
Introducing Computer Systems from a Programmer’s
Perspective

Randal E. Bryant
Carnegie Mellon University

Computer Science
Randy.Bryant@cs.cmu.edu

David R. O’Hallaron
Carnegie Mellon University

Computer Science and
Elec. & Comp. Engineering

droh@cs.cmu.edu

Abstract

The course “Introduction to Computer Systems” at Carnegie
Mellon University presents the underlying principles by
which programs are executed on a computer. It provides
broad coverage of processor operation, compilers, operating
systems, and networking. Whereas most systems courses
present material from the perspective of one who designs
or implements part of the system, our course presents the
view visible to application programmers. Students learn that,
by understanding aspects of the underlying system, they can
make their programs faster and more reliable. This approach
provides immediate benefits for all computer science and
engineering students and also prepares them for more ad-
vanced systems courses. We have taught our course for five
semesters with enthusiastic responses by the students, the in-
structors, and the instructors of subsequent systems courses.

1 Introduction

In our experience, we find that our best computer science and
engineering students share some common attributes. First,
they have a good grasp of the fundamental high-level con-
cepts and abstractions from their programming, data struc-
tures, and algorithms courses. They appreciate the power of
abstractions and use them whenever possible. Second, and
just as important, they understand how these abstractions are
implemented on the hardware and software of real computer
systems. Our abstractions are not perfect, and when things
go wrong (as they often do), good students have the intellec-
tual tools that enable them to determine what is happening at
a system level and then correct the problem.

Unfortunately, most computer science and computer engi-
neering curricula (including ours at until recently), never
provide students a concentrated and consistent introduction
to the fundamental concepts that underly all computer sys-
tems. Traditional computer organization and logic design
courses cover some of this material, but they focus largely
on hardware design. They provide students with little or no
understanding of how important software components oper-
ate, how application programs use systems, or how system
attributes affect the performance and correctness of applica-
tion programs.

To address this problem, we developed an introductory com-
puter systems course at Carnegie Mellon University in the
Fall of 1998, called “Introduction to Computer Systems”
(ICS). The course has now been taught for five semesters
with two different sets of instructors. Our guiding principles
with ICS are to present a more complete view of systems and
to do this from a programmer’s perspective.

� Present a more complete view of systems. The course
takes a broader view of systems than traditional computer
organization or logic design courses, covering aspects of
computer design, operating systems, compilers, and net-
working. This breadth is crucial for understanding how
programs run on real systems.

� Present systems from a programmer’s perspective. We se-
lect material and present it in such a way that it has clear
benefit to application programmers. Rather than describ-
ing how to design a computer or implement a compiler,
the course shows how high-level language programs are
mapped onto the machine and executed. Students learn
how to use this knowledge to improve program perfor-
mance and reliability. They also become more effective
in program debugging, because they understand the be-
haviors that can be caused by difficult bugs such as mem-
ory referencing errors. In terms of operating systems, the
course covers the basics of processes and exceptional con-
trol flow. Students learn how application programmers
can access these features via calls to the system library.
The course also teaches network programming, in order
to introduce students to basic concepts of I/O and com-



puter networks, and to give them experience in dealing
with concurrency and with client-server computing.

This broader programmer-centric approach to systems en-
sures that the material will be valuable to all students in
computer science and engineering. It also clearly delineates
the role of this course from subsequent, more builder-centric
systems courses. Rather than getting a shallower and more
simplified version of material that they will see in more ad-
vanced courses, they get a complementary version. By see-
ing systems from a programmer’s perspective, they learn as-
pects of systems that are covered only indirectly in builder-
centric courses.

We have observed a number of benefits arising from the con-
tent and style of ICS:

� Students are motivated to learn the material, since they can
see how it relates to their needs as programmers.

� It provides good preparation for later systems courses.
Having learned the properties of systems visible to pro-
grammers, they are better prepared to learn how to imple-
ment these systems.

� Since the course is based on the C programming language,
which is still the language of choice for system program-
ming, students are better prepared for their upper-level
systems courses. A number of ECE courses at our uni-
versity have made ICS a prerequisite for this reason.

� For non-majors or other students for which this is the only
systems course, it exposes them to the most important at-
tributes of computer systems.

