number of add-on modules available – Numarray provides capabilities similar to MatLab, IDL, or Octave • http://www.stsci.edu/resources/software_hardware/numarray – SciPy implements plotting, parallel computation, FFT, ODE solvers, and linear algebra/LAPACK/BLAS routines from http://www.netlib.org using thin python wrappers over C or FORTRAN code (and using WEAVE allows direct inlining of C/C++ code within Python) • http://www.scipy.org/ – mxODBC provides ODBC database connectivity (e.g. Oracle, SQLServer, mySQL, PostgreSQL, DB2, Sybase) • http://www.egenix.com/files/python/mxODBC.html – ReportLab Open Source PDF Library generates PDF files • http://www.reportlab.org/ – PyXML parses/handles XML with DOM, SAX, XPath/XPointer • http://pyxml.sourceforge.net/topics/download.html – Jython implements Python on top of Java, gaining access to the Java platform with Python syntax • http://www.jython.org – wxPython implements a cross-platform GUI library for GUI applications • http://www.wxpython.org/ – MatPlotLib is a cross platform Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive GUI environments • http://matplotlib.sourceforge.net • Runs large-scale software projects – Google – Hubble Space Telescope data processing pipeline – Zope and Plone
  • 3. Tokens and Structure Code Pattern C Python Statements Unlimited length, terminated with “;” Code blocks delineated by { } One statement per line, unless explicitly joined by or implicitly joined across (), [], or {} Code blocks delineated by indentation level (tabs) Comment /* Comment */ # Comment to end of line unless line joined implicitly Variables Explicitly declared (statically typed) int, long int, double, float, etc Objects have identity, type, and value. Identity is memory address, type determines supported methods and whether the object can be changed (mutable). Variables dynamically typed at runtime Boolean, int (equivalent to long), decimal, float, imaginary, Iterators, strings, Unicode strings, tuples, lists, buffers, xrange, set, frozenset, dictionaries, Scoping Global variables declared prior to main() Local variables declared in each procedure Statically scoped block structure (local, global, built-in) with static lexical scoping. Lexical scoping defaults to namespace of enclosing function or class Functions Type and arguments declared Name and parameters must be declared; can take variable list of arguments using varargs() Functions are first-class elements of language supporting Functional Programming using List Comprehensions, lambda, map(), reduce(), filter() and Generators with yield() Matrices A[i][j] Vector = array([1,2,3,4,5]) # from numarray Matrix = array([1,2],[3,4]) # from numarray Tuple = ( 1, 2, “three” ) # immutable, ordered, faster than list List = [ 4, 5, Tuple ] # mutable, ordered, expands dynamically as needed Dictionary = { “key1”: “value1”, “key2”: “value2” } # mutable, unordered Open Files Input_file=fopen(filename, “r”) Output_file=fopen(filename, “w”) f = open("/music/_singles/kairo.mp3", "rb") # read binary mode g = open(“/temp/outputfile.txt”, “a”) # append mode h = open(“/temp/outputfile.txt”, “w”) # overwrite mode Input scanf(stdin, “ %lf “, &var) fscanf(input_file, “ %lf “, &var) s = raw_input(“Who goes there?”) or sys.stdin.readline() s = f.read() or f.readlines() Output printf(stdout, “ %lf “, var) printf(stdout, “ %lf “, var) print s Relational Operators ==, >=, <=, !=, <, > Python supports operator overloading ==,>=,<=,!=,<>, <, >, is, is not Logical Operators &&, ||, ! and, or, not Bitwise Operators &, |, ^, ~, >>, << &, |, ^, ~, >>, <<
  • 4. Tokens and Structure part II Code Pattern C Python Pointers Declaration: int *p (p is the address of an integer, it points to an integer) int *p, value, var; var = 10; p = &var; Value = *p (Value = 10) Python does not directly have pointers However, everything in Python is an object Objects are passed by reference and can be compared using is and is not operators, which tests for equality by looking at object identity (memory address) Python modules and C-extensions can handle the encapsulation of C-pointers in Python objects If Statements if (i<N) statements; else if (i>N) statements; else statements; if i<N: statements elif i>N: statements else: statements For Statements for (i=0; i < N; i++) statements; for i in range(N): statements While Statements while (i<N) statements; while i < N: statements Including files #include <stdio.h> import sys Exception Handling None for arg in sys.argv[1:]: try: f = open(arg, 'r') except IOError: print 'cannot open', arg else: print arg, 'has', len(f.readlines()), 'lines‘ f.close() Classes None class MyClass: "A simple example class“ i = 12345 def f(self): return 'hello world'
