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Abstract. One of the staples of network defense is blocking traffic to and from a
list of “known bad” sites on the Internet. However, few organizations are in a po-
sition to produce such a list themselves, so pragmatically this approach depends
on the existence of third-party “threat intelligence” providers who specialize in
distributing feeds of unwelcome IP addresses. However, the choice to use such
a strategy, let alone which data feeds are trusted for this purpose, is rarely made
public and thus little is understood about the deployment of these techniques in
the wild. To explore this issue, we have designed and implemented a technique
to infer proactive traffic blocking on a remote host and, through a series of mea-
surements, to associate that blocking with the use of particular IP blocklists. In a
pilot study of 220K US hosts, we find as many as one fourth of the hosts appear
to blocklist based on some source of threat intelligence data, and about 2% use
one of the 9 particular third-party blocklists that we evaluated.

1 Introduction

Over the last decade, the use of threat information sharing — commonly labeled “threat
intelligence” — has become a staple in any discussion of network defense. Based on
the premise that by broadly sharing information about known threats, organizations can
better protect themselves, a burgeoning industry has emerged to collect, aggregate and
distribute such information [6, 40], largely consisting of lists of IP addresses, domain
names or URLs thought to be associated with particular classes of threats (a.k.a., indi-
cators of compromise).

However, despite all the promises, it is far from clear how people actually adopt
threat intelligence data, especially for proactive traffic blocking, commonly called “block-
listing”. Proactively blocking traffic based on threat intelligence data is uniquely attrac-
tive to a defender, since, if effective, it can foreclose threats without requiring attention
from a human analyst. However, it is also a strong action, and recent work by Li et
al. [23] has shown that threat intelligence feeds can be far from comprehensive and
may include significant numbers of false positives that might cause an organization to
inadvertently block benign sites. Given this, it is important to understand the extent to
which network administrators are using such data to block network traffic in practice.

Motivated by this issue, our work seeks to infer if online hosts use threat intelligence
IP feeds (IP blocklists) to proactively block network traffic. The principal challenge in
pursuing this question is that such decisions are largely invisible: a network choosing
to block IP address A or not is indistinguishable from a third vantage point, as this



vantage point does not have access to either the network or IP address A. Moreover,
for operational security reasons, few organizations are willing to publicly document the
details of their network defenses.

In this paper, we describe an inference technique, based on the IP ID increment side-
channel (inspired by previous work focused on censorship detection [11, 29]), to detect
network-layer blocklisting. Our design is both specialized to the unique characteristics
of IP blocklists (e.g., dynamic, overlapping membership) and is designed to be conser-
vative with respect to common sources of network measurement error (hence a finding
of blocking is robust). To evaluate this technique, we test against known ground truth
data and then conduct a large-scale pilot study with over 220K U.S. hosts and against 9
popular IPv4 blocklists. In the two cases where network operators were willing to share
their blocking configuration with us, they were in perfect agreement with our findings.

Across our pilot study, we identified 4,253 hosts (roughly 2% of the hosts we sur-
veyed), consistently using at least one of the 9 lists that we tested against. We also
established that a larger fraction (roughly a fourth) of the hosts we surveyed make use
of some form of security-related blocking and reliably block traffic to at least some
subset of the IP addresses in our lists. This significant level of security-related blocking
is particularly surprising as our pilot study is biased towards older machines with min-
imal traffic (a cohort that we would not have associated with organizations having an
aggressive network security posture).

2 Background

There is a large body of literature concerning the use of various kinds of “threat in-
telligence” (not always using that term). One popular focus among these is evaluating
their effectiveness, including works that analyze coverage and accuracy of spam block-
lists [37, 30], phishing blocklists [35], and malware domain blocklists [20]. Others have
explored techniques to better populate such lists, including Ramachandran et al.’s work
on inferring botnet IP addresses from DNSBL lookups [33], and the work of Hao et al.
for predicting future domain abuse [13, 14] (among others). More recently, Thomas et
al. explored the value of sharing threat intelligence data across functional areas (e.g.,
mail spam, account abuse, search abuse) and found limited overlap and significant num-
bers of false positives [39]. Many of these results are echoed by Li et al. [23].

However, there is comparatively little work focused on understanding how threat
intelligence data is being used in practice. Indeed, the literature that exists is primary
driven by surveys [31, 34] and not validated by any empirical measurement.3

There also has been significant empirical exploration of Internet connection block-
ing in the setting of Internet freedom and access. Indeed, there are a range of studies
that measure connection block in the context of Internet censorship [2, 4, 10, 28, 43],
geo-blocking [1, 27, 25], and Tor blocking [18, 36]. Most of these studies rely on van-
tage points sited in the target networks being studied, and so are not directly helpful in
our work. However, recent work by Ensafi et al. [11] and Pearce et al. [29] has removed
this requirement using an indirect side channel technique to test connectivity between

3 One exception is the recent work of Bouwman et al. [7] which has explored aspects of this
question through the interview of over a dozen security professionals.



pairs of remote hosts. While our approach differs in a number of ways from theirs, it is
inspired by the same idea of using IP ID to infer if a remote host sent an IP packet.

