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Every beginning programmer using a statically typed language is all
too familiar with. . .



The Dreaded Type Error Message

Could not deduce (Num t0)
from the context: (Num (t -> a), Num t, Num a)

bound by the inferred type for ’it’:
forall a t. (Num (t -> a), Num t, Num a) => a

at <interactive>:4:1-19
The type variable ’t0’ is ambiguous
In the ambiguity check for the inferred type for ’it’
To defer the ambiguity check to use sites, enable AllowAmbiguousTypes
When checking the inferred type

it :: forall a t. (Num (t -> a), Num t, Num a) => a
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The Dreaded Type Error Message

the Dreaded Type Error Message!
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What can we do to make this better?



Theses

• “Improving” error messages doesn’t fundamentally help.
• Interactive error explanations instead of static error messages.
• Error explanation = constructive evidence for an error.
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Theses

I’m going to propose three interrelated theses: first, although
improving error messages is certainly worthwhile, it doesn’t really
fix the fundamental problem. Second, we should think about
moving towards interactive error explanations rather than static
error messages; finally, I will propose a framework for thinking
about how to construct such explanations, in terms of constructive
evidence for errors.
First, let’s understand what the fundamental problem is, which is
something I call “the curse of information”.



The Curse of Information



(\f -> f 3) (\p -> fst p)



(\f -> f 3) (\p -> fst p)

Type mismatch between expected type (t, b0) and actual type Int
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Suppose a hypothetical beginning programmer has written this
expression. (This looks Haskell-ish but what I’m going to say isn’t
specific to any particular programming language.)
As it turns out, this is not type correct, so they might get an error
message like this: apparently the type checker was expecting some
kind of pair type but got an Int.
Now, for an experienced programmer, this might be enough to find
and fix the error. But it’s certainly not enough for our beginning
programmer; the error message doesn’t even say where the
problem is.



(\f -> f 3) (\p -> fst p)

Type mismatch between expected type (t, b0) and actual type Int
In the first argument of fst, namely p
In the expression: fst p
In the first argument of \ f -> f 3, namely

(\ p -> fst p)
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OK, so let’s add more information! Now the error message says
where the problem is.
But the beginning programmer still might not understand why
there is an error. So let’s add information about types of inferred
subterms, so they can see where different types are coming from.
But they might forget what fst is, so we could add information
about it. Maybe they still have no idea what to do so we could add
some suggested fixes. . . and links to relevant documentation. . .
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The Curse of Information

This actually doesn’t help! Why not?



The Curse of Information

• Not enough information ⇒ confusing

• Too much information ⇒ overwhelming
• No middle ground!
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The Curse of Information

The Curse of Information

This is what I am calling the Curse of Information. If there’s not
enough information, the programmer will obviously be confused and
have no idea what is going on. On the other hand, if there is too
much information, it will be overwhelming: both because much of
the information may turn out to be irrelevant, so it’s hard to pick
out the information that is really needed; and simply because
psychologically it is overwhelming to see a giant wall of text.
To make things worse, though, there is no middle ground! The
problem is that the right amount of information, and which
information is relevant, will vary from programmer to programmer
and even from error to error with the same programmer.



MESSAGES
⇓

EXPLANATIONS



MESSAGES
⇓
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The Curse of Information

The real problem is that we are fixated on static error messages.
We ought to instead think about dynamic error explanations
where the programmer gets to interactively pick exactly the
information that is relevant to them.



p is expected to have a pair type but was inferred to have type Int.
+ Why is p expected to have a pair type?
+ Why was p inferred to have type Int?
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The Curse of Information

Let’s look at a simple, completely made-up example of what this
might look like for our running example. The programmer would
initially be presented with a basic type mismatch message, together
with several questions they can expand if they wish to see the
answer.
In this case, perhaps the programmer thinks, “I definitely know why
p is expected to have a pair type, because it is an argument to fst;
what I don’t understand is why it was inferred to have type Int.”
So they expand that question.



p is expected to have a pair type but was inferred to have type Int.
+ Why is p expected to have a pair type?
- Why was p inferred to have type Int?

=> p is the parameter of the lambda expression \p -> fst p, which
must have type (Int -> a0).