� It exposes students to techniques and tools used by system
designers, such as debuggers, disassemblers, code profil-
ing, and performance measurements, that can be of great
value to application programmers.

The overall experience for the students, the instructors, and
the instructors of subsequent courses has been extremely
positive. Students find the material motivating and engag-
ing. They report to us later how useful it has been in summer
jobs and other courses. Instructors of upper-level systems
courses remark how better prepared the students now are to
learn about designing and constructing the different compo-
nents of a computer system.

In the remainder of this paper we describe the topics cov-
ered in ICS and how our programmer-centric perspective
shapes our presentation. One major strength of our approach
is that we have been able to develop homework and labora-
tory assignments that engage the students’ interest and pro-
vide them practical skills. They can experience the behavior
of real systems running actual programs, rather than relying
on pen-and-paper exercises and processor simulators. We
describe some of these assignments in conjunction with the
topics.

2 Logistical Issues

ICS takes one semester, meeting for two lectures and one
recitation per week. In the Fall of 2000, the enrollment in-
cluded 75 CS majors, 56 ECE majors, and 20 others ranging
from physics and math to English. Students have already
had an introductory programming course in C++ and a data
structures course taught in either Java or C++. We also ex-
pect students to have had some background in discrete math-
ematics. No prior experience in OS, hardware, or networking
is assumed. Most of the students are Sophomores. In the CS
curriculum, ICS has replaced two required courses: one on
digital logic design and one on computer architecture. It has
been made a prerequisite course for all upper-level systems
courses.

All programs in the course are written in the C program-
ming language. C is the language of choice for system de-
velopers, because many machine-level features are visible to
the programmer, such as bit-level operations, pointer arith-
metic, and a non-strict type system. These features, espe-
cially pointers, are considered detrimental when teaching in-
troductory programming. They are very useful when teach-
ing computer systems, however, in that many important con-
cepts can be expressed and evaluated using C code. In fact,
one important role of ICS is to help students become profi-
cient in C and its system-level features. For example, point-
ers are much easier to understanding when one understands
memory addressing at the assembly code level. The use of
bit-level operations for shifting and masking is an important
skill that they would otherwise have to learn on their own.

The machine-level programming portion of ICS is highly
platform specific. We teach the students machine-level pro-
gramming for a single combination of machine and operat-
ing system. We believe that it is better for students to have
a comprehensive experience with one platform rather than
less in-depth exposure to multiple platforms. Other aspects
of the course, however, have little platform dependence. We
have taught the course for two semesters on Compaq Alpha
processors running Digital Unix, and for three semesters on
Intel Pentium III processors running Linux. We have found
both platforms suitable for the course. The RISC vs. CISC
issue does not play a major role, since we do not spend any
time describing the encoding of instructions or the detailed
implementation of the processor. Since Linux runs in “flat,
32-bit” mode, the arcane addressing features of the Intel ar-
chitecture can be ignored.

3 Data Representations

An important concept to convey is that the virtual memory
space seen by a programmer is fundamentally an array of
bytes. Different data types are formed by grouping bytes
into words of different size and interpreting the contents of
these bytes in various ways. This is a foreign concept for
students used to programming in languages, such as Java,



that purposely hide such details from the user.

We cover computer arithmetic, emphasizing the properties
of unsigned and two’s complement number representations.
Unlike a logic design or computer organization course, we
do not spend any time describing how arithmetic functions
are implemented as logic circuits. Instead we cover features
that affect programmers. We consider how numbers are rep-
resented and therefore what range of values can be encoded
for a given word size. We consider the effect of casting be-
tween signed and unsigned numbers. We cover the math-
ematical properties of arithmetic operations. Students are
surprised to learn that the (two’s complement) sum or prod-
uct of two positive numbers can be negative. On the other
hand, two’s complement arithmetic satisfies ring properties,
and hence a compiler can transform multiplication by a con-
stant into a sequence of shifts and adds. We use the bit-level
operations of C to demonstrate the principles and applica-
tions of Boolean algebra. We cover the IEEE floating point
format in terms of how it represents values and the mathe-
matical properties of floating point operations.

