
Preface

This book (CS:APP) is for computer scientists, computer engineers, and others who want to be able to write
better programs by learning what is going on “under the hood”of a computer system.

Our aim is to explain the enduring concepts underlying all computer systems, and to show you the concrete
ways that these ideas affect the correctness, performance,and utility of your application programs. Other
systems books are written from abuilder’s perspective, describing how to implement the hardware or the
systems software, including the operating system, compiler, and network interface. This book is written
from a programmer’s perspective, describing how application programmers can use their knowledge of a
system to write better programs. Of course, learning what a system is supposed to do provides a good first
step in learning how to build one, and so this book also servesas a valuable introduction to those who go on
to implement systems hardware and software.

If you study and learn the concepts in this book, you will be onyour way to becoming the rare “power
programmer” who knows how things work and how to fix them when they break. Our aim is to present
the fundamental concepts in ways that you will find useful right away. You will also be prepared to delve
deeper, studying such topics as compilers, computer architecture, operating systems, embedded systems,
and networking.

Assumptions about the Reader’s Background

The presentation of machine code in the book is based on two related formats supported by Intel and its
competitors, colloquially known as “x86.” IA32 is the machine code that has become the de facto standard
for a wide range of systems. x86-64 is an extension of IA32 to enable programs to operate on larger data
and to reference a wider range of memory addresses. Since x86-64 systems are able to run IA32 code, both
of these forms of machine code will see widespread use for theforeseeable future. We consider how these
machines execute C programs on Unix or Unix-like (such as Linux) operating systems. (To simplify our
presentation, we will use the term “Unix” as an umbrella termfor systems having Unix as their heritage,
including Solaris, MacOS, and Linux.) The text contains numerous programming examples that have been
compiled and run on Linux systems. We assume that you have access to such a machine, and are able to log
in and do simple things such as changing directories.

If your computer runs Microsoft Windows, you have two choices. First, you can get a copy of Linux
(www.ubuntu.com) and install it as a “dual boot” option, so that your machine can run either operating
system. Alternatively, by installing a copy of the Cygwin tools (www.cygwin.com), you can run a Unix-

xv



xvi PREFACE

like shell under Windows and have an environment very close to that provided by Linux. Not all features of
Linux are available under Cygwin, however.

We also assume that you have some familiarity with C or C++. Ifyour only prior experience is with Java,
the transition will require more effort on your part, but we will help you. Java and C share similar syntax
and control statements. However, there are aspects of C, particularly pointers, explicit dynamic memory
allocation, and formatted I/O, that do not exist in Java. Fortunately, C is a small language, and it is clearly
and beautifully described in the classic “K&R” text by BrianKernighan and Dennis Ritchie [58]. Regardless
of your programming background, consider K&R an essential part of your personal systems library.

Several of the early chapters in the book explore the interactions between C programs and their machine-
language counterparts. The machine-language examples were all generated by the GNUGCC compiler
running on IA32 and x86-64 processors. We do not assume any prior experience with hardware, machine
language, or assembly-language programming.

New to C?: Advice on the C programming language
To help readers whose background in C programming is weak (ornonexistent), we have also included these special
notes to highlight features that are especially important in C. We assume you are familiar with C++ or Java.End.

How to Read the Book

Learning how computer systems work from a programmer’s perspective is great fun, mainly because you
can do it actively. Whenever you learn something new, you cantry it out right away and see the result
first hand. In fact, we believe that the only way to learn systems is todo systems, either working concrete
problems or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it is followed in the text by one
or morepractice problemsthat you should work immediately to test your understanding. Solutions to the
practice problems are at the end of each chapter. As you read,try to solve each problem on your own,
and then check the solution to make sure you are on the right track. Each chapter is followed by a set of
homework problemsof varying difficulty. Your instructor has the solutions to the homework problems in an
Instructor’s Manual. For each homework problem, we show a rating of the amount of effort we feel it will
require:

� Should require just a few minutes. Little or no programming required.

� � Might require up to 20 minutes. Often involves writing and testing some code. Many of these
are derived from problems we have given on exams.

�� � Requires a significant effort, perhaps 1–2 hours. Generallyinvolves writing and testing a
significant amount of code.

� �� � A lab assignment, requiring up to 10 hours of effort.

