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Parallel Reduction

Common and important data parallel primitive

Easy to implement in CUDA

Harder to get it right

Serves as a great optimization example

We’ll walk step by step through 7 different versions

Demonstrates several important optimization strategies
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Parallel Reduction

Tree-based approach used within each thread block

Need to be able to use multiple thread blocks
To process very large arrays

To keep all multiprocessors on the GPU busy

Each thread block reduces a portion of the array

But how do we communicate partial results between 
thread blocks?
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Problem: Global Synchronization

If we could synchronize across all thread blocks, could easily 

reduce very large arrays, right?

Global sync after each block produces its result

Once all blocks reach sync, continue recursively

But CUDA has no global synchronization.  Why?

Expensive to build in hardware for GPUs with high processor 

count

Would force programmer to run fewer blocks (no more than # 

multiprocessors * # resident blocks / multiprocessor) to avoid 

deadlock, which may reduce overall efficiency 

Solution: decompose into multiple kernels

Kernel launch serves as a global synchronization point

Kernel launch has negligible HW overhead, low SW overhead
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Solution: Kernel Decomposition

Avoid global sync by decomposing computation 

into multiple kernel invocations

In the case of reductions, code for all levels is the 

same

Recursive kernel invocation
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What is Our Optimization Goal?

We should strive to reach GPU peak performance

Choose the right metric:

GFLOP/s: for compute-bound kernels

Bandwidth: for memory-bound kernels

Reductions have very low arithmetic intensity

1 flop per element loaded (bandwidth-optimal)

Therefore we should strive for peak bandwidth

Will use G80 GPU for this example

384-bit memory interface, 900 MHz DDR

384 * 1800 / 8 = 86.4 GB/s
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Reduction #1: Interleaved Addressing

__global__ void reduce0(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// each thread loads one element from global to shared mem

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];

__syncthreads();

// do reduction in shared mem

for(unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

// write result for this block to global mem

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}
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Parallel Reduction: Interleaved Addressing
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Reduction #1: Interleaved Addressing

__global__ void reduce1(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// each thread loads one element from global to shared mem

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];

__syncthreads();

// do reduction in shared mem

for (unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

// write result for this block to global mem

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Problem: highly divergent 

warps are very inefficient, and 

% operator is very slow
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Performance for 4M element reduction

Kernel 1: 
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Note: Block Size = 128 threads for all tests

BandwidthTime (222 ints)
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for (unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

for (unsigned int s=1; s < blockDim.x; s *= 2) {

int index = 2 * s * tid;

if (index < blockDim.x) {

sdata[index] += sdata[index + s];

}

__syncthreads();

}

Reduction #2: Interleaved Addressing

Just replace divergent branch in inner loop:

With strided index and non-divergent branch:
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Parallel Reduction: Interleaved Addressing
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New Problem: Shared Memory Bank Conflicts
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Performance for 4M element reduction

Kernel 1: 
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Kernel 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup
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Parallel Reduction: Sequential Addressing
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for (unsigned int s=1; s < blockDim.x; s *= 2) {

int index = 2 * s * tid;

if (index < blockDim.x) {

sdata[index] += sdata[index + s];

}

__syncthreads();

}

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {

if (tid < s) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

Reduction #3: Sequential Addressing

Just replace strided indexing in inner loop:

With reversed loop and threadID-based indexing:
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Performance for 4M element reduction

Kernel 1: 
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Kernel 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Kernel 3:
sequential addressing

1.722 ms 9.741 GB/s 2.01x 4.68x

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup
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for (unsigned int s=blockDim.x/2; s>0; s>>=1) {

if (tid < s) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

Idle Threads

Problem: 

Half of the threads are idle on first loop iteration!

This is wasteful…
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// each thread loads one element from global to shared mem

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];

__syncthreads();

// perform first level of reduction,

// reading from global memory, writing to shared memory

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;

sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];

__syncthreads();

Reduction #4: First Add During Load

Halve the number of blocks, and replace single load:

With two loads and first add of the reduction:
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Performance for 4M element reduction

Kernel 1: 
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Kernel 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Kernel 3:
sequential addressing

1.722 ms 9.741 GB/s 2.01x 4.68x

Kernel 4:
first add during global load

0.965 ms 17.377 GB/s 1.78x 8.34x

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup
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Instruction Bottleneck

At 17 GB/s, we’re far from bandwidth bound

And we know reduction has low arithmetic intensity

Therefore a likely bottleneck is instruction overhead

Ancillary instructions that are not loads, stores, or 

arithmetic for the core computation

In other words: address arithmetic and loop overhead

Strategy: unroll loops
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Unrolling the Last Warp