  • 5. Tokens and Structure part III Code Pattern C Python Compound Data Type Operations None >>> a = ['spam', 'eggs', 100, 1234] >>> a ['spam', 'eggs', 100, 1234] >>> a[0] 'spam' >>> a[3] 1234 >>> a[-2] 100 >>> a[1:-1] ['eggs', 100] >>> a[:2] + ['bacon', 2*2] ['spam', 'eggs', 'bacon', 4] >>> 3*a[:3] + ['Boe!'] ['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boe!'] Multiple Inheritance None class DerivedClassName(Base1, Base2, Base3): statements Structs typedef struct { int x; int array[100]; } Foo; /* note semi-colon here */ class Employee: pass john = Employee() # Create an empty employee record # Fill the fields of the record john.name = 'John Doe' john.dept = 'computer lab‘ john.salary = 1000 Iterators None for element in [1, 2, 3]: print element The for loop calls iter() on element Generators None def reverse(data): for index in range(len(data)-1, -1, -1): yield data[index] >>> for char in reverse('golf'): ... print char ... f l o g
  • 6. Script # Need this to run console commands import os # Need this to send email import smtplib # Need this to process email from email.MIMEText import MIMEText # Need this for time from time import strftime # First, run the webchecker script and write results to file os.system("webchecker.py -q http://169.237.48.10 > results.txt") # Get local time runtime = strftime('%a %d %b %Y %H:%M:%S') # Open the file fp = open("results.txt") # Create message msg = MIMEText(fp.read()) fp.close() me = "Webnanny" you = "[email protected]" msg['Subject'] = 'www.hr.ucdavis.edu link check %s' % runtime msg['From'] = me msg['To']= you server = smtplib.SMTP('hrrm.ucdavis.edu') server.set_debuglevel(1) #server.connect() server.sendmail(me, you, msg.as_string()) server.quit()
  • 7. Procedural Program """Delete files older than AGING constant using os.path.walk""" import sys, os, time AGING = 172800 # Default 2 days def lister(dummy, dirName, filesInDir): print '[' + dirName + ']' for fname in filesInDir: path = os.path.join(dirName, fname) if not os.path.isdir(path): print path, time.ctime(os.stat(path).st_mtime), fileage(path), prune(path) purge(path) def fileage(file): curtime = time.time() modtime = os.stat(file).st_mtime age = curtime - modtime return age def prune(file): if fileage(file) > AGING: return ("T") else: return ("File should not be deleted") def purge(file): if prune(file) == "T": os.remove(file) if __name__ == '__main__': os.path.walk(sys.argv[1], lister, None)
  • 8. Object Oriented Program class Employee: def __init__(self, name, salary = 0): self.name = name self.salary = salary def giveRaise(self, percent): self.salary += self.salary * percent def work(self): print self.name, "does stuff" def __repr__(self): return "<Employee: name=%s, salary=%s>" % (self.name, self.salary) class Chef(Employee): def __init__(self, name): Employee.__init__(self, name, 50000) def work(self): print self.name, "makes food" class Server(Employee): def __init__(self, name): Employee.__init__(self, name, 40000) def work(self): print self.name, "interfaces with customers" class PizzaRobot(Chef): def __init__(self, name): Chef.__init__(self,name) def work(self): print self.name, "makes pizza" if __name__ == "__main__": bob = PizzaRobot('bob') print bob bob.giveRaise(0.2) print bob; print for klass in Employee, Chef, Server, PizzaRobot: obj = klass(klass.__name__) obj.work()
  • 9. Functional Programming • Functions are first class objects. Everything done with "data" can be done with functions (e.g. passing a function to another function). • Recursion is used as the primary control structure. This allows the compiler to determine the layout of program statements rather than the programmer (e.g., loops don’t have to be “unrolled” for efficiency) • There is a focus on LIST Processing (for example, the name Lisp). Lists are often used with recursion on sub-lists as a substitute for loops. • "Pure" functional languages eschew side-effects. This excludes the almost ubiquitous pattern in imperative languages of assigning first one, then another value to the same variable to track the program state. • FP either discourages or outright disallows statements, and instead works with the evaluation of expressions (in other words, functions plus arguments). In the pure case, one program is one expression (plus supporting definitions). • FP worries about what is to be computed rather than how it is to be computed. • FP uses "higher order" functions (functions that operate on functions that operate on functions) [1] • Note: “Currying” allows functions of more than one variable to be converted to composite functions of one variable, e.g. F(x,y,z) = g(x) ◦ h(y) ◦ i(z)