Each code example in the text was formatted directly, without any manual intervention, from a C program
compiled withGCC and tested on a Linux system. Of course, your system may have adifferent version of



xvii

GCC, or a different compiler altogether, and so your compiler might generate different machine code, but
the overall behavior should be the same. All of the source code is available from the CS:APP Web page at
csapp.cs.cmu.edu. In the text, the file names of the source programs are documented in horizontal bars
that surround the formatted code. For example, the program in Figure 1 can be found in the filehello.c
in directorycode/intro/. We encourage you to try running the example programs on yoursystem as
you encounter them.

code/intro/hello.c

1 #include <stdio.h>
2

3 int main()
4 {
5 printf("hello, world\n");
6 }

code/intro/hello.c

Figure 1:A typical code example.

To avoid having a book that is overwhelming, both in bulk and in content, we have created a number
of Web asidescontaining material that supplements the main presentation of the book. These asides are
referenced within the book with a notation of the formCHAP:TOP, whereCHAP is a short encoding of the
chapter subject, andTOP is short code for the topic that is covered. For example, Web AsideDATA :BOOL

contains supplementary material on Boolean algebra for thepresentation on data representations in Chapter
2, while Web AsideARCH:VLOG contains material describing processor designs using the Verilog hardware
description language, supplementing the presentation of processor design in Chapter 4. All of these Web
asides are available from the CS:APP Web page.

Aside: What is an aside?
You will encounter asides of this form throughout the text. Asides are parenthetical remarks that give you some
additional insight into the current topic. Asides serve a number of purposes. Some are little history lessons. For
example, where did C, Linux, and the Internet come from? Other asides are meant to clarify ideas that students
often find confusing. For example, what is the difference between a cache line, set, and block? Other asides give
real-world examples. For example, how a floating-point error crashed a French rocket, or what the geometry of an
actual Seagate disk drive looks like. Finally, some asides are just fun stuff. For example, what is a “hoinky”?End
Aside.

Book Overview

The CS:APP book consists of 12 chapters designed to capture the core ideas in computer systems:

• Chapter 1: A Tour of Computer Systems.This chapter introduces the major ideas and themes in
computer systems by tracing the life cycle of a simple “hello, world” program.

• Chapter 2: Representing and Manipulating Information.We cover computer arithmetic, emphasizing
the properties of unsigned and two’s-complement number representations that affect programmers.



xviii PREFACE

We consider how numbers are represented and therefore what range of values can be encoded for
a given word size. We consider the effect of casting between signed and unsigned numbers. We
cover the mathematical properties of arithmetic operations. Novice programmers are often surprised
to learn that the (two’s-complement) sum or product of two positive numbers can be negative. On
the other hand, two’s-complement arithmetic satisfies the algebraic properties of a ring, and hence a
compiler can safely transform multiplication by a constantinto a sequence of shifts and adds. We
use the bit-level operations of C to demonstrate the principles and applications of Boolean algebra.
We cover the IEEE floating-point format in terms of how it represents values and the mathematical
properties of floating-point operations.

Having a solid understanding of computer arithmetic is critical to writing reliable programs. For
example, programmers and compilers cannot replace the expression(x<y) with (x-y < 0), due
to the possibility of overflow. They cannot even replace it with the expression(-y < -x), due
to the asymmetric range of negative and positive numbers in the two’s-complement representation.
Arithmetic overflow is a common source of programming errorsand security vulnerabilities, yet few
other books cover the properties of computer arithmetic from a programmer’s perspective.

• Chapter 3: Machine-Level Representation of Programs.We teach you how to read the IA32 and x86-
64 assembly language generated by a C compiler. We cover the basic instruction patterns generated
for different control constructs, such as conditionals, loops, and switch statements. We cover the
implementation of procedures, including stack allocation, register usage conventions, and parameter
passing. We cover the way different data structures such as structures, unions, and arrays are allocated
and accessed. We also use the machine-level view of programsas a way to understand common code
security vulnerabilities, such as buffer overflow, and steps that the programmer, the compiler, and
the operating system can take to mitigate these threats. Learning the concepts in this chapter helps
you become a better programmer, because you will understandhow programs are represented on
a machine. One certain benefit is that you will develop a thorough and concrete understanding of
pointers.

• Chapter 4: Processor Architecture.This chapter covers basic combinational and sequential logic
elements, and then shows how these elements can be combined in a datapath that executes a simplified
subset of the IA32 instruction set called “Y86.” We begin with the design of a single-cycle datapath.
This design is conceptually very simple, but it would not be very fast. We then introducepipelining,
where the different steps required to process an instruction are implemented as separate stages. At
any given time, each stage can work on a different instruction. Our five-stage processor pipeline is
much more realistic. The control logic for the processor designs is described using a simple hardware
description language called HCL. Hardware designs writtenin HCL can be compiled and linked into
simulators provided with the textbook, and they can be used to generate Verilog descriptions suitable
for synthesis into working hardware.