The IP ID traffic side channel has been well-known since mid 1990s. In particular,
the Identification (ID) field of an IPv4 packet is a 16-bit value in the IP packet header,
designed to support fragmentation by providing a unique value that can be used to group
packet fragments belonging to the same IP datagram [32]. The simplistic approach us-
ing a per-host global counter to ensure unique IP ID values implicitly encodes the num-
ber of packets sent. Thus, by probing a host multiple times one can use the value of the
returned IP ID to infer how many packets have been sent by the remote host between
the two probes. This side channel has been employed for a wide variety of measurement
purposes, including anonymous port scanning [3], host alias detection [38] and enumer-
ating hosts behind NATs [5] among others. While most operating systems no longer use
such a simple approach, it is still reasonably common across the Internet. For example,
all versions of Windows up to version 7 used the global increment algorithm [19].

3 Methodology

In this section, we first describe our inference technique, using the IP ID side channel
(Section 2), that determines if a particular host uses a known blocklist. The intuition
here is that if a reflector — a host suitable for our technique — blocks all blocklist IPs
from one particular blocklist, then it is likely that the particular blocklist is being used
for blocking traffic at the network-layer. Next, we detail criteria of suitable reflectors
(Section 3.2), and our criteria when sampling blocklist IPs (Section 3.3). Finally, we
discuss additional validation measures (Section 3.4) and ethical concerns (Section 3.5).

3.1 Technique Overview

To measure if a reflector is blocking a particular IP from a blocklist, we send a train
of packets (here we use SYN-ACK packets) from our measurement machine to the
reflector. The packet train consists of packets whose source address is the blocklist IP
(spoofed), bracketed by packets whose source address is our measurement machine, as
illustrated in Figure 1. If a firewall in the reflector’s network blocks packets from the
blocklist IP, the reflector will not receive packets with the blocklisted source address. It
will only receive packets with our measurement machine’s source address. On the other
hand, if there is no blocking, the reflector will receive the entire packet train.

In an ideal world, where there is no packet loss during transmission and no extra
traffic on the reflector, we expect the reflector to send a RST response for each SYN-
ACK packet we send, and we will receive the responses for the SYN-ACK with our
measurement machine’s source address. The IP IDs of these received RST packets will
reflect the number of packets sent by the reflector. If the reflector did not receive the
SYN-ACK packets with the blocklist IP as source addresses (being blocked by a fire-
wall), the IP ID sequence in the RST responses will be an increasing sequence without
gaps (the “Blocking” case in Figure 1). On the other hand, if the reflector did receive the
SYN-ACK packets with the blocklist IP, it would have sent a RST in response to each
such packet, incrementing the IP ID counter each time. While we will not see the RST
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Fig. 1: The basic method to detect network-layer blocking using the IP ID side channel.
When there is no blocking in place (left), the measurement machine will see an IP ID
gap in two RST responses: the second IP ID will increase by two. Whereas if there is
network blocking (right), then the two IP IDs will be consecutive without a gap.

packets sent to the blocklist IP, we will observe the increments in the IP ID sequence.
More specifically, we would see a gap in the IP ID sequence of packets received by our
measurement machine (the “No Blocking” case in Figure 1). These two cases allow us
to determine whether a particular blocklist IP is blocked by some network device, such
as a firewall, somewhere between the measurement host and the reflector.

In previous works [11, 29], the technique relies on sending spoofed SYN packets to
the sites (equivalent to our blocklist IPs here), with the source IPs equal to reflector IPs.
The sites then reply with SYN-ACK packets to the reflectors. By monitoring the reflec-
tors’ IP ID changes during this process, the authors can determine whether the reflectors
are blocking the tested sites. To use this strategy, however, one requires both reflectors
and sites to be active hosts that reply to SYN/SYN-ACK probes. Unfortunately, in our
case there is no guarantee that blocklist IPs will reply to TCP probes. In fact, we found
that on average only about 24% of IPs on a blocklist reply to TCP probes. Using only
blocklist IPs that reply would dramatically reduce the candidate IPs we can sample from
a blocklist, especially for small blocklists that only have a few hundred IPs. We already
have many constraints when sampling IPs from a blocklist (Section 3.3), and this extra
requirement could leave us with not enough candidates for a measurement.

Therefore, in our technique, we directly send SYN-ACK packets to reflectors, with
no involvement of hosts behind blocklist IPs. The disadvantage here is that we cannot
detect outbound blocking — wherein the spoofed packet reaches the reflectors but the
responses are blocked when going out of the network. Based on our experience talk-
ing with several security companies, most customers deploy inbound or bi-directional
traffic blocking, so we believe missing outbound blocking is not a major concern.