Having a solid understanding of computer arithmetic is criti-
cal to writing reliable programs. For example, one cannot
replace the expression (x<y) with (x-y<0) due to the
possibility of overflow. One cannot even replace it with the
expression (-y<-x) due to the asymmetric range of nega-
tive and positive numbers in the two’s complement represen-
tation. Arithmetic overflow is a common source of program-
ming errors, yet few other courses covers the properties of
computer arithmetic from a programmer’s perspective.

Our assignments in this area involve using different bit-level
operations to implement arithmetic operations. One chal-
lenging example is to implement the C expression !x using
just the C operators ‘˜’, ‘|’, ‘&’, ‘ˆ’, ‘<<’, ‘>>’, and ‘+.’

4 Machine-Level Programs

Assembly language provides a portal between a high-level
language program and its mapping onto the machine. Being
able to read the assembly code generated by a compiler and
to understand how it relates to the source code is an essen-
tial skill for serious programmers. It allows the programmer
to understand the optimization capabilities of the compiler
and to find underlying inefficiencies in the code. Program-
mers seeking to maximize performance of a critical section
of code often try different variations of the source code, each
time compiling it and examining the generated assembly to
get a sense of how efficiently the program will run.

Most computer organization courses show students how to
write their own assembly code, often with programming ex-
amples that could just as well be written in a higher-level
language. Our focus is on being able to read the assembly
language generated by a compiler. This involves a differ-
ent set of skills than writing code by hand. We avoid the
tedium of writing and debugging assembly language pro-

grams. Pedagogically, dealing with the code generated by
a compiler can be somewhat challenging. Hand-generated
assembly programs can be written to maximize readability
and to introduce different concepts via a sequence of increas-
ingly complex programs. By contrast, one has little control
over what kind of code a compiler will generate and what
optimizations it will apply to a given code segment. Still,
students can accommodate some of these challenges realiz-
ing that they are working with real code generated by real
compilers.

ICS covers the basic instruction patterns generated for dif-
ferent control constructs, such as conditionals, loops, and
switch statements. It demonstrates the typical optimizations
performed by compilers such as strength reductions and code
motion. We cover the implementation of procedures, includ-
ing stack allocation, register usage conventions and parame-
ter passing. We cover the way different data structures such
as structures, unions, and arrays are allocated and accessed.

An important outcome of ICS is to understand the uses and
possible dangers of pointers and pointer arithmetic. Many
educators have found that students have difficulty learning
to program in C and C++, because they find the effects of
faulty pointer code inscrutable and mysterious. Memory ref-
erencing errors in C and C++ cause violation of the program
abstraction. An assignment operation with an invalid pointer
reference to one program object can cause modification of
other, logically unrelated program objects. Error messages
such as “segmentation fault” or “bus error” are not very help-
ful to novice programmers. ICS enables students to under-
stand these behaviors and become more effective at debug-
ging.

One of our first teaching assistants, Chris Colohan, devel-
oped an especially interesting assignment to give students
practice in understanding machine-level code and debugging
principles, which we call a “binary bomb.” A binary bomb
is a program for which the students have only the executable
version. It consists of a series of phases. Each phase re-
quires the student to type in a particular string at the key-
board. If the student types in the wrong string, then the bomb
explodes by printing “Boom!” and sends an email message
to the grading server. Students lose some 0.25 points for ev-
ery explosion, so there is a real consequence for exploding
the bomb. If the student types in the correct string, the phase
is “defused” and the bomb sends email to the server with the
authenticating string. It then moves on to the next phase. The
task for the students is to reverse engineer the program suf-
ficiently to deduce the strings they should supply to it. The
bomb phases get progressively harder to defuse. We even
include a “secret” unadvertised phase that the students can
defuse for extra credit. When all the phases are defused, the
bomb is defused, completing the assignment The progress
of each student is recorded in real time (anonymized) on the
course Web page, so students can track how they are pro-
gressing relative to the rest of the class.



The bomb is a beautiful assignment in many ways. For the
instructors, it is entirely self grading. For the students, it
makes learning machine-level programming feel more like a
game than a chore. It also forces students to learn to use a
debugger. The only way to defuse a bomb is to disassemble
it and then use the debugger to explore the program behav-
ior. The bomb lab teaches students about machine language
in the context they will most likely encounter in their profes-
sional lives: using a debugger to reverse engineer machine
code generated by a compiler.

