Preface

This book (CS:APP) is for computer scientists, computeirerggs, and others who want to be able to write
better programs by learning what is going on “under the had@ computer system.

Our aim is to explain the enduring concepts underlying athpater systems, and to show you the concrete
ways that these ideas affect the correctness, performandeytility of your application programs. Other
systems books, are written primarily frombailder's perspectivedescribing how to implement the hard-
ware or the systems software, including the operating systempiler, and networking code. This book is
written from aprogrammer’s perspectiyelescribing how application programmers can use their kedye

of a system to write better programs. Of course, learningt\atsystem is supposed to do provides a good
first step in learning how to build one, and so this book alsweseas a valuable introduction to those who
go on to implement systems hardware and software.

If you study and learn the concepts in this book, you will beyonr way to becoming the rare “power
programmer” who knows how things work and how to fix them whesytbreak. You will also be prepared
to study specific systems topics such as compilers, comjputkitecture, operating systems, embedded
systems, and networking.

Assumptions About the Reader’s Background

The presentation in the book are based on two related machishe formats supported by Intel and its
competitors, colloquially known as “x86.” 1A32 is the machicode that has become the de facto standard
for a wide range of systems. x86-64 is an extension of IA32n&b& programs to operate on larger data
and to reference a wider range of memory addresses. Sine@x8gstems are able to run IA32 code, both
of these forms of machine code will see widespread use fofotleseeable future. We will consider how
these machines execute C programs on Unix or Unix-like (sischinux) operating systems. (To simplify
our presentation, we will use the term “Unix” as an umbretiant for systems having Unix as their heritage,
including Solaris, MacOS, and Linux.) The text contains eupns programming examples that have been
compiled and run on Linux systems. We assume that you haessitc such a machine, and are able to log
in and do simple things such as changing directories.

If your computer runs Microsoft Windows, you have two cheic&irst, you can get a copy of Linux (see
www. | i nux. or gorwww. r edhat . conj and install it as a “dual boot” option, so that your machiaa c
run either operating system. Alternatively, by installengopy of the Cygwin toolssw. cygwi n. conj,
you can have up a Unix-like shell under Windows and have air@mwent very close to that provided by

XV

XVi PREFACE

Linux. Not all features of Linux are available under Cygwhiowever.

We also assume that you have some familiarity with C or C++olfr only prior experience is with Java,
the transition will require more effort on your part, but wél\welp you. Java and C share similar syntax
and control statements. However, there are aspects of Gguysarly pointers, explicit dynamic memory
allocation, and formatted I/O, that do not exist in Java.tirmately, C is a small language, and it is clearly
and beautifully described in the classic “K&R” text by Brikernighan and Dennis Ritchie [58]. Regardless
of your programming background, consider K&R an essenta @f your personal systems library.

Several of the early chapters in the book explore the intieres between C programs and their machine-
language counterparts. The machine language examplesallerenerated by the GNWcc compiler
running on 1A32 and x86-64 processors. We do not assume amygxperience with hardware, machine
language, or assembly-language programming.

New to C?: Advice on the C Programming L anguage
To help readers whose background in C programming is weakofoexistent), we have also included these special
notes to highlight features that are especially importai@.i\We assume you are familiar with C++ or Jakad.

How to Read the Book

Learning how computer systems work from a programmer’sgaets/e is great fun, mainly because it can
be done so actively. Whenever you learn some new thing, yourgat out right away and see the result
first hand. In fact, we believe that the only way to learn systés todo systems, either working concrete
problems, or writing and running programs on real systems.

This theme pervades the entire book. When a new conceptaslinted, it is followed in the text by one
or morepractice problemghat you should work immediately to test your understandi@glutions to the
practice problems are at the end of each chapter. As you teath solve each problem on your own,
and then check the solution to make sure you are on the rigtk.trEach chapter is followed by a set of
homework problemsf varying difficulty. Your instructor has the solutions teethomework problems in an
Instructor's Manual. For each homework problem, we showtiagaof the amount of effort we feel it will
require:

¢ Should require just a few minutes. Little or no programmiaguired.

