Chapter 10

System-Level /0O

Input/output(l/O) is the process of copying data between main memory ateireal devices such as disk
drives, terminals, and networks. An input operation cogis from an I/O device to main memory, and an
output operation copies data from memory to a device.

All language run-time systems provide higher-level féed for performing 1/0. For example, ANSI C
provides thestandard I/Olibrary, with functions such aprintf andscanf that perform buffered I/O.
The C++ language provides similar functionality with itsedwaded<< (“put to”) and >> (“get from”)
operators. On Unix systems, these higher-level I/O funstiare implemented using system-le\dglix 1/0
functions provided by the kernel. Most of the time, the higleeel 1/0 functions work quite well and there
is no need to use Unix I/O directly. So why bother learninguatiénix I/O?

e Understanding Unix 1/O will help you understand other sgsteconcepts.l/O is integral to the
operation of a system, and because of this we often encocintetar dependences between I/O and
other systems ideas. For example, I/0O plays a key role inggsocreation and execution. Conversely,
process creation plays a key role in how files are shared Hgrelift processes. Thus, to really
understand 1/O you need to understand processes, and véze VWee have already touched on aspects
of I/0 in our discussions of the memory hierarchy, linkingldmading, processes, and virtual memory.
Now that you have a better understanding of these ideas, nvelase the circle and delve into I/O in
more detail.

e Sometimes you have no choice but to use Unix Mhere are some important cases where using
higher-level 1/0 functions is either impossible or inapmiate. For example, the standard I/O library
provides no way to access file metadata such as file size orr@gicn time. Further, there are
problems with the standard 1/O library that make it risky g tior network programming.

This chapter introduces you to the general concepts of U@hahd standard 1/0, and shows you how to
use them reliably from your C programs. Besides serving anargl introduction, this chapter lays a firm
foundation for our subsequent study of network programnaimgj concurrency.

825

826 CHAPTER 10. SYSTEM-LEVEL I/O
10.1 Unix I/O

A Unix file is a sequence oh bytes:
By,B1,...,Bg,...,Bm_1.

All I/O devices, such as networks, disks, and terminals,napeleled as files, and all input and output is
performed by reading and writing the appropriate files. Bigant mapping of devices to files allows the
Unix kernel to export a simple, low-level application irftere, known adJnix 1/O, that enables all input
and output to be performed in a uniform and consistent way:

e Opening files An application announces its intention to access an |/Gcddwy asking the kernel to
openthe corresponding file. The kernel returns a small nonnegatteger, called descriptor that
identifies the file in all subsequent operations on the filee Kérnel keeps track of all information
about the open file. The application only keeps track of tteeggtor.

Each process created by a Unix shell begins life with threendpes: standard input(descriptor
0), standard outpufdescriptor 1), andtandard error(descriptor 2). The header fitaunistd.h>
defines constantSTDIN_FILENO, STDOUTFILENO, andSTDERRFILENO, which can be used
instead of the explicit descriptor values.

e Changing the current file positionThe kernel maintains file positionk, initially 0, for each open
file. The file position is a byte offset from the beginning ofla.fiAn application can set the current
file positionk explicitly by performing aseekoperation.

e Reading and writing filesA read operation copies > 0 bytes from a file to memory, starting at the
current file positiork, and then incrementing by n. Given a file with a size ofn bytes, performing
a read operation wheln > m triggers a condition known and-of-file(EOF), which can be detected
by the application. There is no explicit “EOF character’rat &nd of a file.

Similarly, awrite operation copies > 0 bytes from memory to a file, starting at the current file
positionk, and then updating.

e Closing files When an application has finished accessing a file, it infdimaskernel by asking it to
closethe file. The kernel responds by freeing the data structti@eated when the file was opened
and restoring the descriptor to a pool of available desmgpt When a process terminates for any
reason, the kernel closes all open files and frees their merasources.