+ Why must (\p -> fst p) have type (Int -> a0)?
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The Curse of Information

It might then explain to them that this is because p is the
parameter of a lambda expression which must have a type whose
domain is Int. Perhaps they don’t understand that either, so they
can expand another question.
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- Why was p inferred to have type Int?

=> p is the parameter of the lambda expression \p -> fst p, which
must have type (Int -> a0).

- Why must (\p -> fst p) have type (Int -> a0)?
=> It is an argument to (\f -> f 3), which was inferred to have

type (forall a. (Int -> a) -> a).
+ Why was (\f -> f 3) inferred to have type

(forall a. (Int -> a) -> a)?
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The Curse of Information

This step is then explained in turn: because this lambda expression
is an argument to (\f -> f 3), which was inferred to have a
certain type. Perhaps, hypothetically, at this point the light bulb
turns on and they don’t need to expand any further.
[Something to point out, which I didn’t say in the talk but fielded a
question about later: I am not advocating for a textual
question-answer format like this in particular. This is just one
particular example of a possible manifestation of interactive error
explanations. One could also imagine things involving graph
visualizations, tooltips, or some mixture of all these things.]



Related work. . .

• Plociniczak & Odersky: Scalad (2012)
• Stuckey, Sulzmann & Wazny: Chameleon (2003)
• Simon, Chitil, & Huch (2000)
• Beaven & Stansifer (1993)

Not new! But not enough attention. . .
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The Curse of Information

Related work. . .

This idea is not new. There has been work on related things over
many years. Most recently, an interactive type debugger for Scala;
in early 2000s there was a similar system for Haskell; in the 1990’s
there was some more foundational work. But in my opinion this
area is not receiving enough attention.
[I did not mention this in my talk for time reasons, but some
reviewers mentioned Seidel, Jhala & Weimer on generating dynamic
witnesses for type errors (ICFP 2016). This is a really cool idea,
but orthogonal to my proposal; we should do both.]
As far as I understand, all of these work by allowing the user to
interactively explore typing derivations; if there is anything novel in
my talk, it is my proposal of an alternative framework for thinking
about how to construct error explanations.



Explaining errors



The type of type inference?

infer : Context → Term → Maybe Type
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Explaining errors

The type of type inference?

Let’s start by thinking about the type of a type inference algorithm.
(One could tell a similar story for type checking but inference will
be simpler for my purpose.) We could start with a simplistic version
that takes as input a context and a term, and either outputs a type
for the term or fails.
Of course, this is unsatisfactory: how do we know that the output
type has anything to do with the input term? And we’d like to
know why the given term has this type. The solution to this is
well-known: instead of outputting just a type, we output a typing
derivation which is a (constructive) proof that the given term has
some type in the given context.



The type of type inference?

infer : Context → Term → (Error + TypingDerivation)
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Explaining errors

The type of type inference?

Of course, we don’t just want to fail—we should return some kind
of error if the term does not have a type. This is how lots of
existing typecheckers actually look.
But simply generating an error is unsatisfactory for similar reasons
that simply generating a type was unsatisfactory—how do we know
the error has anything to do with the term? Why was a particular
error generated?
The solution is also parallel: instead of an error we should return
constructive evidence that the term does not have a type, which
I call an untyping derivation.



The type of type inference?

infer : Context → Term → (UntypingDerivation + TypingDerivation)

See Ulf Norell keynote @ ICFP 2013:
http://www.cse.chalmers.se/~ulfn/code/icfp2013/ICFP.html

http://www.cse.chalmers.se/~ulfn/code/icfp2013/ICFP.html
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Explaining errors

The type of type inference?

This is not really new either: Ulf Norell actually gave a nice keynote
at ICFP in Boston where he essentially livecoded a type inference
algorithm very much like this for the STLC in Agda.
I propose that a principled way to think about generating error
explanations is to focus on designing untyping derivations.



Example: STLC + N

t ::= x | n | t1 + t2 | λx : τ. t | t1 t2
τ ::= N | τ1 → τ2

Γ ::= ∅ | Γ, x : τ
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Explaining errors

Example: STLC + N

Let’s look at a simple example. We’ll consider the STLC with
natural number literals and addition expressions. Notice that
lambdas have type annotations which will make things a lot simpler.
There is a primitive type of natural numbers and arrow types.