¢ ¢ Might require up to 20 minutes. Often involves writing anstieg some code. Many of these
are derived from problems we have given on exams.

¢ ¢ ¢ Requires a significant effort, perhaps 1-2 hours. Genenallglves writing and testing a
significant amount of code.

4 ¢ ¢ ¢ Alab assignment, requiring up to 10 hours of effort.

Each code example in the text was formatted directly, witamy manual intervention, from a C program
compiled withccc and tested on a Linux system. Of course, your system may hdifeegent version of
GCgC, or a different compiler altogether, and so your compilegmigenerate different machine code, but

XVii

the overall behavior should be the same. All of the source e@dvailable from the CS:APP Web page at
csapp. cs. crmu. edu. In the text, the file names of the source programs are dod@eh@nhorizontal bars
that surround the formatted code. For example, the prognafigure 1 can be found in the fikel | 0. ¢

in directorycode/ i nt r o/ . We encourage you to try running the example programs on system as
you encounter them.

code/intro/hello.c

#i ncl ude <stdio. h>

int main()

{
}

printf("hello, world\n");

o O b~ W DN PP

code/intro/hello.c

Figure 1:A typical code example.

To avoid having a book that is overwhelming, both in bulk amdantent, we have created a numbeweb
asidescontaining material that supplements the main presentafithe book. These asides are referenced
within the book with a notation of the forl@HAP.TOP, whereCHAP s a short encoding of the chapter
subject, and OPis short code for the topic that is covered. For example, WaHeADATA:BOOL contains
supplementary material on Boolean algebra for the preSentan data representations in Chapter 2, while
Web Aside ARCH:VLOG contains material on describing precesdesigns using the Verilog hardware
description language, supplementing the presentatiomamfegsor design in Chapter 4. All of these web
asides are available from the CS:APP web page.

Aside: What isan aside?

You will encounter asides of this form throughout the texsid®s are parenthetical remarks that give you some
additional insight into the current topic. Asides serve abar of purposes. Some are little history lessons. For
example, where did C, Linux, and the Internet come from? Odsales are meant to clarify ideas that students
often find confusing. For example, what is the differenceveen a cache line, set, and block? Other asides give
real-world examples. For example, how a floating-pointrecrashed a French rocket, or what the geometry of a
real IBM disk drive looks like. Finally, some asides are just stuff. For example, what is a “hoinky'Bnd Aside.

Origins of the Book

The book stems from an introductory course that we develap&arnegie Mellon University in the Fall of
1998, calledl5-213: Introduction to Computer Syste(hSS) [14]. The ICS course has been taught every
semester since then, each time to about 150-250 studentgngafrom sophomores to masters degree
students and with a wide variety of majors. It is a requiredrse for all undergraduates in the CS and ECE
departments at Carnegie Mellon, and it has become a preregfdar most upper-level systems courses.

The idea with ICS was to introduce students to computers iiffereht way. Few of our students would
have the opportunity to build a computer system. On the dthad, most students, including all computer
scientists and computer engineers, will be required to ndegpaogram computers on a daily basis. So we

Xviii PREFACE

decided to teach about systems from the point of view of tlgnammer, using the following filter: We
would cover a topic only if it affected the performance, ectness, or utility of user-level C programs.

For example, topics such as hardware adder and bus desigaute Topics such as machine language
were in, but instead of focusing on how to write assembly lagg by hand, we would look at how C
constructs such as pointers, loops, procedure calls anthsetand switch statements are translated by the
compiler. Further, we would take a broader and more wholiggw of the system as both hardware and
systems software, covering such topics as linking, logdimgcesses, signals, performance optimization,
I/0, and network and concurrent programming.

This approach allowed us to teach the ICS course in a wayslpaictical, concrete, hands-on, and exciting
for the students. The response from our students and famllgagues was immediate and overwhelmingly
positive, and we realized that others outside of CMU mighmefié from using our approach. Hence this
book, which we developed from the ICS lecture notes, andhwvie have now revised to reflect changes in
technology and how computer systems are implemented.