• Chapter 5: Optimizing Program Performance.This chapter introduces a number of techniques for
improving code performance, with the idea being that programmers learn to write their C code in such
a way that a compiler can then generate efficient machine code. We start with transformations that
reduce the work to be done by a program and hence should be standard practice when writing any
program for any machine. We then progress to transformations that enhance the degree of instruction-
level parallelism in the generated machine code, thereby improving their performance on modern



xix

“superscalar” processors. To motivate these transformations, we introduce a simple operational model
of how modern out-of-order processors work, and show how to measure the potential performance of
a program in terms of the critical paths through a graphical representation of a program. You will be
surprised how much you can speed up a program by simple transformations of the C code.

• Chapter 6: The Memory Hierarchy.The memory system is one of the most visible parts of a computer
system to application programmers. To this point, you have relied on a conceptual model of the
memory system as a linear array with uniform access times. Inpractice, a memory system is a
hierarchy of storage devices with different capacities, costs, and access times. We cover the different
types of RAM and ROM memories and the geometry and organization of magnetic-disk and solid-
state drives. We describe how these storage devices are arranged in a hierarchy. We show how this
hierarchy is made possible by locality of reference. We makethese ideas concrete by introducing a
unique view of a memory system as a “memory mountain” with ridges of temporal locality and slopes
of spatial locality. Finally, we show you how to improve the performance of application programs by
improving their temporal and spatial locality.

• Chapter 7: Linking. This chapter covers both static and dynamic linking, including the ideas of
relocatable and executable object files, symbol resolution, relocation, static libraries, shared object
libraries, and position-independent code. Linking is not covered in most systems texts, but we cover
it for several reasons. First, some of the most confusing errors that programmers can encounter are
related to glitches during linking, especially for large software packages. Second, the object files
produced by linkers are tied to concepts such as loading, virtual memory, and memory mapping.

• Chapter 8: Exceptional Control Flow.In this part of the presentation, we step beyond the single-
program model by introducing the general concept of exceptional control flow (i.e., changes in control
flow that are outside the normal branches and procedure calls). We cover examples of exceptional
control flow that exist at all levels of the system, from low-level hardware exceptions and interrupts,
to context switches between concurrent processes, to abrupt changes in control flow caused by the
delivery of Unix signals, to the nonlocal jumps in C that break the stack discipline.

This is the part of the book where we introduce the fundamental idea of aprocess, an abstraction of
an executing program. You will learn how processes work and how they can be created and manip-
ulated from application programs. We show how application programmers can make use of multiple
processes via Unix system calls. When you finish this chapter, you will be able to write a Unix shell
with job control. It is also your first introduction to the nondeterministic behavior that arises with
concurrent program execution.

• Chapter 9: Virtual Memory. Our presentation of the virtual memory system seeks to give some
understanding of how it works and its characteristics. We want you to know how it is that the different
simultaneous processes can each use an identical range of addresses, sharing some pages but having
individual copies of others. We also cover issues involved in managing and manipulating virtual
memory. In particular, we cover the operation of storage allocators such as the Unixmalloc and
free operations. Covering this material serves several purposes. It reinforces the concept that the
virtual memory space is just an array of bytes that the program can subdivide into different storage
units. It helps you understand the effects of programs containing memory referencing errors such as
storage leaks and invalid pointer references. Finally, many application programmers write their own



xx PREFACE

storage allocators optimized toward the needs and characteristics of the application. This chapter,
more than any other, demonstrates the benefit of covering both the hardware and the software aspects
of computer systems in a unified way. Traditional computer architecture and operating systems texts
present only part of the virtual memory story.

• Chapter 10: System-Level I/O.We cover the basic concepts of Unix I/O such as files and descriptors.
We describe how files are shared, how I/O redirection works, and how to access file metadata. We
also develop a robust buffered I/O package that deals correctly with a curious behavior known as
short counts, where the library function reads only part of the input data. We cover the C standard I/O
library and its relationship to Unix I/O, focusing on limitations of standard I/O that make it unsuitable
for network programming. In general, the topics covered in this chapter are building blocks for the
next two chapters on network and concurrent programming.