5 The Memory System

The memory system is one of the most visible parts of com-
puter system to application programmers. Although virtual
memory provides the image of a large, flat address space,
features such as caching can have a major effect on program
performance. We therefore go into more detail about cache
design than about any other hardware component. In ad-
dition, having a basic understanding of disk storage and its
latency and bandwidth characteristics is important to under-
standing the motivations for some attributes of virtual mem-
ory.

Advanced courses in computer architecture spend consid-
erable time on caches, covering different associative struc-
tures, indexing mechanisms, and methods of enhancing the
performance during write operations. In ICS we cover only
the basic forms of caches. To a first order, the most important
performance properties are the block size and the total cache
capacity. We use matrix multiplication to demonstrate how
different memory accessing patterns lead to different cache
hit rates and hence different overall performance. It is in-
teresting to note that Hennessy and Patterson describe how
programs can be optimized for cache performance in their
graduate text [1, pp. 405–410] but not in their undergraduate
textbook [5]. Furthermore, they present these optimizations
as a task for the compiler rather than the programmer. In
real life, however, programmers commonly rewrite their pro-
grams to enhance cache performance. Lebeck [3] has also
proposed introducing cache performance measurement into
undergraduate programming courses.

In our laboratory for caches, students try to optimize the
cache performance of a matrix transposition routine. In the
first part, they use a cache simulator to measure the cache hit
rate as the performance metric. This provides them with a
simple and predictable measure that helps them understand
the behavior resulting from different access patterns. This
is the only part of the course where we use a simulator of
any kind. The second part of the lab has them optimize the
measured throughput of their routines running on an actual
machine. Obtaining maximum performance requires them
to do other optimizations such as loop unrolling and using
pointer code. They learn that the code they wrote to maxi-
mize the cache hit rate is too complex to run well in practice.
Instead, they must write code that finds a balance between

CPU and cache performance.

Our presentation of the virtual memory system seeks to give
students some understanding of how it works and its charac-
teristics. More detailed coverage would come in an operat-
ing systems course. Students should know how it is that the
different simultaneous processes can each use an identical
range of addresses, sharing some pages but having individ-
ual copies of others.

We cover the operation of storage allocators such as the
Unix malloc and free operations. Covering this material
serves several purposes. It reinforces the concept that the
virtual memory space is just an array of bytes that the pro-
gram can subdivide into different storage units. It helps stu-
dents understand the effects of programs containing memory
referencing errors such as storage leaks and invalid pointer
references. Finally, many application programmers write
their own storage allocators optimized toward the needs and
characteristics of the application. As a laboratory, we have
students write their own malloc packages, measuring the
space and time performance on a set of hypothetical allo-
cation/deallocation sequences. Writing a storage allocator
gives students some feel for the experience of writing sys-
tems software. It becomes clear why system programmers
write in C where they can circumvent the type system and
have control over the run-time system.

6 Concurrency and Networking

Most programs that students write in their undergraduate ca-
reers read an input file, do some computing, generate an out-
put file, and then quit. However, the programs they will en-
counter later in their careers will likely have a much richer
interaction with the outside world. For example, programs
such as network servers run forever, and consist of multiple
processes or threads that must interact with each other via
shared memory and shared files, and that interact with other
computers via network connections.

We introduce the concept of processes and how the system
provides the image of simultaneous execution even though
only one is executing at any given time. We show them how
application programmers can make use of multiple processes
via Unix system calls, such as fork, kill, and wait. We
discuss exceptional control flow such as interrupts, and pro-
vide a programmer’s view of interrupts via signal handlers.
By comparison, an operating systems course describes how
to implement the software that supports process scheduling,
context switching, and signalling, but it does not show how
these features can be useful in application programs.

We use network programming as a motivator for concur-
rency, I/O, and client-server computing. We provide an
overview of network technology and TCP/IP. For a labo-
ratory assignment, we have students write the user’s portion
of an Internet “Chat” program. This requires them to con-
currently maintain a TCP/IP client to communicate control



information with the Chat server, a UDP client to read the
stream of chat traffic, and a TCP server to allow other users
to query for information about the user. We provide consid-
erable guidance and support on this task, but we have been
pleasantly surprised how well students master such arcane
features as sockets programming, unbuffered I/O, and se-
lect.