Overview of the Book
The CS:APP book consists of 12 chapters designed to capteiate ideas in computer systems:

e Chapter 1: A Tour of Computer Systemshis chapter introduces the major ideas and themes in
computer systems by tracing the life cycle of a simple “heMorld” program.

e Chapter 2: Representing and Manipulating Informatide cover computer arithmetic, emphasizing
the properties of unsigned and two’s complement numbeesgptations that affect programmers.
We consider how numbers are represented and therefore amge of values can be encoded for
a given word size. We consider the effect of casting betwégmed and unsigned numbers. We
cover the mathematical properties of arithmetic operatioBtudents are surprised to learn that the
(two’s complement) sum or product of two positive numbens ba negative. On the other hand,
two’s complement arithmetic satisfies the algebraic prig®iof a ring, and hence a compiler can
safely transform multiplication by a constant into a seaqeeof shifts and adds. We use the bit-level
operations of C to demonstrate the principles and applicatdf Boolean algebra. We cover the IEEE
floating point format in terms of how it represents values gmedmathematical properties of floating
point operations.

Having a solid understanding of computer arithmetic isiaaitto writing reliable programs. For
example, programmers and compilers cannot replace thessipn(x<y) with (x-y < 0) due
to the possibility of overflow. They cannot even replace ithwthe expressiorf-y < -Xx) due
to the asymmetric range of negative and positive numbersariwo’s complement representation.
Arithmetic overflow is a common source of programming erad security vulnerabilities, yet few
other books cover the properties of computer arithmetimfeoprogrammer’s perspective.

e Chapter 3: Machine-Level Representation of Prograridge teach students how to read the IA32
and x86-64 assembly language generated by a C compiler. VW& e basic instruction patterns
generated for different control constructs, such as camdits, loops, and switch statements. We

XiX

cover the implementation of procedures, including statbcation, register usage conventions and

parameter passing. We cover the way different data strestumch as structures, unions, and arrays
are allocated and accessed. We also use the machine-lewebf/programs as a way to understand

common code security vulnerabilities, such as buffer ooerfland steps that the programmer, the

compiler, and the operating system can take to mitigatestti@gats. Learning the concepts in this

chapter helps students become better programmers, bataysenderstand how their programs are

represented on the machine. One certain benefit is thatrdtudevelop a thorough and concrete

understanding of pointers.

e Chapter 4: Processor ArchitectureThis chapter covers basic combinational and sequentiat log
elements and then shows how these elements can be combimedtmpath that executes a simplified
subset of the 1A32 instruction set called “Y86.” We begintwihe design of a single-cycle, non-
pipelined datapath, which we extend into a five-stage pipédlidesign. The control logic for the
processor designs are described using a simple hardwanepdies language called HCL. Hardware
designs written in HCL can be compiled and linked into sirtars provided with the textbook, and
they can be used to generate Verilog descriptions suitabkeyhthesis into working hardware.

e Chapter 5. Optimizing Program Performanchn this chapter we introduce a number of techniques
for improving code performance, with the idea being thagpromers learn to write their C code in
such a way that a compiler can then generate efficient machide. We start with transformations
that reduce the work to be done by a program and hence shostdrmard practice when writing any
program for any machine. We then progress to transformstitat enhance the degree of instruction-
level parallelism in the generated machine code, therelprawing their performance on modern
“superscalar” processors. To motivate these transfoomatve introduce a simple operational model
of how modern out-of-order processors work and show how tasme the potential performance of
a program in terms of the critical paths through a graphiepiasentation of a program.

e Chapter 6: The Memory Hierarchithe memory system is one of the most visible parts of a compute
system to application programmers. To this point, the sttedkave relied on a conceptual model of
the memory system as a linear array with uniform access tinmepractice, a memory system is a
hierarchy of storage devices with different capacitiestscand access times. We cover the different
types of RAM and ROM memories and the geometry and organizaif magnetic-disk and solid-
state drives. We describe how these storage devices argadén a hierarchy. We show how this
hierarchy is made possible by locality of reference. We nthkse ideas concrete by introducing a
unique view of a memory system as a “memory mountain” witge&lof temporal locality and slopes
of spatial locality. Finally, we show students how to impedkie performance of application programs
by improving their temporal and spatial locality.