As reduction proceeds, # “active” threads decreases

When s <= 32, we have only one warp left

Instructions are SIMD synchronous within a warp

That means when s <= 32:

We don’t need to __syncthreads()

We don’t need “if (tid < s)” because it doesn’t save any 

work

Let’s unroll the last 6 iterations of the inner loop



__device__ void warpReduce(volatile int* sdata, int tid) {

sdata[tid] += sdata[tid + 32]; 

sdata[tid] += sdata[tid + 16]; 

sdata[tid] += sdata[tid +  8]; 

sdata[tid] += sdata[tid +  4]; 

sdata[tid] += sdata[tid +  2]; 

sdata[tid] += sdata[tid +  1]; 

}

// later…

for (unsigned int s=blockDim.x/2; s>32; s>>=1) {

if (tid < s)

sdata[tid] += sdata[tid + s];

__syncthreads();

}

if (tid < 32) warpReduce(sdata, tid);

22

Reduction #5: Unroll the Last Warp

Note: This saves useless work in all warps, not just the last one!
Without unrolling, all warps execute every iteration of the for loop and if statement

IMPORTANT: 

For this to be correct,

we must use the 

“volatile” keyword!
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Performance for 4M element reduction

Kernel 1: 
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Kernel 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Kernel 3:
sequential addressing

1.722 ms 9.741 GB/s 2.01x 4.68x

Kernel 4:
first add during global load

0.965 ms 17.377 GB/s 1.78x 8.34x

Kernel 5:
unroll last warp

0.536 ms 31.289 GB/s 1.8x 15.01x

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup
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Complete Unrolling

If we knew the number of iterations at compile time, 

we could completely unroll the reduction

Luckily, the block size is limited by the GPU to 512 threads

Also, we are sticking to power-of-2 block sizes

So we can easily unroll for a fixed block size

But we need to be generic – how can we unroll for block 

sizes that we don’t know at compile time?

Templates to the rescue!

CUDA supports C++ template parameters on device and 

host functions
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Unrolling with Templates

Specify block size as a function template parameter:

template <unsigned int blockSize>

__global__ void reduce5(int *g_idata, int *g_odata)
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Reduction #6: Completely Unrolled

if (blockSize >= 512) {

if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }

if (blockSize >= 256) {

if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }

if (blockSize >= 128) {

if (tid <  64) { sdata[tid] += sdata[tid +  64]; } __syncthreads(); }

if (tid < 32) warpReduce<blockSize>(sdata, tid);

Note: all code in RED will be evaluated at compile time.
Results in a very efficient inner loop!

Template <unsigned int blockSize>

__device__ void warpReduce(volatile int* sdata, int tid) {

if (blockSize >= 64) sdata[tid] += sdata[tid + 32]; 

if (blockSize >= 32) sdata[tid] += sdata[tid + 16]; 

if (blockSize >= 16) sdata[tid] += sdata[tid +  8]; 

if (blockSize >=   8) sdata[tid] += sdata[tid +  4]; 

if (blockSize >=   4) sdata[tid] += sdata[tid +  2]; 

if (blockSize >=   2) sdata[tid] += sdata[tid +  1]; 

}
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Invoking Template Kernels

Don’t we still need block size at compile time?

Nope, just a switch statement for 10 possible block sizes:

switch (threads)

{

case 512:

reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;

case 256:

reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;

case 128:

reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;

case 64:

reduce5< 64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;

case 32:

reduce5< 32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;

case 16:

reduce5< 16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;

case  8:

reduce5<  8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;

case  4:

reduce5<  4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;

case  2:

reduce5< 2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;

case  1:

reduce5<  1><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;

}
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Performance for 4M element reduction

Kernel 1: 
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Kernel 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Kernel 3:
sequential addressing

1.722 ms 9.741 GB/s 2.01x 4.68x

Kernel 4:
first add during global load

0.965 ms 17.377 GB/s 1.78x 8.34x

Kernel 5:
unroll last warp

0.536 ms 31.289 GB/s 1.8x 15.01x

Kernel 6:
completely unrolled

0.381 ms 43.996 GB/s 1.41x 21.16x

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup
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Parallel Reduction Complexity

Log(N) parallel steps, each step S does N/2S

independent ops
Step Complexity is O(log N)

For N=2D, performs S[1..D]2
D-S = N-1 operations 

Work Complexity is O(N) – It is work-efficient

i.e. does not perform more operations than a sequential 
algorithm

With P threads physically in parallel (P processors), 
time complexity is O(N/P + log N) 

Compare to O(N) for sequential reduction

In a thread block, N=P, so O(log N)
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What About Cost?