10.2 Opening and Closing Files

A process opens an existing file or creates a new file by catiagpen function:

10.2. OPENING AND CLOSING FILES 827

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(char *filename, int flags, mode -t mode);
Returns: new file descriptor if OK;1 on error

The open function converts dilename to a file descriptor and returns the descriptor number. The
descriptor returned is always the smallest descriptorithadt currently open in the process. Tiegs
argument indicates how the process intends to access the file

e O_RDONLY: Reading only
e O_WRONLY: Writing only
e O_RDWR: Reading and writing

For example, here is how to open an existing file for reading:
fd = Open(*foo.txt", O_RDONLY, 0);

Theflags argument can also be or'd with one or more bit masks that deoadditional instructions for
writing:

e O_CREAT: If the file doesn't exist, then creatdrancated(empty) version of it.

e O_TRUNC: If the file already exists, then truncate it.

e O_APPEND: Before each write operation, set the file positiotheoend of the file.
For example, here is how you might open an existing file withitttent of appending some data:
fd = Open(“*foo.txt", O_WRONLY|O_APPEND, 0);

The mode argument specifies the access permission bits of new files.syimbolic names for these bits
are shown in Figure 10.1. As part of its context, each probhasssumask that is set by calling themask
function. When a process creates a new file by callingofhen function with somemode argument, then
the access permission bits of the file are sehtmle & “umask. For example, suppose we are given the
following default values fomode andumask:

#define DEF_MODE S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IR OTH|S_IWOTH
#define DEF_UMASK S_IWGRP|S_IWOTH

Then the following code fragment creates a new file in whiah @lwner of the file has read and write
permissions, and all other users have read permissions:

828 CHAPTER 10. SYSTEM-LEVEL I/O

Mask | Description |

SIRUSR | User (owner) can read this file

S IWUSR | User (owner) can write this file

S IXUSR | User (owner) can execute this file

S_IRGRP | Members of the owner’s group can read this file
S IWGRP | Members of the owner’s group can write this file
SIXGRP | Members of the owner’s group can execute this file
S_IROTH | Others (anyone) can read this file
S_IWOTH | Others (anyone) can write this file

S IXOTH | Others (anyone) can execute this file

Figure 10.1:Access permission bits. Defined in sys/stat.h

umask(DEF_UMASK);
fd = Open("foo.txt", O_CREAT|O_TRUNC|O_WRONLY, DEF_MODE);

Finally, a process closes an open file by callingdtose function.

#include <unistd.h>

int close(int fd);
Returns: zero if OK—1 on error

Closing a descriptor that is already closed is an error.

Practice Problem 10.1:
What is the output of the following program?

1 #include "csapp.h"
2

3 int main()

4 {

5 int fd1, fd2;

6

7 fdl = Open(“foo.txt", O_RDONLY, 0);
8 Close(fd1);

9 fd2 = Open("baz.txt", O_RDONLY, 0);
10 printf("fd2 = %d\n", fd2);

11 exit(0);

12 }

10.3 Reading and Writing Files

Applications perform input and output by calling tread andwrite functions, respectively.

10.3. READING AND WRITING FILES 829

#include <unistd.h>

ssize _t read(int fd, void *buf, size _t n);
Returns: number of bytes read if OK, 0 on EGH, on error
ssize _t write(int fd, const void *buf, size _t n);
Returns: number of bytes written if OK;1 on error

Theread function copies at most bytes from the current file position of descriptdr to memory location
buf . A return value of-1 indicates an error, and a return valuedahdicates EOF. Otherwise, the return
value indicates the number of bytes that were actually teare.

The write function copies at most bytes from memory locatiobuf to the current file position of
descriptorfd . Figure 10.2 shows a program that usead andwrite calls to copy the standard input to
the standard output, 1 byte at a time.

codef/io/cpstdin.c

1 #include "csapp.h"

2

3 int main(void)

4 {

5 char c;

6

7 while(Read(STDIN_FILENO, &c, 1) != 0)
8 Write(STDOUT_FILENO, &c, 1);

9 exit(0);

10 }

codef/io/cpstdin.c

Figure 10.2:Copies standard input to standard output one byte at a time.

Applications can explicitly modify the current file positidy calling thelseek function, which is beyond
our scope.

Aside: What'sthe difference between ssi ze_t and si ze_t ?

You might have noticed that theead function has asize _t input argument and assize _t return value. So
what's the difference between these two typesBiZe _t is defined as amnsigned int , and anssize _t
(signed sizpis defined as amt . Theread function returns a signed size rather than an unsigned sizause
it must return a—1 on error. Interestingly, the possibility of returning aglim—1 reduces the maximum size of a
read by a factor of two, from 4 GB down to 2 GEEnd Aside.

In some situationgead andwrite transfer fewer bytes than the application requests. Shott counts
do notindicate an error. They occur for a number of reasons:

e Encountering EOF on readSuppose that we are ready to read from a file that contains2@ntyore
bytes from the current file position and that we are readiedfita in 50-byte chunks. Then the next
read will return a short count of 20, and thhead after that will signal EOF by returning a short
count of zero.