In this section, we explain how the technique works on a theoretical level. The
actual implementation needs to handle potential packet loss and other extraneous traffic
at reflectors. We list the full implementation of the technique and false positive and false
negative analyses in Appendix A.



3.2 Criteria For Reflectors

At a high level, our technique relies on the presence of the IP ID side channel. Keeping
that in mind, listed below are the criteria for suitable reflectors.
– RST packet generation: The reflectors must reply with a RST packet to a TCP

SYN-ACK packet without an established connection. Hosts that drop incoming
SYN-ACK packets without a corresponding SYN packet are not suitable for our
methodology. We use SYN-ACK packets instead of SYN because it does not create
an intermediate state on the reflectors and the connection is terminated in one go.

– Shared monotonic increasing IP ID counter: The reflector should have a mono-
tonically increasing globally shared IP ID counter, so all network traffic from the
host uses the same IP ID counter counter and the number of packets generated by
the host between two measurements is implicit in the difference of IP IDs.

– Low traffic: Our technique relies on a clear observable difference in IP ID. As such,
hosts must have low traffic volumes since a high traffic volume makes it infeasible
to observe the IP ID changes triggered by our probing packets.

– No ingress filtering: We send spoofed packets to reflectors to infer traffic blocking.
However, some network providers use ingress filtering techniques and drop packets
once they detect the packets are not from the networks they claimed to originate.
This filtering would cause our spoofed packets being dropped and give us a false
signal of traffic blocking.

– No stateful firewall blocking: Some networks deploy a stateful firewall that blocks
access from a source IP after receiving too many repetitive packets. One example is
to defend against SYN floods [21]. While we try to keep the number of our probing
packets as low as possible, if our spoofed packets trigger such firewall rules and
then we are blocked by the firewall, we will incorrectly conclude that the reflector
uses a blocklist to block that IP.
Our goal is to discover if online hosts are using IP blocklists to block traffic. But

when looking at the problem on a global scale, there are many policy related reasons
why a host blocks network traffic, such as censorship. These alternate sources of block-
ing could disrupt our experiments. To simplify the problem, and for ethical considera-
tions, in this paper we only test the hosts located in the United States.

3.3 Sampling Blocklist IPs

To determine if a reflector uses a particular IP blocklist, we use a sample of IPs from
a blocklist, as it would be infeasible for us to test all blocklist IPs. Further, to obtain a
definitive signal from our experiment, we need to adhere to the following constraints
when sampling blocklist IPs to avoid possible noise:
– Exclusive: A blocklist can share part of its contents with other blocklists. To rea-

sonably infer whether a reflector is using a specific blocklist, we need to test with
IPs unique to that blocklist — IPs that are only in this blocklist but no others.

– Stable: IPs on a blocklist change over time. To reliably measure if a reflector blocks
IPs from a certain blocklist, we need the sampled IPs to stay in the list throughout
one experiment. This cannot be enforced beforehand, so we discard the cases where
a blocklist IP does not remain on the list for the duration of the experiment.



– Routable: IP blocklists can contain unroutable IPs [23]. Sending packets with an
unroutable source address results in a large portion of packets being dropped, as
we have observed (which could potentially happen at end ISPs or transient links).
Packet drops due to unroutable IPs would create noise in the experiment. Therefore,
when sampling IPs from blocklists we ensure that the IPs are routable.

– Geo-location diversified: Besides blocklisting, another common reason for traffic
blocking is geo-blocking, where a host blocks all traffic coming from a certain coun-
try or region. To minimize the effect of geo-blocking, we prioritize IPs that are from
the United States when sampling IPs, assuming a host in the US will not geo-block
traffic from the US. For IPs in other countries, we try to increase the diversity of IP
locations, making sure the sampled IPs are not concentrated in only a few countries
when possible.

– Not from reflectors’ network (AS disjoint): We observed that not many networks
have implemented ingress filtering (we saw less than 2% of the total hosts we
scanned showing this behavior). However, many networks drop spoofed packets
when the spoofed source addresses are within their own network. So when selecting
blocklist IPs, we make sure that these IPs are not from the same ASes as one of our
reflectors.

3.4 Control Group

To further validate our technique, every time we test a set of blocklist IPs against each
reflector, we also include a control group of 20 randomly chosen IPs that are BGP
routable, geo-located in the United States and not blocklisted (see Section 4.2). The
control group represents a random set of IPs that are unlikely to be blocked in bulk by
a reflector. We use US IPs to avoid the potential problem of geo-blocking. If a reflector
does block a significant fraction of control IPs, it is probably because the reflector is
not suitable for this technique (one reason can be that our ingress-filtering step did not
catch these IPs), and we should discard all the results associated with this reflector.