• Chapter 11: Network Programming.Networks are interesting I/O devices to program, tying together
many of the ideas that we have studied earlier in the text, such as processes, signals, byte ordering,
memory mapping, and dynamic storage allocation. Network programs also provide a compelling
context for concurrency, which is the topic of the next chapter. This chapter is a thin slice through
network programming that gets you to the point where you can write a Web server. We cover the
client-server model that underlies all network applications. We present a programmer’s view of the
Internet, and show how to write Internet clients and serversusing the sockets interface. Finally, we
introduce HTTP and develop a simple iterative Web server.

• Chapter 12: Concurrent Programming.This chapter introduces concurrent programming using In-
ternet server design as the running motivational example. We compare and contrast the three basic
mechanisms for writing concurrent programs — processes, I/O multiplexing, and threads — and show
how to use them to build concurrent Internet servers. We cover basic principles of synchronization
usingP andV semaphore operations, thread safety and reentrancy, race conditions, and deadlocks.
Writing concurrent code is essential for most server applications. We also describe the use of thread-
level programming to express parallelism in an applicationprogram, enabling faster execution on
multi-core processors. Getting all of the cores working on asingle computational problem requires a
careful coordination of the concurrent threads, both for correctness and to achieve high performance.

New to this Edition

The first edition of this book was published with a copyright of 2003. Considering the rapid evolution of
computer technology, the book content has held up surprisingly well. Intel x86 machines running Unix-like
operating systems and programmed in C proved to be a combination that continues to encompass many
systems today. Changes in hardware technology and compilers and the experience of many instructors
teaching the material have prompted a substantial revision.

Here are some of the more significant changes:

• Chapter 2: Representing and Manipulating Information.We have tried to make this material more
accessible, with more careful explanations of concepts andwith many more practice and homework



xxi

problems. We moved some of the more theoretical aspects to Web asides. We also describe some of
the security vulnerabilities that arise due to the overflow properties of computer arithmetic.

• Chapter 3: Machine-Level Representation of Programs.We have extended our coverage to include
x86-64, the extension of x86 processors to a 64-bit word size. We also use the code generated by a
more recent version ofGCC. We have enhanced our coverage of buffer overflow vulnerabilities. We
have created Web asides on two different classes of instructions for floating point, and also a view
of the more exotic transformations made when compilers attempt higher degrees of optimization.
Another web aside describes how to embed x86 assembly code within a C program.

• Chapter 4: Processor Architecture.We include a more careful exposition of exception detection
and handling in our processor design. We have also created a Web aside showing a mapping of our
processor designs into Verilog, enabling synthesis into working hardware.

• Chapter 5: Optimizing Program Performance.We have greatly changed our description of how
an out-of-order processor operates, and we have created a simple technique for analyzing program
performance based on the paths in a data-flow graph representation of a program. A Web aside
describes how C programmers can write programs that make useof the SIMD (single-instruction,
multiple-data) instructions found in more recent versionsof x86 processors.

• Chapter 6: The Memory Hierarchy.We have added material on solid-state disks, and we have updated
our presentation to be based on the memory hierarchy of an Intel Core i7 processor.

• Chapter 7: Linking.This chapter has changed only slightly.

• Chapter 8: Exceptional Control Flow.We have enhanced our discussion of how the process model
introduces some fundamental concepts of concurrency, suchas nondeterminism.

• Chapter 9: Virtual Memory.We have updated our memory system case study to describe the 64-bit
Intel Core i7 processor. We have also updated our sample implementation ofmalloc to work for
both 32-bit and 64-bit execution.

• Chapter 10: System-Level I/O.This chapter has changed only slightly.

• Chapter 11: Network Programming.This chapter has changed only slightly.

• Chapter 12: Concurrent Programming.We have increased our coverage of the general principles
of concurrency, and we also describe how programmers can usethread-level parallelism to make
programs run faster on multi-core machines.

In addition, we have added and revised a number of practice and homework problems.

Origins of the Book

The book stems from an introductory course that we developedat Carnegie Mellon University in the Fall of
1998, called15-213: Introduction to Computer Systems(ICS) [14]. The ICS course has been taught every



xxii PREFACE

semester since then, each time to about 150–250 students, ranging from sophomores to masters degree
students and with a wide variety of majors. It is a required course for all undergraduates in the CS and ECE
departments at Carnegie Mellon, and it has become a prerequisite for most upper-level systems courses.