830 CHAPTER 10. SYSTEM-LEVEL I/O

e Reading text lines from a termindkf. the open file is associated with a terminal (i.e., a keydaard
display), then eachead function will transfer one text line at a time, returning aghcount equal
to the size of the text line.

e Reading and writing network sockettthe open file corresponds to a network socket (Section.3),.3
then internal buffering constraints and long network delegn causeead andwrite to return short
counts. Short counts can also occur when yourealtl andwrite on a Unixpipe, an interprocess
communication mechanism that is beyond our scope.

In practice, you will never encounter short counts when yadifrom disk files except on EOF, and you will
never encounter short counts when you write to disk files. &l@w if you want to build robust (reliable)
network applications such as Web servers, then you mustdgeshort counts by repeatedly callingad
andwrite until all requested bytes have been transferred.

10.4 Robust Reading and Writing with the R10 Package

In this section, we will develop an I/O package, called the @Robust I/0O) package, that handles these short
counts for you automatically. Thel® package provides convenient, robust, and efficient I/O pliegtions
such as network programs that are subject to short coumtspi®vides two different kinds of functions:

e Unbuffered input and output function¥hese functions transfer data directly between memory and
a file, with no application-level buffering. They are espdlgi useful for reading and writing binary
data to and from networks.

e Buffered input functions.These functions allow you to efficiently read text lines amdaby data
from a file whose contents are cached in an application-levér, similar to the one provided for
standard I/O functions such asintf . Unlike the buffered 1/O routines presented in [109], the
buffered Ro input functions are thread-safe (Section 12.7.1) and cantedeaved arbitrarily on the
same descriptor. For example, you can read some text liogsdrdescriptor, then some binary data,
and then some more text lines.

We are presenting thei® routines for two reasons. First, we will be using them in tegvork applications
we develop in the next two chapters. Second, by studyingdtie tor these routines, you will gain a deeper
understanding of Unix 1/O in general.

10.4.1 Ri0 Unbuffered Input and Output Functions

Applications can transfer data directly between memoryegfile by calling theio _readn andrio _writen
functions.

10.4. ROBUST READING AND WRITING WITH THERIO PACKAGE 831

#include "csapp.h”

ssize _t rio _readn(int fd, void +usrbuf, size _t n);
ssize _t rio _writen(int fd, void +usrbuf, size _t n);
Returns: number of bytes transferred if OK, 0 on E@& (_readn only), —1 on error

Therio _readn function transfers up ta bytes from the current file position of descripfdr to memory
locationusrbuf . Similarly, therio _writen function transfers bytes from locatiorusrbuf to descrip-
torfd . Therio _readn function can only return a short count if it encounters EORefiio _writen
function never returns a short count. Callgito _readn andrio _writen can be interleaved arbitrarily
on the same descriptor.

Figure 10.3 shows the code floo _readn andrio _writen . Notice that each function manually restarts
theread orwrite function if it is interrupted by the return from an applicatisignal handler. To be as
portable as possible, we allow for interrupted system ail$ restart them when necessary. (See Section
8.5.4 for a discussion on interrupted system calls).

10.4.2 Rio Buffered Input Functions

A text lineis a sequence of ASCII characters terminated by a newlineactea. On Unix systems, the
newline character \) is the same as the ASCII line feed character (LF) and hasmaenic value of
Ox0a . Suppose we wanted to write a program that counts the nunitdextlines in a text file. How
might we do this? One approach is to usersad function to transfer 1 byte at a time from the file to the
user’s memory, checking each byte for the newline charatter disadvantage of this approach is that it is
inefficient, requiring a trap to the kernel to read each byte file.

A better approach is to call a wrapper functioio (_readlineb) that copies the text line from an internal
read buffer automatically making eead call to refill the buffer whenever it becomes empty. For fileett
contain both text lines and binary data (such as the HTTRoress described in Section 11.5.3) we also
provide a buffered version afo _readn , calledrio _readnb , that transfers raw bytes from the same
read buffer asio _readlineb

#include "csapp.h"

void rio _readinitb(rio t *rp, int fd);
Returns: nothing
ssize _t rio _readlineb(rio t =*rp, void =usrbuf, size _t maxlen);
ssize _t rio _readnb(rio t =rp, void =*usrbuf, size _t n);
Return: number of bytes read if OK, 0 on EGF] on error

Therio _readinitb function is called once per open descriptor. It associdtesiescriptofd with a
read buffer of typeio _t at addressp .