3.5 Ethical Considerations

In our experiments, we send spoofed packets to reflectors impersonating traffic from
other IPs to infer the presence of network-layer blocking based on IP blocklists. A key
ethical concern with this kind of measurement is the extent to which either receiving
such packets or being seen to have received such packets would put the recipients at
undue risk. Indeed, this is particularly problematic in censorship measurements [11,
29] because of the potential to inadvertently cause a host to be associated with content
that is politically dangerous in their country. However, our work operates in a context
that is substantially less risky, and we have further designed multiple aspects of our
protocol to minimize the likelihood of risk. In particular, our methodology incorporates
the following approaches to minimize risk:

Restriction in Scope: We have specifically restricted our measurements to only
reflectors within the United States, which affords relatively robust free speech rights and
considerable transparency around criminal proceedings. Indeed, from our conversations



Category Count

IP Addresses 222,782
/24 Count 128,712
Autonomous Systems 3,371

Table 1: The number of reflectors (IP addresses) identified in the United States, and the
corresponding count of /24 prefixes and Autonomous Systems.

with both network operators and law enforcement, we are unaware of a realistic scenario
where the mere receipt of a packet has led to criminal or civil liability.

Conventional sources: Unlike in censorship studies, the source IP addresses being
spoofed in our measurement are those that have been used to mount wide-spread abusive
activity such as spamming, port scanning, etc. and these represent precisely the kinds
of traffic that a typical host on the Internet would expect to receive.

Inbound, connection-free probes: Our measurements are constructed to be in-
bound only and connection free; that is, a network monitor could witness traffic con-
sistent with an external scan of one of their hosts, but will never witness a completed
connection or any data transmission. From our discussions with network operators and
network security vendors, we could not identify a scenario where the mere receipt of
the packets we send would be sufficient to drive an incident response team to action.

Minimal use of end-host resources: Our scans are purposely constructed with
SYN-ACK packets to ensure that no state is created on the reflector. Moreover, our
peak probing rate per reflector is 6 min-sized packets per second (see appendix for
more details). But even that rate only persists for two seconds in each test, and in the
following pilot study, we probe each reflector no more than once every 3 minutes.

4 Pilot Study Implementation

With the technique discussed in the previous section, one can then infer if an online
host (reflector) satisfying the selection criteria outlined above is blocking traffic using
a specific IP blocklist. To evaluate our inference technique, we conducted a pilot study
over a large number of reflectors to infer their blocklist usage. In this section, we explain
in detail the implementation of our experiment, including reflector selection, blocklist
selection, sampling IPs from blocklists and measurement setup.

4.1 Reflector Selection

We start our selection of reflectors using a snapshot of Censys [9] scanning data from
November 8, 2019, consisting of over 40 million IPv4 hosts with open ports in the US.
We then send multiple probes to each host targeting an open port from different source
addresses, checking the IP IDs of responses to identify the ones with the IP ID side
channel. We further run tests to make sure they meet the criteria listed in Section 3.2
(see Appendix A). If one host has multiple open ports, we randomly pick one to probe.



We identified 222,782 IP addresses in the US that meet our criteria. For the purpose
of this paper, we treat each individual IP address as a distinct reflector. Table 1 counts
these addresses at different network aggregations. By construction, the set of reflectors
we use will necessarily have certain biases. To understand what fraction of networks of
potential interest to others this might cover, we queried the Alexa top 100K domains as
of Dec. 17th, 2019 for their A records and MX records and obtained their corresponding
IP addresses. Of these, we identified a total of 94,846 IPs that are located in the US,
covering 34,083 /24s. While we made no attempt to find reflectors in these networks
a priori, our selection methodology identified at least one reflector in 16.9% of these
/24s. When only looking at the top 10K domains, our data set covers 13.2% of US /24s.

We also checked the WHOIS record of each reflector and identified all hosts asso-
ciated with education institutions. In total, our data set includes 4,370 education IPs,
ranging across 181 different institutions, and covers 40 out of the top 100 US univer-
sities based on the US News ranking [42]. Thus, while there may be networks without
a suitable reflector for one reason or another, our technique is applicable to a large
number of existing networks.

4.2 Choosing Blocklists and Sampling IPs

For the pilot study, we choose candidate blocklists from public IPv4 blocklists. We use
the FireHOL IP blocklist collection [12], which aggregates over 100 public IP blocklists
every day. However, we cannot reasonably test against all the blocklists and so, for the
purposes of this paper, we select the most popular public IP blocklists and then do a
more detailed measurement on them.