7 Discussion

In order to make room for the considerable material on pro-
gramming, operating systems, compilers, and networking,
we must omit much of the material traditionally found in a
computer organization course. We do not cover any logic
design or low-level hardware architecture. Our only cover-
age of CPU architectural concepts such as pipelining is to
present an abstract execution model of an out-of-order pro-
cessor so that students can understand the performance char-
acteristics necessary for program optimization. We do not
have students write any software that would have to run in
kernel mode, and hence we do not cover device drivers. We
believe material such as this can be covered better in more
advanced systems courses, when they have gained more ex-
perience and can take part in more interesting projects.

In fact, we question why undergraduate computer science
programs feel obligated to require every student to learn
many of the topics covered in computer organization. Why
should all students learn logic design, when almost all com-
puting professionals are well removed from such details of
the logic technology? Why spend hours on instruction set
encoding, when even those who routinely deal with assem-
bly code let assemblers and disassemblers handle such de-
tails? Why give a detailed presentation of the operation of a
5-stage RISC pipeline, given that the behavior and code op-
timization strategies for these machines have little relation
to those for a modern, out-of-order processor? Certainly,
such material should be presented to students in computer
engineering and others who will need to work closely with
hardware, but this is only a fraction of the computer science
student population.

Patt and Patel [4] have also developed a fundamentally new
approach to teaching lower-level aspects of the computer
system. Among their goals are some very similar to ours.
On the other hand, they present their material from the bot-
tom up, attempting to span from individual transistors to C
programming in a single semester. Furthermore, they advo-
cate presenting this material as a first course in computing.
We believe in a more top-down approach where students first
become familiar with the level of abstraction provided by a
high-level language and then learn about the implementation
and about some nuances of the underlying implementation.
Furthermore, we make no attempt to delve deeply into hard-
ware design.

The current IEEE/ACM effort at devising new standards for

computing curricula [6] recognizes that as the computing
discipline broadens, the educational priorities must shift to
cover new topics while allowing coverage of others to be
diminished. In addition, there is a recognition that there
should be some definable core that can be expected of any
degree in computer science or engineering. The current
draft curriculum [2, Appendix A] includes 33 core hours of
computer architecture out of a total core allocation of 277.
Among these are 10 hours on CPU design. We feel this
level of coverage is excessive. On the other hand, compi-
lation does not appear in the core at all. There is nothing
listed in the core that shows the connection between a source
code program and its machine-level realization. On a pos-
itive note, there is a recognition that some coverage of net-
working must be in the core.

Most people agree that the ability to write programs is a cen-
tral component of this core. We believe a course in the style
of ICS would provide a suitable way to present the computer
systems portions of the core. It provides a broad overview
of computer systems, combining all aspects of systems into
one course. By presenting from a programmer’s perspective,
it reinforces the sense that the ability to write programs is a
key objective for any computer science or engineering pro-
gram. ICS augments the traditional presentation of program-
ming with a deeper insight into the system that generates and
runs these programs. In around 36 hours of lecture time, we
cover what we argue represents a better-focussed core for
computer systems. It could replace what is currently listed
as requiring 59 hours, including all of the core material from
architecture and networking, as well as much of the operat-
ing systems core.

References

[1] Hennessy, J. L., and Patterson, D. A. Computer Archi-
tecture: A Quantitative Approach, second ed. Morgan-
Kaufmann, San Francisco, 1996.

[2] IEEE Computer Society, and ACM. Computing curric-
ula 2001. Draft, Mar. 2000.

[3] Lebeck, A. R. Cache conscious programming in un-
dergraduate computer science. In SIGCSE (Mar. 1999),
ACM, pp. 247–251.

[4] Patt, Y. N., and Patel, S. J. Introduction to Comput-
ing Systems: From Bits and Gates to C and Beyond.
McGraw-Hill, 2000.

[5] Patterson, D. A., and Hennessy, J. L. Computer Orga-
nization and Design: The Hardware/Software Interface.
Morgan-Kaufmann, San Francisco, 1997.

[6] Roberts, E., LeBlanc, R., Shackelford, R., and Den-
ning, P. J. Curriculum 2001: Interim report from the
ACM/IEEE-CS task force. In SIGCSE (Mar. 1999),
ACM, pp. 343–344.