e Chapter 7: Linking. This chapter covers both static and dynamic linking, inicigcthe ideas of
relocatable and executable object files, symbol resolutielocation, static libraries, shared object
libraries, and position-independent code. Linking is rmtered in most systems texts, but we cover
it for several reasons. First, some of the most confusingrethat students can encounter are related
to glitches during linking, especially for large softwarackages. Second, the object files produced
by linkers are tied to concepts such as loading, virtual ngnamd memory mapping.

e Chapter 8: Exceptional Control Flown this part of the course we break the single-program model

XX

PREFACE

by introducing the general concept of exceptional contawf{i.e., changes in control flow that are
outside the normal branches and procedure calls). We coeanmes of exceptional control flow

that exist at all levels of the system, from low-level hardsvaxceptions and interrupts, to context
switches between concurrent processes, to abrupt chamgestrol flow caused by the delivery of

Unix signals, to the nonlocal jumps in C that break the staskigline.

This is the part of the book where we introduce students téut@amental idea of a process. Students
learn how processes work and how they can be created and utedaiph from application programs.
We show them how application programmers can make use ofpheufirocesses via Unix system
calls. When students finish this chapter, they are able tearUnix shell with job control. It is also
their first introduction to the nondeterministic behaviwattarises with concurrent program execution.

Chapter 9: Virtual Memory.Our presentation of the virtual memory system seeks to divdesits
some understanding of how it works and its characteristiégs.want students to know how it is that
the different simultaneous processes can each use arcideatige of addresses, sharing some pages
but having individual copies of others. We also cover issoeslved in managing and manipulating
virtual memory. In particular, we cover the operation ofrate allocators such as the Umnl | oc
andf r ee operations. Covering this material serves several pugpdseeinforces the concept that
the virtual memory space is just an array of bytes that thgrmar can subdivide into different storage
units. It helps students understand the effects of progamtaining memory referencing errors such
as storage leaks and invalid pointer references. Finaldnymapplication programmers write their
own storage allocators optimized toward the needs and ciesistics of the application. This chapter,
more than any other, demonstrates the benefit of coverirgthethardware and the software aspects
of computer systems in a unified way. Traditional computehigéecture and operating systems texts
cover only part of the virtual memory story.

Chapter 10: System-Level I/@Ve cover the basic concepts of Unix I/O such as files and geecsi
We describe how files are shared, how /O redirection workd, leow to access file metadata. We
also develop a robust buffered 1/0 package that deals dtyrn@th short counts. We cover the C
standard /O library and its relationship to Unix I/O, fomgson limitations of standard I/O that make
it unsuitable for network programming. In general, the ¢sptovered in this chapter are building
blocks for the next two chapters on network and concurresgamming.

Chapter 11: Network Programmingletworks are interesting I/O devices to program, tying toge
many of the ideas that we have studied earlier in the texty asgrocesses, signals, byte ordering,
memory mapping, and dynamic storage allocation. Netwodgmams also provide a compelling
context for concurrency, which is the topic of the next ckapihis chapter is a thin slice through
network programming that gets the students to the pointevtiey can write a Web server. We cover
the client-server model that underlies all network appiices. We present a programmer’s view of
the Internet, and show students how to write Internet diemid servers using the sockets interface.
Finally, we introduce HTTP and develop a simple iterativeb\§erver.

Chapter 12: Concurrent Programming@his chapter introduces students to concurrent progragnmin
using Internet server design as the running motivationahgte. We compare and contrast the three
basic mechanisms for writing concurrent programs — pra@gessO multiplexing, and threads —

XXi

and show how to use them to build concurrent Internet servéfs cover basic principles of syn-
chronization usingP and V' semaphore operations, thread safety and reentrancy, oacktions,
and deadlocks. We also describe the use of thread-levetgimoging to express parallelism in an
application program, enabling faster execution on multegrocessors.