Cost of a parallel algorithm is processors × time 
complexity

Allocate threads instead of processors: O(N) threads

Time complexity is O(log N), so cost is O(N log N) : not 
cost efficient!

Brent’s theorem suggests O(N/log N) threads
Each thread does O(log N) sequential work

Then all O(N/log N) threads cooperate for O(log N) steps

Cost = O((N/log N) * log N) = O(N)  cost efficient

Sometimes called algorithm cascading
Can lead to significant speedups in practice
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Algorithm Cascading

Combine sequential and parallel reduction
Each thread loads and sums multiple elements into 
shared memory

Tree-based reduction in shared memory

Brent’s theorem says each thread should sum 
O(log n) elements

i.e. 1024 or 2048 elements per block vs. 256

In my experience, beneficial to push it even further
Possibly better latency hiding with more work per thread

More threads per block reduces levels in tree of recursive 
kernel invocations 

High kernel launch overhead in last levels with few blocks

On G80, best perf with 64-256 blocks of 128 threads
1024-4096 elements per thread
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unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;

sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];

__syncthreads();

Reduction #7: Multiple Adds / Thread

Replace load and add of two elements:

With a while loop to add as many as necessary:

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;

unsigned int gridSize = blockSize*2*gridDim.x;

sdata[tid] = 0;

while (i < n) {

sdata[tid] += g_idata[i] + g_idata[i+blockSize];

i += gridSize;

}

__syncthreads();
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unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;

sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];

__syncthreads();

Reduction #7: Multiple Adds / Thread

Replace load and add of two elements:

With a while loop to add as many as necessary:

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;

unsigned int gridSize = blockSize*2*gridDim.x;

sdata[tid] = 0;

while (i < n) {

sdata[tid] += g_idata[i] + g_idata[i+blockSize];

i += gridSize;

}

__syncthreads();

Note: gridSize loop stride 

to maintain coalescing!
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Performance for 4M element reduction

Kernel 1: 
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Kernel 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Kernel 3:
sequential addressing

1.722 ms 9.741 GB/s 2.01x 4.68x

Kernel 4:
first add during global load

0.965 ms 17.377 GB/s 1.78x 8.34x

Kernel 5:
unroll last warp

0.536 ms 31.289 GB/s 1.8x 15.01x

Kernel 6:
completely unrolled

0.381 ms 43.996 GB/s 1.41x 21.16x

Kernel 7:
multiple elements per thread

0.268 ms 62.671 GB/s 1.42x 30.04x

Kernel 7 on 32M elements: 73 GB/s!

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup
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template <unsigned int blockSize>

__device__ void warpReduce(volatile int *sdata, unsigned int tid) {

if (blockSize >=  64) sdata[tid] += sdata[tid + 32];

if (blockSize >=  32) sdata[tid] += sdata[tid + 16];

if (blockSize >=  16) sdata[tid] += sdata[tid +  8];

if (blockSize >=   8) sdata[tid] += sdata[tid +  4];

if (blockSize >=   4) sdata[tid] += sdata[tid +  2];

if (blockSize >=   2) sdata[tid] += sdata[tid +  1];

}

template <unsigned int blockSize>

__global__ void reduce6(int *g_idata, int *g_odata, unsigned int n) {

extern __shared__ int sdata[];

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*(blockSize*2) + tid;

unsigned int gridSize = blockSize*2*gridDim.x;

sdata[tid] = 0;

while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize];  i += gridSize;  }

__syncthreads();

if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }

if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }

if (blockSize >= 128) { if (tid <  64) { sdata[tid] += sdata[tid +  64]; } __syncthreads(); }

if (tid < 32) warpReduce(sdata, tid);

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Final Optimized Kernel
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Performance Comparison
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Types of optimization

Interesting observation:

Algorithmic optimizations

Changes to addressing, algorithm cascading

11.84x speedup, combined!

Code optimizations

Loop unrolling

2.54x speedup, combined
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Conclusion

Understand CUDA performance characteristics

Memory coalescing

Divergent branching

Bank conflicts

Latency hiding

Use peak performance metrics to guide optimization 

Understand parallel algorithm complexity theory

Know how to identify type of bottleneck

e.g. memory, core computation, or instruction overhead

Optimize your algorithm, then unroll loops

Use template parameters to generate optimal code

Questions: mharris@nvidia.com

mailto:mharris@nvidia.com