The idea with ICS was to introduce students to computers in a different way. Few of our students would
have the opportunity to build a computer system. On the otherhand, most students, including all computer
scientists and computer engineers, will be required to use and program computers on a daily basis. So we
decided to teach about systems from the point of view of the programmer, using the following filter: we
would cover a topic only if it affected the performance, correctness, or utility of user-level C programs.

For example, topics such as hardware adder and bus designs were out. Topics such as machine language
were in, but instead of focusing on how to write assembly language by hand, we would look at how a C
compiler translates C constructs into machine code, including pointers, loops, procedure calls, and switch
statements. Further, we would take a broader and more holistic view of the system as both hardware and
systems software, covering such topics as linking, loading, processes, signals, performance optimization,
virtual memory, I/O, and network and concurrent programming.

This approach allowed us to teach the ICS course in a way that is practical, concrete, hands-on, and exciting
for the students. The response from our students and facultycolleagues was immediate and overwhelmingly
positive, and we realized that others outside of CMU might benefit from using our approach. Hence this
book, which we developed from the ICS lecture notes, and which we have now revised to reflect changes in
technology and how computer systems are implemented.

For Instructors: Courses Based on the Book

Instructors can use the CS:APP book to teach five different kinds of systems courses (Figure 2). The
particular course depends on curriculum requirements, personal taste, and the backgrounds and abilities
of the students. From left to right in the figure, the courses are characterized by an increasing emphasis on
the programmer’s perspective of a system. Here is a brief description:

• ORG: A computer organization course with traditional topics covered in an untraditional style. Tra-
ditional topics such as logic design, processor architecture, assembly language, and memory systems
are covered. However, there is more emphasis on the impact for the programmer. For example, data
representations are related back to the data types and operations of C programs, and the presenta-
tion on assembly code is based on machine code generated by a Ccompiler rather than hand-written
assembly code.

• ORG+: The ORG course with additional emphasis on the impact of hardware on the performance
of application programs. Compared to ORG, students learn more about code optimization and about
improving the memory performance of their C programs.

• ICS: The baseline ICS course, designed to produce enlightened programmers who understand the im-
pact of the hardware, operating system, and compilation system on the performance and correctness
of their application programs. A significant difference from ORG+ is that low-level processor archi-
tecture is not covered. Instead, programmers work with a higher-level model of a modern out-of-order



xxiii

processor. The ICS course fits nicely into a 10-week quarter,and can also be stretched to a 15-week
semester if covered at a more leisurely pace.

• ICS+: The baseline ICS course with additional coverage of systems programming topics such as
system-level I/O, network programming, and concurrent programming. This is the semester-long
Carnegie Mellon course, which covers every chapter in CS:APP except low-level processor architec-
ture.

• SP: A systems programming course. Similar to the ICS+ course, but drops floating point and perfor-
mance optimization, and places more emphasis on systems programming, including process control,
dynamic linking, system-level I/O, network programming, and concurrent programming. Instructors
might want to supplement from other sources for advanced topics such as daemons, terminal control,
and Unix IPC.

Course
Chapter Topic ORG ORG+ ICS ICS+ SP

1 Tour of systems t t t t t

2 Data representation t t t t dq (d)

3 Machine language t t t t t

4 Processor architecture t t

5 Code optimization t t t

6 Memory hierarchy dq (a) t t t dq (a)

7 Linking dq (c) dq (c) t

8 Exceptional control flow t t t

9 Virtual memory dq (b) t t t t

10 System-level I/O t t

11 Network programming t t

12 Concurrent programming t t

Figure 2:Five systems courses based on the CS:APP book. Notes: (a) Hardware only, (b) No dynamic
storage allocation, (c) No dynamic linking, (d) No floating point. ICS+ is the 15-213 course from Carnegie
Mellon.

The main message of Figure 2 is that the CS:APP book gives a lotof options to students and instructors.
If you want your students to be exposed to lower-level processor architecture, then that option is available
via the ORG and ORG+ courses. On the other hand, if you want to switch from your current computer
organization course to an ICS or ICS+ course, but are wary aremaking such a drastic change all at once,
then you can move toward ICS incrementally. You can start with ORG, which teaches the traditional topics
in a nontraditional way. Once you are comfortable with that material, then you can move to ORG+, and
eventually to ICS. If students have no experience in C (for example they have only programmed in Java),
you could spend several weeks on C and then cover the materialof ORG or ICS.