Courses Based on the Book

Instructors can use the CS:APP book to teach five differemiiskiof systems courses (Figure 2). The
particular course depends on curriculum requirementssopet taste, and the backgrounds and abilities
of the students. From left to right in the figure, the courgescharacterized by an increasing emphasis on
the programmer’s perspective of a system. Here is a briefriggion:

e ORG: A computer organization course with traditional topicse®@d in an untraditional style. Tra-
ditional topics such as logic design, processor architecassembly language, and memory systems
are covered. However, there is more emphasis on the impattidgprogrammer. For example, data
representations are related back to the data types andioperaf C programs, and the presentation
on assembly code is based on machine code generated by a @erpmapher than hand-written
assembly code.

e ORG+: The ORG course with additional emphasis on the impact afvare on the performance
of application programs. Compared to ORG, students leame mioout code optimization and about
improving the memory performance of their C programs.

e ICS: The baseline ICS course, designed to produce enlightagtdgmmers who understand the im-
pact of the hardware, operating system, and compilatiotesysn the performance and correctness
of their application programs. A significant differencefr@®RG+ is that low-level processor archi-
tecture is not covered. Instead, programmers work with ladri¢evel model of a modern out-of-order
processor. The ICS course fits nicely into a 10-week quatet,can also be stretched to a 15-week
semester if covered at a more leisurely pace.

e ICS+: The baseline ICS course with additional coverage of systprogramming topics such as
system-level 1/0O, network programming, and concurrengmmming. This is the semester-long
Carnegie Mellon course, which covers every chapter in C8:ARcept low-level processor architec-
ture.

e SP: A systems programming course. Similar to the ICS+ coursedimps floating point and perfor-
mance optimization, and places more emphasis on systerggpiming, including process control,
dynamic linking, system-level 1/O, network programmingdaconcurrent programming. Instructors
might want to supplement from other sources for advanceiddguch as daemons, terminal control,
and Unix IPC.

The main message of Figure 2 is that the CS:APP book givesd fmtions to students and instructors.
If you want your students to be exposed to lower-level preaearchitecture, then that option is available
via the ORG and ORG+ courses. On the other hand, if you wanwitcls from your current computer

XXii PREFACE

Course
| Chapter| Topic ORG [ORG+| ICS | ICS+ | SP

1 | Tour of systems ° ° ° ° °

2 | Data representation Y ° ° Y ® (d)

3 | Machine language ° ° ° ° °

4 | Processor architecture || ¢ PY

5 | Code optimization ° ° °

6 | Memory hierarchy ® @) ° ° ° ® @

7 | Linking ®(© ®(© °

8 | Exceptional control flow ° ° °

9 | Virtual memory ® (b) ° ° ° °
10 | System-level /O ° °
11 | Network programming ° °
12 | Concurrent programming Y Y

Figure 2:Five systems courses based on the CS:APP book. Notes: (a) Hardware only, (b) No dynamic
storage allocation, (c) No dynamic linking, (d) No floating point. ICS+ is the 15-213 course from Carnegie
Mellon.

organization course to an ICS or ICS+ course, but are warynaténg such a drastic change all at once,
then you can move towards ICS incrementally. You can staht @R G, which teaches the traditional topics
in an non-traditional way. Once you are comfortable with thaterial, then you can move to ORG+, and
eventually to ICS. If students have no experience in C (fangxle they have only programmed in Java),
you could spend several weeks on C and then cover the maie@®RG or ICS.

Finally, we note that the ORG+ and SP courses would make awa@éerm (either quarters or semesters)
sequence. Or you might consider offering ICS+ as one terr@8fdnd one term of SP.

Classroom-Tested L abor atory Exercises

The ICS+ course at Carnegie Mellon receives very high etialsfrom students. Median scoressdi/5.0
and means of.6/5.0 are typical for the student course evaluations. Studetgstioe fun, exciting, and
relevant laboratory exercises as the primary reason. Tiwdee available from the CS:APP Web page.
Here are examples of the labs that are provided with the book:

e Data Lab. This lab requires students to implement simple logical aitraetic functions, but using
a highly restricted subset of C. For example, they must caenine absolute value of a number using
only bit-level operations. This lab helps students undastthe bit-level representations of C data
types and the bit-level behavior of the operations on data.

e Binary Bomb LabA binary bomhs a program provided to students as an object code file. Wiren r
it prompts the user to type in 6 different strings. If any oésh is incorrect, the bomb “explodes,”
printing an error message and logging the event on a gradingis Students must “defuse” their own
unique bomb by disassembling and reverse engineering tigegon to determine what the 6 strings
should be. The lab teaches students to understand assemblyalge, and also forces them to learn
how to use a debugger.