For each of the public IP blocklists, we sample five IPs (using the criteria in Sec-
tion 3.3) from each list and test how many reflectors block all sampled blocklist IPs
in each blocklist. The goal of this step is to roughly estimate how widely used these
blocklists might be, so that we can pick the most prevalent ones for more detailed mea-
surements later in Section 5. We repeat the measurement twice and select the top 9
blocklists:
1. Spamhaus DROP: Spamhaus Don’t Route Or Peer Lists
2. Spamhaus EDROP: An extension of the Spamhaus DROP list
3. DShield Top Blocklist: DShield.org recommended top 20 /24s to block
4. ET Compromised: EmergingThreats.net recorded compromised hosts
5. Snort IP Filter List: labs.snort.org supplied IP blocklist
6. BDS IP Ban List: Binary Defense System ban list
7. Feodo IP Blocklist: Abuse.ch Feodo tracking list
8. Blocklist De Blocklist: Blocklist.de blocklist IPs
9. Tor IP Blocklist: IPs that belong to the Tor network (not just exit nodes)

When sampling IPs from blocklists to test, we use the criteria listed in Section 3.3.
To find the exclusive IPs on each blocklist, we use the public IP blocklists collected by
FireHOL, as mentioned earlier, and calculate the unique part of each target blocklist.
For the stable IP requirement, we collect all the target blocklists hourly, and ensure the
sampled IPs are in the blocklist through the duration of the experiment. To satisfy the
routable requirement, we use daily RouteView data [41] to identify BGP routable IPs.



Use at least one blocklist (1.9%)

Block at least
one IP (21.2%)

No blocking observed (76.9%)

Fig. 2: Breakdown of reflector blocking based on three experimental runs. We identi-
fied 4,253 reflectors that use at least one blocklist (Section 5.1). We also found a large
number of reflectors blocking at least some IPs in blocklists (Section 5.2).

For geo-location diversity, we use NetAcuity [26] to make sure for each experiment the
sampled IPs cover as many different countries as the data allows.

4.3 Measurement Setup

Having selected the reflectors and blocklists, we can now conduct the experiment to
infer which reflectors use which specific blocklist.

For a particular experimental run, we randomly selected 25 IPs from each block-
list that satisfy the requirements defined in Section 3: exclusive, stable, routable, geo-
diversified, and AS disjoint. Then we evaluated the blocking behavior for all 220K
reflectors against the 225 blocklist IPs sampled from the 9 blocklists. To handle cases
where reflectors might take time to update and start blocking the newest IPs on the
blocklist, we ensure the sampled IPs have appeared in the blocklist at least 2 weeks
before our experiment. During post-processing, we remove blocklist IPs from consid-
eration that did not remain on the list for the duration of the experiment. Furthermore,
we conducted three experimental runs, each time using a different set of 25 IPs from
each blocklist. We then conclude that a reflector is using a blocklist if and only if all
experiment runs show that it blocked all the sampled IPs from that blocklist.

We conducted our measurements from December 3–23rd, 2019. During this period,
we tested in total 96,067,051 distinct (reflector, blocklist IP) pairs. (In the first
two experiments, we tested against all reflectors. In the last experiment, we only tested
the ones that have shown blocking behavior in the first two tests.) Among these pairs,
894,570 pairs display a clear signal indicating “blocking”.

5 Pilot Study Overall Results

Figure 2 presents the overall blocking behavior of all 222,782 reflectors we tested par-
titioned into four categories: those reflectors that we conclude use at least one of the
public blocklists (1.9%), reflectors that block at least one blocklist IP (21.2%), and
reflectors that do not block any blocklist IPs (76.9%). Note that given the attributes
of hosts to be reflectors, such as running old OS versions, it is not surprising a large
percentage shows no blocking of the blocklist IPs: they already have attributes anti-
correlated with high degrees of security hygiene. The following sections explores each
of these categories of reflector blocking behavior in more detail.



Blocklist (abbr.) Reflectors /24s ASes

Spamhaus DROP (DROP) 4,142 1,782 50
Spamhaus EDROP (eDROP) 1,272 362 25
DShield Top Blocklist (DTop) 223 69 18
ET Compromised (ET) 116 58 15
BDS IP Ban List (BDS) 85 41 3
Feodo IP Blocklist (Feodo) 64 26 16
Snort IP Filter List (Snort) 52 20 11
Blocklist De Blocklist (DE) 36 18 8
Tor IP Blocklist (Tor) 24 9 8

Total Unique 4,253 1,827 77

Table 2: Breakdown of reflectors we con-
clude using each of the nine blocklists.
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Fig. 3: CDF of the number of blocklists
used by reflectors.

5.1 Reflectors Using Blocklists

We identified 4,253 (1.9%) reflectors that use at least one of the 9 public blocklists.
Table 2 shows the number of reflectors using each of the nine different blocklists, as
well as the number of unique /24s and ASes those reflectors appear in. Spamhaus DROP
is by far the most popular blocklist in our collection, followed by Spamhaus EDROP.
The remaining blocklists have a comparatively small number of reflectors using them.
Since many aspects of our method and experiment make conservative choices, these
results should be considered a lower bound.

Figure 3 shows the cumulative distribution of the number of blocklists these reflec-
tors use. For the 9 public blocklists we studied, over 68.6% use just one blocklist, 23.8%
use two or more, and 7.6% use three or more. One reflector used 6 of the 9 blocklists.