Therio _readlineb function reads the next text line from filp (including the terminating newline
character), copies it to memory locatioarbuf , and terminates the text line with the null (zero) character

832 CHAPTER 10. SYSTEM-LEVEL I/O

code/src/csapp.c

1 ssize_t rio_readn(int fd, void +usrbuf, size_t n)

2 {

3 size_t nleft = n;

4 ssize_t nread;

5 char =*bufp = usrbuf;

6

7 while (nleft > 0) {

8 if ((nread = read(fd, bufp, nleft)) < 0) {

9 if (errno == EINTR) / * interrupted by sig handler return */

10 nread = O; /' * and call read() again */

11 else

12 return -1; / * errno set by read() */

13 }

14 else if (nread == 0)

15 break; | * EOF «/

16 nleft -= nread,;

17 bufp += nread;

18 }

19 return (n - nleft); / * return >= 0 */

20 }
code/src/csapp.c
code/src/csapp.c

1 ssize_t rio_writen(int fd, void +usrbuf, size_t n)

2 {

3 size_t nleft = n;

4 ssize_t nwritten;

5 char =*bufp = usrbuf;

6

7 while (nleft > 0) {

8 if ((nwritten = write(fd, bufp, nleft)) <= 0) {

9 if (errno == EINTR) / * interrupted by sig handler return */

10 nwritten = O; / * and call write() again */

11 else

12 return -1; / * errmno set by write() */

13 }

14 nleft -= nwritten;

15 bufp += nwritten;

16 }

17 return n;

18 }

code/src/csapp.c

Figure 10.3:The ri o_readn and ri o.wri t en functions.

10.4. ROBUST READING AND WRITING WITH THERIO PACKAGE 833

Therio _readlineb function reads at mosnaxlen-1 bytes, leaving room for the terminating null
character. Text lines that excemsthxlen-1 bytes are truncated and terminated with a null character.

Therio _readnb function reads up ton bytes from filerp to memory locationusrbuf . Calls to
rio _readlineb andrio _readnb can be interleaved arbitrarily on the same descriptor. Hewealls
to these buffered functions should not be interleaved wvétls ¢o the unbufferedio _readn function.

You will encounter numerous examples of theoRunctions in the remainder of this text. Figure 10.4 shows
how to use the B functions to copy a text file from standard input to standargbot, one line at a time.

code/io/cpfile.c

1 #include "csapp.h"

2

3 int main(int argc, char ** argv)

4 {

5 int n;

6 rio_t rio;

7 char buf[MAXLINE];

8

9 Rio_readinitb(&rio, STDIN_FILENO);

10 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)
11 Rio_writen(STDOUT_FILENO, buf, n);
12 }

code/io/cpfile.c

Figure 10.4:.Copying a text file from standard input to standard output.

Figure 10.5 shows the format of a read buffer, along with tieedor therio _readinitb function that
initializes it. Therio _readinitb function sets up an empty read buffer and associates an dpen fi
descriptor with that buffer.

The heart of the B read routines istheo _read function shownin Figure 10.6. Thi®m _read function

is a buffered version of the Uniead function. Wherrio _read is called with a request to readbytes,
there arep->rio _cnt unread bytes in the read buffer. If the buffer is empty, thes ieplenished with
a call toread . Receiving a short count from this invocationrefad is not an error, and simply has the
effect of partially filling the read buffer. Once the buffernonemptyrio _read copies the minimum of
andrp->rio _cnt bytes from the read buffer to the user buffer and returns timeler of bytes copied.

To an application program, théo _read function has the same semantics as the Waad function.
On error, it returns-1 and seterrno appropriately. On EOF, it returns 0. It returns a short catitite
number of requested bytes exceeds the number of unreadibytesread buffer. The similarity of the two
functions makes it easy to build different kinds of bufferedd functions by substitutingo _read for
read . For example, theéo _readnb function in Figure 10.7 has the same structurei@s_readn , with
rio _read substituted foread . Similarly, therio _readlineb routine in Figure 10.7 callso _read

at mostmaxlen-1 times. Each call returns 1 byte from the read buffer, whictihnén checked for being
the terminating newline.

Aside: Originsof the R10 package.