Finally, we note that the ORG+ and SP courses would make a nicetwo-term (either quarters or semesters)
sequence. Or you might consider offering ICS+ as one term of ICS and one term of SP.



xxiv PREFACE

Classroom-Tested Laboratory Exercises

The ICS+ course at Carnegie Mellon receives very high evaluations from students. Median scores of5.0/5.0
and means of4.6/5.0 are typical for the student course evaluations. Students cite the fun, exciting, and
relevant laboratory exercises as the primary reason. The labs are available from the CS:APP Web page.
Here are examples of the labs that are provided with the book:

• Data Lab.This lab requires students to implement simple logical and arithmetic functions, but using
a highly restricted subset of C. For example, they must compute the absolute value of a number using
only bit-level operations. This lab helps students understand the bit-level representations of C data
types and the bit-level behavior of the operations on data.

• Binary Bomb Lab.A binary bombis a program provided to students as an object-code file. Whenrun,
it prompts the user to type in six different strings. If any ofthese is incorrect, the bomb “explodes,”
printing an error message and logging the event on a grading server. Students must “defuse” their
own unique bombs by disassembling and reverse engineering the programs to determine what the six
strings should be. The lab teaches students to understand assembly language, and also forces them to
learn how to use a debugger.

• Buffer Overflow Lab.Students are required to modify the run-time behavior of a binary executable
by exploiting a buffer overflow vulnerability. This lab teaches the students about the stack discipline,
and teaches them about the danger of writing code that is vulnerable to buffer overflow attacks.

• Architecture Lab.Several of the homework problems of Chapter 4 can be combinedinto a lab as-
signment, where students modify the HCL description of a processor to add new instructions, change
the branch prediction policy, or add or remove bypassing paths and register ports. The resulting pro-
cessors can be simulated and run through automated tests that will detect most of the possible bugs.
This lab lets students experience the exciting parts of processor design without requiring a complete
background in logic design and hardware description languages.

• Performance Lab.Students must optimize the performance of an application kernel function such as
convolution or matrix transposition. This lab provides a very clear demonstration of the properties of
cache memories, and gives students experience with low-level program optimization.

• Shell Lab.Students implement their own Unix shell program with job control, including thectrl-c
andctrl-z keystrokes,fg, bg, andjobs commands. This is the student’s first introduction to
concurrency, and gives them a clear idea of Unix process control, signals, and signal handling.

• Malloc Lab. Students implement their own versions ofmalloc, free, and (optionally)realloc.
This lab gives students a clear understanding of data layoutand organization, and requires them to
evaluate different trade-offs between space and time efficiency.

• Proxy Lab.Students implement a concurrent Web proxy that sits betweentheir browsers and the rest
of the World Wide Web. This lab exposes the students to such topics as Web clients and servers, and
ties together many of the concepts from the course, such as byte ordering, file I/O, process control,
signals, signal handling, memory mapping, sockets, and concurrency. Students like being able to see
their programs in action with real Web browsers and Web servers.



xxv

The CS:APP Instructor’s Manual has a detailed discussion ofthe labs, as well as directions for downloading
the support software.

Acknowledgments for the Second Edition

We are deeply grateful to the many people who have helped us produce this second edition of the CS:APP
text.

First and foremost, we would to recognize our colleagues whohave taught the ICS course at Carnegie
Mellon for their insightful feedback and encouragement: Guy Blelloch, Roger Dannenberg, David Eck-
hardt, Greg Ganger, Seth Goldstein, Greg Kesden, Bruce Maggs, Todd Mowry, Andreas Nowatzyk, Frank
Pfenning, and Markus Pueschel.

Thanks also to our sharp-eyed readers who contributed reports to the errata page for the first edition: Daniel
Amelang, Rui Baptista, Quarup Barreirinhas, Michael Bombyk, Jörg Brauer, Jordan Brough, Yixin Cao,
James Caroll, Rui Carvalho, Hyoung-Kee Choi, Al Davis, Grant Davis, Christian Dufour, Mao Fan, Tim
Freeman, Inge Frick, Max Gebhardt, Jeff Goldblat, Thomas Gross, Anita Gupta, John Hampton, Hiep
Hong, Greg Israelsen, Ronald Jones, Haudy Kazemi, Brian Kell, Constantine Kousoulis, Sacha Krakowiak,
Arun Krishnaswamy, Martin Kulas, Michael Li, Zeyang Li, Ricky Liu, Mario Lo Conte, Dirk Maas, Devon
Macey, Carl Marcinik, Will Marrero, Simone Martins, Tao Men, Mark Morrissey, Venkata Naidu, Bhas
Nalabothula, Thomas Niemann, Eric Peskin, David Po, Anne Rogers, John Ross, Michael Scott, Seiki, Ray
Shih, Darren Shultz, Erik Silkensen, Suryanto, Emil Tarazi, Nawanan Theera-Ampornpunt, Joe Trdinich,
Michael Trigoboff, James Troup, Martin Vopatek, Alan West,Betsy Wolff, Tim Wong, James Woodruff,
Scott Wright, Jackie Xiao, Guanpeng Xu, Qing Xu, Caren Yang,Yin Yongsheng, Wang Yuanxuan, Steven
Zhang, and Day Zhong. Special thanks to Inge Frick, who identified a subtle deep copy bug in our lock-
and-copy example, and to Ricky Liu, for his amazing proofreading skills.