For these reflectors, though, there are interesting patterns to the multiple blocklists
used. Figure 4 shows the use of multiple blocklists with a heatmap. Rows and columns
correspond to blocklists, and each cell of the heatmap shows the fraction of the reflectors
using the blocklist in row R that are also using the blocklist in column C. For example,
the first cell for ET Compromised shows that 78% of the reflectors that use ET also
use the Spamhaus DROP blocklist. Diagonal cells are 1.00 since they show blocklists
compared with themselves. Blocklists are ordered in the same order as in Table 2.

The first cell of the Spamhaus EDROP row indicates that all reflectors that use
Spamhaus EDROP also use Spamhaus DROP. Since the eDROP list is an extension
of the DROP list, the behavior is strongly consistent with expectations. Moreover, the
many significant values in the first two columns show that reflectors that use any of the
other blocklists very often also use Spamhaus DROP and eDROP. At least for the hosts
that we select for, these results underscore the popularity of Spamhaus lists and indicate
that, if a reflector blocks traffic using blocklists, it very likely uses Spamhaus.

Ultimately the blocklist use and blocking behavior of the reflectors is strongly tied to
the organization to which they belong. While inferring the exact organization behind an
IP is difficult, we can still explore some high-level organizational aspects of blocklists.
We first identify the AS for every reflector, then use the CAIDA AS-to-Organization
dataset [8] to map the AS to an organization. Then, we manually partition the orga-
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Fig. 4: Pair wise intersection between re-
flectors that use each blocklist.
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Fig. 5: Breakdown of the number of orga-
nizations covered by each blocklist.

nizations into six categories: ISPs (e.g., Comcast), Hosting Providers (e.g., GoDaddy
web hosting, AWS cloud computing), Education (e.g., universities), Healthcare (e.g.,
hospitals), Government (e.g., state and federal agencies), and Enterprise (individual
companies owning the IPs).

Figure 5 shows the number of organizations using each blocklist, and their break-
downs by organization category. Most blocklists are used by a wide variety of organi-
zations. Feodo IP Blocklist is the most diverse blocklist in our study, as organizations
from all six categories use it. From the perspective of organizations, Educational insti-
tutions cover 8 of the 9 blocklists we selected, suggesting a potential preference among
universities on using public blocklists.

Validation: Based upon the locations of blocking reflectors, we reached out to two
universities that we concluded are using blocklists. In both cases, the blocklists we
inferred matched the blocklists they reported using, validating the technique in these
two cases. More specifically, University A confirmed our findings that they use BDS IP
Ban List, ET Compromised, Spamhaus DROP and Spamhaus EDROP. University B
confirmed our findings that they use Spamhaus DROP and Spamhaus EDROP.

5.2 Partial Blocking

Partial blocking is when a reflector blocks some of the blocklist IPs but not all of them.
There are many reasons, unrelated to the use of a blocklist, why a reflector may block
a blocklist IP. A host may have internal policies that deny access from some network
providers, or network administrators may add IPs into their firewall on an ad-hoc ba-
sis based on an organization’s own policies. These alternate blocking behaviors could
overlap with the blocklist IPs we sampled, leading to partial blocking behavior.

Geo-blocking is one cause of partial blocking we identified, where a reflector drops
all traffic from a particular country. DShield Top Blocklist, for example, had over 50%
of its IPs on January 25, 2020 geo-located in the Netherlands. If a reflector blocks traf-
fic from the Netherlands, then we would observe that the reflector is partially blocking



DShield Top Blocklist. To identify whether a reflector uses geo-blocking, we check
whether the reflector consistently blocks IPs from a particular country. For all coun-
tries related to blocklist IPs we tested, we sample IP addresses from those countries
based on four IP location services: MaxMind [24], IP2Location [15], IPDeny [16], and
IPIP.net [17], and test against our reflectors. Overall, we identified a small number of
reflectors, 614 (0.28%), that consistently block traffic from at least one country.

After removing the geo-blocking reflectors from partial blocking cases, we noticed
that a small percentage of reflectors consistently blocked a significant subset of blocklist
IPs, but not all, in every experiment. This consistency suggests that there is a large
overlap between the blocklist and the blocking policy of the reflector. If a reflector
blocks over 50% of sampled IPs from a blocklist every time we test, we regard the
reflector as exhibiting significant partial blocking over a blocklist. In total we identified
871 (0.4%) such reflectors. These hosts are probably using a source that is very similar
to the blocklists we tested, as previous work has shown that commercial products can
aggregate data from public blocklists, and then conduct post-processing to eliminate
some content [23]. It is also possible that they are using an older version of the same
list, where the content is mostly the same.

Besides these cases, an additional fifth of reflectors demonstrate blocking behavior,
as evidenced in Figure 2. Although we do not know the exact reason for the blocking,
the result suggests that security-related network blocking is relatively prevalent even
among low security hygiene hosts such as these reflectors.