  • 10. Functional Code Code Pattern Procedural Functional If Statements if i=1: namenum(i)='one' elif i=2: namenum(i)='two' else: namenum(i)='other' >>> pr = lambda s:s >>> namenum = lambda x: (x==1 and pr("one")) .... or (x==2 and pr("two")) .... or (pr("other")) >>> namenum(1) 'one' >>> namenum(2) 'two' >>> namenum(3) 'other' For Statements for e in list: func(e) map(func, list) While Statements while <cond>: <pre-suite> if <break_condition>: break else: <suite> def while_block(): <pre-suite> if <break_condition>: return 1 else: <suite> return 0 while_FP = lambda: (<cond> and while_block()) or while_FP() Example Program xs = (1,2,3,4) ys = (10,15,3,22) bigmuls = [] # ...more stuff... for x in xs: for y in ys: # ...more stuff... if x*y > 25: bigmuls.append((x,y)) # ...more stuff... # ...more stuff... print bigmuls # No side-effects possible bigmuls = lambda xs,ys: filter(lambda (x,y):x*y > 25, combine(xs,ys)) combine = lambda xs,ys: map(None, xs*len(ys), dupelms(ys,len(xs))) dupelms = lambda lst,n: reduce(lambda s,t:s+t, map(lambda l,n=n: [l]*n, lst)) print bigmuls((1,2,3,4),(10,15,3,22)) #replace with list comprehension List Comprehensions None print [(x,y) for x in (1,2,3,4) for y in (10,15,3,22) if x*y > 25]
  • 11. Functional Code part II Code Pattern C Python QuickSort void q_sort( input_type a[], int left, int right ) { int i, j; input_type pivot; if (left + CUTOFF <= right) { /* CUTOFF should be 20 but example is 2 */ pivot = median3( a, left, right ); i = left; j = right-1; /* why? */ for (;;) { while (a[++i] < pivot); while (a[--j] > pivot); if (i < j) swap( &a[i], &a[j] ); else break; } swap( &a[i], &a[right-1] ); /* why? */ q_sort( a, left, i-1 ); q_sort( a, i+1, right); } } void quick_sort( input_type a[], int n ) { q_sort( a, 1, n); insertion_sort( a, n ); /* n<=20: insertion is better, use CUTOFF */ } def qsort(L): if L == []: return [] return qsort([x for x in L[1:] if x< L[0] ]) + L[0:1] + qsort([x for x in L[1:] if x>=L[0] ])
  • 12. References 1. ActivePython from ActiveState – http://www.activestate.com/Products/ActivePython/ 1. Charming Python: Functional programming in Python, Part 1 – http://www-106.ibm.com/developerworks/library/l-prog.html 1. Currying: From Wikipedia – http://en.wikipedia.org/wiki/Currying 1. Enhanced Python Distribution from EnThought – http://www.enthought.com/python/ 1. MatPlotLib: SourceForge – http://matplotlib.sourceforge.net/ 1. Numarray: Space Telescope Science Institute – http://www.stsci.edu/resources/software_hardware/numarray 1. Python - Object/Type Structures – http://wiki.cs.uiuc.edu/cs427/Python+-+Object%2FType+Structures 1. Python Software Foundation 1. http://www.python.org/ 1. Python Programming Language: From Wikipedia – http://en.wikipedia.org/wiki/Python_programming_language

Editor's Notes

  • #3: Dynamically typed – variables typed on the fly, can change SAX = Simple API for XML, used for speedy reading, not good for writes DOM = Document Object Model, memory-resident tree XPath = Selecting subset of nodes in a DOM tree
  • #4: Tuples (), immutable Lists [], mutable, Dictionaries {}, key:value, Enumerator goes through iterator Iterator used to step through sequence Lexical scoping – defaults to scope of nearest enclosing function/class block First class – Can be assigned or passed to like variables, i.e. functions of functions Generator is “resumable function” List Comprehensions
  • #5: range(N) is a function that generates 0 to N-1 sys.argv[1:] is a “slice” that reads arguments 1, 2, …, N Can also use try … finally to ensure an action is taken and raise to raise an exception In the class, MyClass.i refers to an integer attribute and MyClass.f refers to a method attribute
  • #6: Iter() defines next method and raises StopIteration Exception when completed Generators remember values when next() is called on the iterator Local variables and execution state are saved between calls Generators automatically create __iter__() and next()
  • #11: Map(func, list) applies func to every element in list apply(function, args[, keywords]) equivalent to function(*args, **keywords) filter(function, list) equivalent to [item for item in list if function(item)] if function is not None and [item for item in list if item] if function is None.
  • #12: Map(func, list) applies func to every element in list apply(function, args[, keywords]) equivalent to function(*args, **keywords) filter(function, list) equivalent to [item for item in list if function(item)] if function is not None and [item for item in list if item] if function is None.