Our Intel Labs colleagues Andrew Chien and Limor Fix were exceptionally supportive throughout the writ-
ing of the text. Steve Schlosser graciously provided some disk drive characterizations. Casey Helfrich
and Michael Ryan installed and maintained our new Core i7 box. Michael Kozuch, Babu Pillai, and Jason
Campbell provided valuable insight on memory system performance, multi-core systems, and the power
wall. Phil Gibbons and Shimin Chen shared their considerable expertise on solid-state disk designs.

We have been able to call on the talents of many, including Wen-Mei Hwu, Markus Pueschel, and Jiri Simsa,
to provide both detailed comments and high-level advice. James Hoe helped us create a Verilog version of
the Y86 processor and did all of the work needed to synthesizeworking hardware.

Many thanks to our colleagues who provided reviews of the draft manuscript: James Archibald (Brigham
Young University), Richard Carver (George Mason University), Mirela Damian (Villanova University),
Peter Dinda (Northwestern University), John Fiore (TempleUniversity), Jason Fritts (St. Louis Univer-
sity), John Greiner (Rice University), Brian Harvey (University of California, Berkeley), Don Heller (Penn
State University), Wei Chung Hsu (University of Minnesota), Michelle Hugue (University of Maryland),
Jeremy Johnson (Drexel University), Geoff Kuenning (Harvey Mudd College), Ricky Liu, Sam Madden
(MIT), Fred Martin (University of Massachusetts, Lowell),Abraham Matta (Boston University), Markus
Pueschel (Carnegie Mellon University), Norman Ramsey (Tufts University), Glenn Reinmann (UCLA),
Michela Taufer (University of Delaware), and Craig Zilles (UIUC).



xxvi PREFACE

Paul Anagnostopoulos of Windfall Software did an outstanding job of typesetting the book and leading
the production team. Many thanks to Paul and his superb team:Rick Camp (copyeditor), Joe Snowden
(compositor), MaryEllen N. Oliver (proofreader), Laurel Muller (artist), and Ted Laux (indexer).

Finally, we would like to thank our friends at Prentice Hall.Marcia Horton has always been there for us.
Our editor Matt Goldstein provided stellar leadership frombeginning to end. We are profoundly grateful
for their help, encouragement, and insights.

Acknowledgments from the First Edition

We are deeply indebted to many friends and colleagues for their thoughtful criticisms and encouragement.
A special thanks to our 15-213 students, whose infectious energy and enthusiasm spurred us on. Nick Carter
and Vinny Furia generously provided their malloc package.

Guy Blelloch, Greg Kesden, Bruce Maggs, and Todd Mowry taught the course over multiple semesters, gave
us encouragement, and helped improve the course material. Herb Derby provided early spiritual guidance
and encouragement. Allan Fisher, Garth Gibson, Thomas Gross, Satya, Peter Steenkiste, and Hui Zhang
encouraged us to develop the course from the start. A suggestion from Garth early on got the whole ball
rolling, and this was picked up and refined with the help of a group led by Allan Fisher. Mark Stehlik and
Peter Lee have been very supportive about building this material into the undergraduate curriculum. Greg
Kesden provided helpful feedback on the impact of ICS on the OS course. Greg Ganger and Jiri Schindler
graciously provided some disk drive characterizations andanswered our questions on modern disks. Tom
Stricker showed us the memory mountain. James Hoe provided useful ideas and feedback on how to present
processor architecture.

A special group of students — Khalil Amiri, Angela Demke Brown, Chris Colohan, Jason Crawford, Peter
Dinda, Julio Lopez, Bruce Lowekamp, Jeff Pierce, Sanjay Rao, Balaji Sarpeshkar, Blake Scholl, Sanjit
Seshia, Greg Steffan, Tiankai Tu, Kip Walker, and Yinglian Xie — were instrumental in helping us develop
the content of the course. In particular, Chris Colohan established a fun (and funny) tone that persists to this
day, and invented the legendary “binary bomb” that has proven to be a great tool for teaching machine code
and debugging concepts.