XXili

e Buffer Overflow LabStudents are required to modify the run-time behavior ohatyi executable by
exploiting a buffer overflow vulnerability. This lab teach#he students about the stack discipline and
teaches them about the danger of writing code that is vubteeta buffer overflow attacks.

e Architecture Lab.Several of the homework problems of Chapter 4 can be combimieda lab as-
signment, where students modify the HCL description of @@ssor to add new instructions, change
the branch prediction policy, or add or remove bypassinggahd register ports. The resulting pro-
cessors can be simulated and run through automated testsilildetect most of the possible bugs.
This lab lets students experience the exciting parts ofggsmr design without requiring a complete
background in logic design and hardware description laggsia

e Performance LabStudents must optimize the performance of an applicationgkéunction such as
convolution or matrix transposition. This lab provides ayMeear demonstration of the properties of
cache memories and gives them experience with low-levegjrpro optimization.

e Shell Lab.Students implement their own Unix shell program with jobtcoh including thect r | - ¢
andctrl - z keystrokesf g, bg, andj obs commands. This is the student’s first introduction to
concurrency, and gives them a clear idea of Unix processapsignals, and signal handling.

e Malloc Lab. Students implement their own versionrmdl | oc, f r ee, and (optionally)r eal | oc.
This lab gives students a clear understanding of data lagioditorganization, and requires them to
evaluate different trade-offs between space and time efiogi

e Proxy Lab. Students implement a concurrent Web proxy that sits betwesinbrowser and the rest
of the World Wide Web. This lab exposes the students to sygbga@s web clients and servers, and
ties together many of the concepts from the course, suchtasobgering, file I/O, process control,
signals, signal handling, memory mapping, sockets, andwoency. Students like being able to see
there programs in action with real web browsers and web serve

The CS:APP Instructor’'s Manual has a detailed discussi¢heoabs, as well as directions for downloading
the support software.

Changes from the First Edition

The first edition of this book was published with a copyrigh603. Considering the rapid evolution of
computer technology, the book content held up surprisimgdyl. Intel IA32 machines running Unix-like
operating systems and programmed in C proved to be a condrindiat continues to encompass many
systems today. Changes in hardware technology and cosgitet our own experience in teaching the
material have prompted a substantial revision.

Here are some of the more significant changes:

e Chapter 2: Representing and Manipulating InformatioNe have tried to make this material more
accessible, with more careful explanations of conceptsvatidmany more practice and homework
problems. We moved some of the more theoretical aspectshi@sides. We also describe some of
the security vulnerabilities that arise due to the overfloopprties of computer arithmetic.

XXIV

PREFACE

Chapter 3: Machine-Level Representation of Program& have extended our coverage to include
x86-64, the extension of x86 processors to a 64-bit word 3i¥e also use the code generated by a
more recent version ascc. We have enhanced our coverage of buffer overflow vulnetiaisil We
have created web asides on two different classes of ingtnscfor floating point, and also a view of
the more exotic transformations made when compilers att@igher degrees of optimization.

Chapter 4. Processor ArchitectureWe include a more careful exposition of exception detection
and handling in our processor design. We have also createghagide showing a mapping of our
processor designs into Verilog, enabling synthesis intkimg hardware.

Chapter 5: Optimizing Program Performanci/e have greatly changed our description of how an
out-of-order processor operates and have created a siegflaitjue for analyzing program perfor-
mance based on the paths in a data-flow graph representétioprogram. A web aside describes
how C programmers can write programs that make use of the $#utDle-instruction, multiple-data)
instructions found in more recent versions of x86 processor

Chapter 6: The Memory Hierarchy/e have added material in solid-state disks, and we haveeghda
our presentation to be based on the memory hierarchy of ahQutre i7 processor.