834 CHAPTER 10. SYSTEM-LEVEL I/O

code/include/csapp.h

1 #define RIO_BUFSIZE 8192
2 typedef struct {
3 int rio_fd; / + descriptor for this internal buf */
4 int rio_cnt; / * unread bytes in internal buf */
5 char =*rio_bufptr; / * next unread byte in internal buf */
6 char rio_buf[RIO_BUFSIZE]; / * internal buffer */
7 } rio_t;
code/include/csapp.h
code/src/csapp.c
1 void rio_readinitb(rio_t *rp, int fd)
2 {
3 rp->rio_fd = fd;
4 rp->rio_cnt = 0;
5 rp->rio_bufptr = rp->rio_buf;
6 }

code/src/csapp.c

Figure 10.5:A read buffer of type ri ot andthe ri o_r eadi ni t b function that initializes it.

The Ro functions are inspired by threadline , readn , andwriten functions described by W. Richard Stevens
in his classic network programming text [109]. The _readn andrio _writen functions are identical to the
Stevensreadn andwriten functions. However, the Stevemsadline function has some limitations that
are corrected in B®. First, becauseeadline is buffered andeadn is not, these two functions cannot be
used together on the same descriptor. Second, becauss msts¢ic buffer, the Stevenseadline function

is not thread-safe, which required Stevens to introducdferdnt thread-safe version calledadline _r. We
have corrected both of these flaws with tie _readlineb andrio _readnb functions, which are mutually
compatible and thread-safénd Aside.

10.5 Reading File Metadata

An application can retrieve information about a file (somets called the file’snetadata by calling the
stat andfstat functions.

#include <unistd.h>
#include <sys/stat.h>

int stat(const char *filename, struct stat * puf);
int fstat(int fd, struct stat * puf);

Returns: 0 if OK,—1 on error

The stat function takes as input a file name and fills in the members sfaf structure shown in

10.5. READING FILE METADATA 835

code/src/csapp.c

1 static ssize_t rio_read(rio_t *rp, char =usrbuf, size_t n)

2 {

3 int cnt;

4

5 while (rp->rio_cnt <= 0) { / + refill if buf is empty */

6 rp->rio_cnt = read(rp->rio_fd, rp->rio_buf,

7 sizeof(rp->rio_buf));

8 if (rp->rio_cnt < 0) {

9 if (errno !'= EINTR) / * interrupted by sig handler return */
10 return -1;

11 }

12 else if (rp->rio_cnt == 0) / * EOF /

13 return O;

14 else

15 rp->rio_bufptr = rp->rio_buf; / * reset buffer ptr */
16 }

17

18 /* Copy min(n, rp->rio_cnt) bytes from internal buf to user buf */
19 cnt = n;

20 if (rp->rio_cnt < n)

21 cnt = rp->rio_cnt;

22 memcpy(usrbuf, rp->rio_bufptr, cnt);

23 rp->rio_bufptr += cnt;

24 rp->rio_cnt -= cnt;

25 return cnt;

26 }

code/src/csapp.c

Figure 10.6:The internal ri o_r ead function.

836 CHAPTER 10. SYSTEM-LEVEL I/O

code/src/csapp.c

1 ssize_t rio_readlineb(rio_t *rp, void =usrbuf, size t maxlen)

2 {

3 int n, rc;

4 char ¢, =*bufp = usrbuf;

5

6 for (n = 1; n < maxlen; n++) {

7 if ((rc = rio_read(rp, &c, 1)) == 1) {

8 *pufp++ = c;

9 if (c == "\n")

10 break;

11 } else if (rc == 0) {

12 if (n ==1)

13 return 0; / * EOF, no data read =/

14 else

15 break; / += EOF, some data was read =/

16 } else

17 return -1; / * error */

18 }

19 *pufp = 0;

20 return n;

21 }
code/src/csapp.c
code/src/csapp.c

1 ssize_t rio_readnb(rio_t *rp, void *usrbuf, size t n)

2 {

3 size_t nleft = n;

4 ssize_t nread;

5 char =*bufp = usrbuf;

6

7 while (nleft > 0) {

8 if ((nread = rio_read(rp, bufp, nleft)) < 0) {

9 if (errno == EINTR) / * interrupted by sig handler return */

10 nread = O; / = call read() again */

11 else

12 return -1; / * errno set by read() */

13 }

14 else if (nread == 0)

15 break; | * EOF «/

16 nleft -= nread,;

17 bufp += nread;

18 }

19 return (n - nleft); / * return >= 0 */

20 }

code/src/csapp.c

Figure 10.7:The ri o_readl i neb and ri o_r eadnb functions.