Chris Bauer, Alan Cox, Peter Dinda, Sandhya Dwarkadas, JohnGreiner, Bruce Jacob, Barry Johnson, Don
Heller, Bruce Lowekamp, Greg Morrisett, Brian Noble, Bobbie Othmer, Bill Pugh, Michael Scott, Mark
Smotherman, Greg Steffan, and Bob Wier took time that they did not have to read and advise us on early
drafts of the book. A very special thanks to Al Davis (University of Utah), Peter Dinda (Northwestern
University), John Greiner (Rice University), Wei Hsu (University of Minnesota), Bruce Lowekamp (College
of William & Mary), Bobbie Othmer (University of Minnesota), Michael Scott (University of Rochester),
and Bob Wier (Rocky Mountain College) for class testing the Beta version. A special thanks to their students
as well!

We would also like to thank our colleagues at Prentice Hall. Marcia Horton, Eric Frank, and Harold Stone
have been unflagging in their support and vision. Harold alsohelped us present an accurate historical
perspective on RISC and CISC processor architectures. Jerry Ralya provided sharp insights and taught us a
lot about good writing.

Finally, we would like to acknowledge the great technical writers Brian Kernighan and the late W. Richard



xxvii

Stevens, for showing us that technical books can be beautiful.

Thank you all.

Randy Bryant
Dave O’Hallaron

Pittsburgh, PA



xxviii PREFACE

About the Authors

Randal E. Bryant received his Bachelor’s degree from the University of Michigan in 1973 and then at-
tended graduate school at the Massachusetts Institute of Technology, receiving a Ph.D. degree in computer
science in 1981. He spent three years as an Assistant Professor at the California Institute of Technology,
and has been on the faculty at Carnegie Mellon since 1984. He is currently a University Professor of Com-
puter Science and Dean of the School of Computer Science. He also holds a courtesy appointment with the
Department of Electrical and Computer Engineering.

He has taught courses in computer systems at both the undergraduate and graduate level for over 30 years.
Over many years of teaching computer architecture courses,he began shifting the focus from how computers
are designed to one of how programmers can write more efficient and reliable programs if they understand
the system better. Together with Professor O’Hallaron, he developed the course 15-213 “Introduction to
Computer Systems” at Carnegie Mellon that is the basis for this book. He has also taught courses in algo-
rithms, programming, computer networking, and VLSI design.

Most of Professor Bryant’s research concerns the design of software tools to help software and hardware
designers verify the correctness of their systems. These include several types of simulators, as well as formal
verification tools that prove the correctness of a design using mathematical methods. He has published over
150 technical papers. His research results are used by majorcomputer manufacturers, including Intel,
FreeScale, IBM, and Fujitsu. He has won several major awardsfor his research. These include two inventor
recognition awards and a technical achievement award from the Semiconductor Research Corporation, the
Kanellakis Theory and Practice Award from the Association for Computer Machinery (ACM), and the
W. R. G. Baker Award, the Emmanuel Piore Award, and the Phil Kaufman Award from the Institute of
Electrical and Electronics Engineers (IEEE). He is a Fellowof both the ACM and the IEEE and a member
of the U. S. National Academy of Engineering.

David R. O’Hallaron is the Director of Intel Labs Pittsburgh and an Associate Professor in Computer
Science and Electrical and Computer Engineering at Carnegie Mellon University. He received his Ph.D.
from the University of Virginia.

He has taught computer systems courses at the undergraduateand graduate levels on such topics as computer
architecture, introductory computer systems, parallel processor design, and Internet services. Together with
Professor Bryant, he developed the course at Carnegie Mellon that led to this book. In 2004, he was awarded
the Herbert Simon Award for Teaching Excellence by the CMU School of Computer Science, an award for
which the winner is chosen based on a poll of the students.

Professor O’Hallaron works in the area of computer systems,with specific interests in software systems for
scientific computing, data-intensive computing, and virtualization. The best known example of his work is
the Quake project, a group of computer scientists, civil engineers, and seismologists who have developed
the ability to predict the motion of the ground during strongearthquakes. In 2003, Professor O’Hallaron
and the other members of the Quake team won the Gordon Bell Prize, the top international prize in high-
performance computing.