Chapter 7: Linking.This chapter has changed only slightly.

Chapter 8: Exceptional Control FlowNe have enhanced our discussion of how the process model
introduces some fundamental concepts of concurrency, asiolbndeterminism.

Chapter 9: Virtual MemoryWe have updated our memory system case study to describd-ihi¢ 6
Intel Core i7 processor. We have also updated our samplesimgaitation ofral | oc to work for
both 32 and 64-bit execution.

Chapter 10: System-Level I/@his chapter has changed only slightly.
Chapter 11: Network Programming@.his chapter has changed only slightly.

Chapter 12: Concurrent ProgrammingiVe have increased our coverage of the general principles
of concurrency, and we also describe how programmers canhusad-level parallelism to make
programs run faster on multi-core machines.

In addition, we have added and revised a number of practidédiamework problems.

Acknowledgments for the Second Edition

We are deeply grateful to the many people who have helpedagkipe this second edition of the CS:APP

text.

First and foremost, we would to recognize our colleagues hdne taught the ICS course at Carnegie
Mellon, Guy Blelloch, Roger Dannenberg, David EckhardtegsGanger, Seth Goldstein, Greg Kesden,
Bruce Maggs, Todd Mowry, Andreas Nowatzyk, Frank Pfennarg] Markus Pueschel, for their insightful
feedback and encouragement.

XXV

Thanks also to our sharp-eyed readers who contributedtssjoathe errata page for the first edition: Daniel
Amelang, Quarup Barreirinhas, Michael Bombyk, Jorg Braderdan Brough, Yixin Cao, James Car-
oll, Rui Carvalho, Hyoung-Kee Choi, Al Davis, Grant Davishrdtian Dufour, Mao Fan, Tim Freeman,
Inge Frick, Max Gebhardt, Jeff Goldblat, Thomas Gross, &@upta, John Hampton, Hiep Hong, Greg
Israelsen, Ronald Jones, Haudy Kazemi, Brian Kell, CotisiaiKousoulis, Sacha Krakowiak, Arun Krish-
naswamy, Martin Kulas, Michael Li, Zeyang Li, Ricky Liu, MarLo Conte, Dirk Maas, Devon Macey,
Carl Marcinik, Will Marrero, Simone Martins, Tao Men, Mark dvfissey, Venkata Naidu, Bhas Nal-
abothula, Thomas Niemann, Eric Peskin, David Po, Anne Rpglethn Ross, Michael Scott, Seiki, Ray
Shih, Darren Shultz, Erik Silkensen, Suryanto, Emil Taralawanan Theera-Ampornpunt, Joe Trdinich,
Michael Trigoboff, James Troup, Martin Vopatek, Alan WeBgtsy Wolff, Tim Wong, James Woodrulff,
Scott Wright, Jackie Xiao, Guanpeng Xu, Qing Xu, Caren Yafig,Yongsheng, Wang Yuanxuan, Steven
Zhang, and Day Zhong. Special thanks to Inge Frick, who ifledta subtle deep copy bug in our lock and
copy example, and to Ricky Liu, for his amazing proofreadikilis.

Our Intel Labs colleagues Andrew Chien and Limor Fix weree@tionally supportive throughout the writ-
ing of the text. Steve Schlosser graciously provided sorsk drive characterizations. Casey Helfrich
and Michael Ryan installed and maintained our new Core i7 btichael Kozuch, Babu Pillai, and Jason
Campbell provided valuable insight on memory system patéorce, multi-core systems, and the power
wall. Phil Gibbons and Shimin Chen shared their considerakpertise on solid-state disk designs.

We have been able to call on the talents of many, including-WenHwu, Markus Pueschel, and Jiri Simsa
to provide both detailed comments and high-level adviceme¥aHoe helped us create a Verilog version of
the Y86 processor and did all of the work needed to synthesizking hardware.