10.5. READING FILE METADATA 837

Figure 10.8. Thdstat function is similar, but takes a file descriptor instead ofariame. We will need
thest _modeandst size members of thestat structure when we discuss Web servers in Section 11.5.
The other members are beyond our scope.

statbuf.h (included by sys/stat.h)

/ * Metadata returned by the stat and fstat functions */

struct stat {
dev_t st_dev; [* device =*/
ino_t st_ino; / * inode */
mode_t st_mode; /= protection and file type */
nlink_t st_nlink; / * number of hard links */
uid_t st_uid; / * user ID of owner */
gid_t st_gid; / * group ID of owner */
dev_t st_rdev; / * device type (if inode device) */
off t st_size; / * total size, in bytes */
unsigned long st blksize; / * Dblocksize for filesystem 1/O */
unsigned long st blocks; / * number of blocks allocated */
time_t st_atime; / * time of last access */
time_t st_mtime; / * time of last modification */
time_t st_ctime; / * time of last change */

statbuf.h (included by sys/stat.h)

Figure 10.8:The st at structure.

Thest _size member contains the file size in bytes. ie.mode member encodes both the file permis-
sion bits (Figure 10.1) and thde type Unix recognizes a number of different file types.régular file
contains some sort of binary or text data. To the kernel ttsene difference between text files and binary
files. A directory filecontains information about other files. shcketis a file that is used to communicate
with another process across a network (Section 11.4).

Unix provides macro predicates for determining the file tinpen thest _mode member. Figure 10.9 lists
a subset of these macros.

| Macro | Description |
SISREG() | Is this aregular file? L

S_ISDIR() Is this a directory file?
S ISSOCK() | Is this a network socket

Figure 10.9:Macros for determining file type from the st _npde bits. Defined in sys/stat.h

Figure 10.10 shows how we might use these macros andtétte function to read and interpret a file's
st _mode bits.

838 CHAPTER 10. SYSTEM-LEVEL I/O

code/io/statcheck.c

1 #include "csapp.h"

2

3 int main (int argc, char ** argv)

4 {

5 struct stat stat;

6 char =*type, =*readok;

7

8 Stat(argv[l], &stat);

9 if (S_ISREG(stat.st_mode)) / * Determine file type */
10 type = "regular";

11 else if (S_ISDIR(stat.st_mode))

12 type = "directory";

13 else

14 type = "other";

15 if ((stat.st_ mode & S IRUSR)) / * Check read access */
16 readok = "yes";

17 else

18 readok = "no";

19

20 printf("type: %s, read: %s\n", type, readok);
21 exit(0);

22 }

code/io/statcheck.c

Figure 10.10Querying and manipulating a file's st _node bits.

10.6. SHARING FILES 839

10.6 Sharing Files

Unix files can be shared in a number of different ways. Unleashave a clear picture of how the kernel
represents open files, the idea of file sharing can be quiteisiog. The kernel represents open files using
three related data structures:

e Descriptor table. Each process has its own sepamdscriptor tablevhose entries are indexed by the
process’s open file descriptors. Each open descriptor poings to an entry in théle table.

¢ File table. The set of open files is represented by a file table that is dlirall processes. Each file
table entry consists of (for our purposes) the current fikdtfmm, areference counof the number of
descriptor entries that currently point to it, and a poirttean entry in thev-node table Closing a
descriptor decrements the reference count in the assddibt¢able entry. The kernel will not delete
the file table entry until its reference count is zero.

¢ v-node tableLike the file table, the v-node table is shared by all procesBach entry contains most
of the information in thestat structure, including thet _-mode andst _size members.

Figure 10.11 shows an example where descriptors 1 and Znefertwo different files through distinct
open file table entries. This is the typical situation, whides are not shared, and where each descriptor

corresponds to a distinct file.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
stdi n fdo /' — File access
stdo ut fd1 — - ; ;
stde rr fd2 File pos F.|Ie size
fd 3 refc nt =1 File type
fd 4 ~ : :
] File access
File pos F_lle size
refc nt=1 File type
Figure 10.11:Typical kernel data structures for open files. In this example, two descriptors reference

distinct files. There is no sharing.

Multiple descriptors can also reference the same file thralifferent file table entries, as shown in Fig-
ure 10.12. This might happen, for example, if you were to talopen function twice with the same

filename . The key idea is that each descriptor has its own distinctpfilgition, so different reads on
different descriptors can fetch data from different lozasi in the file.

We can also understand how parent and child processes dbareSiippose that before a callftok , the
parent process has the open files shown in Figure 10.11. TigeneFL0.13 shows the situation after the
call tofork . The child gets its own duplicate copy of the parent’'s deseritable. Parent and child share