Finally, we had originally hypothesized that network layer blocking would be pri-
marily implemented in border devices (e.g., firewalls, gateways) and thus affect whole
network blocks identically. However, when checking reflectors within the same /24s, we
find that reflectors under the same /24 frequently do not block the same set of IPs. We
refer to this as inconsistent blocking. Our experiment found 8,909 (/24, blocklist)
pairs where multiple reflectors under that /24 block some IPs in that specific blocklist.
Among them, 3,263 (36.6%) pairs show inconsistent blocking behavior. This result im-
plies there is considerable intra-network diversity in blocking policy. More analyses and
details on the methodology can be found in Chapter 4 in [22].

6 Conclusion

Our paper proposes, implements and tests a technique for inferring the deployment of
network-layer blocklists and, further, for attributing the use of particular blocklists by
particular hosts. While our technique depends on hosts that are largely quiescent (not
sending or receiving much traffic) and use a global increment strategy for IP ID gen-
eration (typically those with older operating systems), both of these limitations may be
addressable to some extent. Hosts with modest levels of traffic are likely still amenable
to testing by using larger sample sizes and more sophisticated statistical testing regimes.
As well, while many modern hosts purposely obfuscate the generation of IP ID values,
recent work by Klein and Pinkas [19] has demonstrated attacks on these algorithms (in
Windows and Linux in particular) which may provide purchase for using the IP ID side
channel with more contemporary machines. Future work could leverage these methods
to apply our technique to more blocklists with a broader set of reflectors.



Our pilot study covered 220K US hosts, identified blocking behavior in roughly a
fourth of all reflectors, but only 2% show clear use of the blocklists we tested against.
This difference is puzzling on multiple fronts. It suggests that even among older quies-
cent hosts that there are significant network security controls in place. Also, it indicates
that there may be far more diversity in blocklist usage than we had initially imagined.
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A Inference Technique Details

Our technique, while simple in theory, needs to handle real-world scenarios, including
packet losses, packet reordering during transition, and other traffic on reflectors. The
inference method needs to be efficient, accurate, and have low overhead. Blocklists can
change frequently, leaving a short window to infer a stable behavior. As such, for the
measurement to finish in a reasonable amount of time requires an efficient inference
method. Additionally, the method should also have low false positive and false negative
rates so that we can be confident about the result. Finally, it should require as few
packets as possible to reduce potential impact on reflectors.

The first step is to find reflectors suitable to our measurement technique. Recall that
a suitable reflector should have minimal background traffic, and not be part of a network
doing ingress filtering for spoofed packets. To find quiescent hosts, reflectors with low
background traffic, we send 24 probes to each candidate host, 1 per second, and repeat
the experiment 5 times at different times of the day. We then only select hosts where at
least 30% of their IP ID increases are equal to 1 per second — the host did not receive
any extra traffic in that one second. We use the 30% threshold to select hosts that are
largely “quiet”, and thus more likely to yield a perfect signal in the experiment. Next, to
identify hosts behind ingress filtering, we acquired 7 vantage points around the world to
exercise different paths to the reflector. We sent spoofed packets from our measurement
machine to the hosts with spoofed source addresses corresponding to the 7 vantage
points, and then collected responses at each vantage point. We only select the hosts that
send responses to all 7 vantage points, meaning they did not drop spoofed packets on
any of the exercised network paths.

Next, we describe how we infer if a given reflector blocks an IP using multiple trials.
We define a trial as a single experiment that tests if a reflector blocks one blocklist IP.
Figure 6 shows the process of one trial. For each trial, the measurement machine sends
five consecutive probe packets to the reflector, with each packet being sent one second
apart. In our experiment, the probe packets are TCP SYN-ACK packets and we get
IP IDs from response RST packets. Between the third and fourth probe packets, the
measurement machine sends five spoofed packets, also TCP SYN-ACK, with source
IPs equal to the blocklist IP. And between the fourth and the fifth probe packets, it
sends another five spoofed packets. We send the five spoofed packets 0.15 seconds
apart consecutively each time, spreading them across the one-second window between
two probes.

We then inspect the increases between the IP IDs in the packets received by the
measurement machine. Ideally, assuming no additional traffic and no packet loss, the
IP ID should increase by exactly one between consecutive probes. For the last two
deltas, since we send the spoofed packets in between our probe packets, the final IP ID
increases will be different based on the host’s blocking behavior.
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Fig. 6: Blocking inference methodology.
Solid blue lines are probe packets, dashed
red lines are spoofed packets.
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If the reflector does not block the blocklist IP, then we will observe an IP ID increase
sequence in our received RST responses that is: [ +1, +1, +6, +6 ]. Here the last two
deltas are +6 since the reflector does not block the blocklist IP and thus responds to
spoofed packets, causing IP ID to increase by 5, and our probe packet causes it to
increase by another 1, which together make +6.