Many thanks to our colleagues who provided reviews of thé dnanuscript: James Archibald (Brigham
Young University), Richard Carver (George Mason UnivgjsiMirela Damian (Villanova University),

Peter Dinda (Northwestern University), John Fiore (Tempigversity), Jason Fritts (St. Louis Univer-
sity), John Greiner (Rice University), Brian Harvey (Umnisi¢y of California, Berkeley), Don Heller (Penn
State University), Wei Chung Hsu (University of Minnesoti)ichelle Hugue (University of Maryland),

Jeremy Johnson (Drexel University), Geoff Kuenning (Harivudd College), Ricky Liu, Sam Madden
(MIT), Fred Martin (University of Massachusetts, LowelBpbraham Matta (Boston University), Markus
Pueschel (Carnegie Mellon University), Norman Ramsey téTUniversity), Glenn Reinmann (UCLA),
Michela Taufer (University of Delaware), and Craig ZilleslJC),

Finally, we would like to thank our editor at Prentice HallallGoldstein, for his help, encouragement, and
occasional prodding throughout the writing of the text.

Acknowledgments from the First Edition

We are deeply indebted to many friends and colleagues farttiemughtful criticisms and encouragement.
A special thanks to our 15-213 students, whose infectioesggrand enthusiasm spurred us on. Nick Carter
and Vinny Furia generously provided their malloc package.

Guy Blelloch, Greg Kesden, Bruce Maggs, and Todd Mowry tatlghcourse over multiple semesters, gave
us encouragement, and helped improve the course mateeah BPerby provided early spiritual guidance
and encouragement. Allan Fisher, Garth Gibson, ThomassG&8mtya, Peter Steenkiste, and Hui Zhang

XXVi PREFACE

encouraged us to develop the course from the start. A suggdsbm Garth early on got the whole ball
rolling, and this was picked up and refined with the help of@ugrled by Allan Fisher. Mark Stehlik and
Peter Lee have been very supportive about building this mahiato the undergraduate curriculum. Greg
Kesden provided helpful feedback on the impact of ICS on tBec@urse. Greg Ganger and Jiri Schindler
graciously provided some disk drive characterizations amsivered our questions on modern disks. Tom
Stricker showed us the memory mountain. James Hoe provisiefdiudeas and feedback on how to present
processor architecture.

A special group of students, Khalil Amiri, Angela Demke BmwChris Colohan, Jason Crawford, Peter
Dinda, Julio Lopez, Bruce Lowekamp, Jeff Pierce, Sanjay, Radaji Sarpeshkar, Blake Scholl, Sanijit

Seshia, Greg Steffan, Tiankai Tu, Kip Walker, and Yingliaie ¥ere instrumental in helping us develop the
content of the course. In particular, Chris Colohan establi a fun (and funny) tone that persists to this
day, and invented the legendary “binary bomb” that has praedne a great tool for teaching machine code
and debugging concepts.

Chris Bauer, Alan Cox, Peter Dinda, Sandhya Dwarkadas, Goaimer, Bruce Jacob, Barry Johnson, Don
Heller, Bruce Lowekamp, Greg Morrisett, Brian Noble, Bablthmer, Bill Pugh, Michael Scott, Mark
Smotherman, Greg Steffan, and Bob Wier took time that thdyndi have to read and advise us on early
drafts of the book. A very special thanks to Al Davis (Univgr®of Utah), Peter Dinda (Northwestern
University), John Greiner (Rice University), Wei Hsu (Uairgity of Minnesota), Bruce Lowekamp (College
of William & Mary), Bobbie Othmer (University of MinnesotaMichael Scott (University of Rochester),
and Bob Wier (Rocky Mountain College) for class testing tle¢eBsersion. A special thanks to their students
as well!

We would also like to thank our colleagues at Prentice Hakrdva Horton, Eric Frank, and Harold Stone
have been unflagging in their support and vision. Harold &lsiped us present an accurate historical
perspective on RISC and CISC processor architectures. Ratya provided sharp insights and taught us a
lot about good writing.

Finally, we would like to acknowledge the great technicaitevs Brian Kernighan and the late W. Richard
Stevens, for showing us that technical books can be behutifu

Thank you all.

Randy Bryant
Dave O’Hallaron

Pittsburgh, PA