On the other hand, if the reflector blocks the blocklist IP, then we will see an IP ID
increase sequence that is: [ +1, +1, +1, +1 ]. Here the last two deltas are +1 since the
reflector blocks the blocklist IP, leading to no extra change in IP ID.

The first three probes—corresponding to the first two IP ID deltas—act as a control.
The last two “probe and spoof” patterns perform the actual experiment. Seeing the ini-
tial two “+1” indicates this host is in a quiet period (no extra network traffic). Therefore,
we can be more confident that the following IP ID jump (“+6” in our case) is because of
our experiment. While the choice of the numbers in the experiment may seem arbitrary,
there is a rationale behind the choice which we will discuss in following sections.

A.1 Inference Criteria

We now look at the criteria to infer if a reflector blocks a blocklist IP or not. Our limited
vantage point from the measurement machine limits our information to the IP IDs seen
from the reflector. Moreover, we desire to be conservative when inferring blocking.
Thus, our approach is to try the same trial, between a reflector and a blocklist IP, until
we get a “perfect signal”—a response which matches all the criteria below:
1. The measurement machine received exactly five RST responses from the reflector.
2. The five responses are received one second apart consecutively.
3. The IP ID increase sequence is either [+1, +1, +6, +6], which we will conclude as

no blocking, or [+1, +1, +1, +1], which we will conclude as blocking.
4. If any of the above three criteria are not met, we repeat the same experiment again.

We repeat up to 15 trials before giving up.
The first requirement ensures no packet loss. The second requirement ensures re-

sponses we received reflect the real IP ID changes in the reflector. The Internet does



not guarantee the order of packet arrival. Although we send one probe packet per sec-
ond, these packets might not arrive at the reflector in the same order. Thus, the IP ID
sequence from the response packets might not represent the real order of IP ID changes
at the host. Hence, by requiring that the response packets cannot be less than 0.85 or
more than 1.15 seconds apart we can minimize the probability of reordered packets.

The third requirement is the core of our inference logic. Since we ignore everything
other than an IP ID increase sequence of [+1, +1, +1, +1] or [+1, +1, +6, +6], we can
assure that our inference of blocking is conservative. If we saw a sequence of [+1, +1,
+1, +1] but the reflector does not block the blocklist IP, that would mean all 10 spoofed
packets were lost. On the other hand, if we see [+1, +1, +6, +6] and the reflector actually
blocks the blocklist IP, that would mean there are exactly five extra packets generated
by the reflector during each of the last two seconds. Both cases are very unlikely, which
we will demonstrate next with an analysis of false positives and false negatives.

A.2 False Positive and False Negative Analysis

For our experiment, a false positive is when a reflector is not blocking a blocklist IP,
but we mistakenly conclude it is blocking. On the other hand, a false negative is when
a reflector is blocking a blocklist IP, but we mistakenly conclude it is not. To evaluate
false positive and false negative rates, we conduct experiments on all the reflectors
under consideration and measure the false positive and false negative rates.

For false positive evaluation, we first acquire a list of IPs that are verifiably not
being blocked by reflectors. Since we own these IPs, we can easily verify by directly
probing reflectors from these IPs. We acquired and tested 1,265 IPs from five different
/24s. Then we probe reflectors and send the spoofed packets with source addresses set
to these pre-selected IPs. Since these IPs are not being blocked, if we observe an IP ID
increase sequence of [+1, +1, +1, +1], then we know it is a false positive.

For false negatives, we run the experiment with only probe packets, and no spoofed
packets. This scenario is equivalent to the one where the reflector blocks the spoofed
IP. If we observe an IP ID increase sequence of [+1, +1, +6, +6], then we know it was
due to the background traffic at the reflector and hence is a false negative.

Although we present the experiment design with five spoofed packets in each of the
last two seconds, we also experimented with a range of numbers and calculated their
false positive and negative rates. We tested 15 times with spoofed packets equal to 3,
4, 5, 6, and 7 with every reflector, and we repeated the experiment again on a different
day. The final results are shown in Figure 7.

We need to trade off between keeping false positive and negative rates low while
generating as little traffic as possible. We choose 5 spoofed packets as a balance. By
sending 5 spoofed packets, we get a false positive rate of 2.5e-5, and a false negative
rate of 8.5e-5. Furthermore, we also experimented with strategies where we send 4
probe packets, from which we get 3 IP ID deltas, and sending 6 probe packets, from
which we get 5 IP ID deltas. With only 3 deltas we suffer a higher false negative rate, as
it is easier for the reflector to show the same IP ID increase sequence with extra traffic.
With 6 probes, on the other hand, we prolong the experiment, making it harder to get a
“perfect signal”. Thus, our choice of 5 probe packets with 5 spoofed packets in between
is a good balance between competing factors.