Example: STLC + N

Γ ` t : τ

x : τ ∈ Γ

Γ ` x : τ

Γ, x : τ1 ` t : τ2

Γ ` λx : τ1. t : τ1 → τ2

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2

Γ ` n : N
Γ ` t1 : N Γ ` t2 : N

Γ ` t1 + t2 : N
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Explaining errors

Example: STLC + N

And here is the type system; this is entirely standard.



Untyping for STLC + N

Γ 0 t : τ

Γ ` t : τ1 τ1 6= τ2

Γ 0 t : τ2
Mismatch/
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Untyping for STLC + N

So, let’s think about how to design untyping derivations for this
language. There are actually a lot of ways to do this, I’m just going
to show one example.
Here’s the first rule I will propose, which is fairly simple: if t has
some type τ1, then it does not have some different type τ2. Of
course, this only works because the STLC has unique types; if you
had a system without unique types then you wouldn’t have this rule.
There are a few things to point out. One is that of course this rule
references the typing judgment, which is probably typical.
Another thing to point out is about the other premise, τ1 6= τ2: this
is another negative, but we don’t just want it to be the negation of
equality; we want positive evidence that τ1 and τ2 are different,
which we can use to explain why they are different.



Untyping for STLC + N

τ1 6= τ2

N 6= (τ1 → τ2)

τ1 6= τ2

(τ1 → τ3) 6= (τ2 → τ4)
. . .
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Untyping for STLC + N

For example, we’d probably have some rules like this: Nat is not an
arrow type; some congruence rules; and so on.



Untyping for STLC + N

Γ 0 t : τ

Γ 0 t1 : N
Γ 0 t1 + t2 : τ

PlusL/
Γ 0 t2 : N

Γ 0 t1 + t2 : τ
PlusR/

τ 6= N
Γ 0 t1 + t2 : τ

PlusTy/
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Untyping for STLC + N

Now for some rules about addition. There are basically two ways an
addition expression could fail to have a particular type. One is if
the type is not N. The other is if one of the two subterms does not
have type N.
Again, there are other ways we could encode this. Part of the point
is that we have some freedom in choosing rules that will result in
the sort of explanations we want.



Untyping for STLC + N

Γ 0 t : τ

∀τ2. τ 6= (τ1 → τ2)

Γ 0 λx : τ1. t : τ
AbsTy/

Γ, x : τ1 0 t : τ2
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AbsBody/
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Explaining errors

Untyping for STLC + N

Then we have some rules about lambdas. There are two ways a
lambda expression can fail to have type τ . The first is if τ is not an
arrow type with the correct domain. Otherwise, if τ is an arrow
type with a matching domain, the body could fail to have the type
of the codomain.
I’ll skip over the rules for function application since I won’t use
them in my examples.



Example

Does λf :N→ N. f + 2 have type (N→ N)→ N→ N?

(N→ N) 6= N
f : N→ N 0 f + 2 : N→ N

PlusTy/

∅ 0 λf :N→ N. f + 2 : (N→ N)→ N→ N
AbsBody/

f+2 is expected to have type N->N, but an addition
must have type N.
- Why is f+2 expected to have type N->N?

=> f+2 is the body of the lambda expression \f:N->N. f+2,
which is expected to have type (N->N)->N->N.
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Example

Let’s look at an example. Consider asking whether this lambda
expression has this particular type. If you think about it for a bit
you can see that it does not, but how do we formally show it?
Here’s one untyping derivation we could give. The type is in fact
an arrow type with the correct domain, so the final rule has to be
AbsBody. At that point we note that an addition expression cannot
have type N→ N since it is not equal to N.
And here is a possible explanation that could be generated from
this derivation. Note how each statement corresponds to a rule in
the derivation.



Example, take 2
Does λf :N→ N. f + 2 have type (N→ N)→ N→ N?

f : N→ N ` f : N→ N (N→ N) 6= N
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=> f is the parameter of the lambda expression \f:N->N. f+2.
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f is expected to have type N, but has type N->N.
- Why is f expected to have type N?

=> f is used as an argument to the addition operator.
- Why does f have type N->N?

=> f is the parameter of the lambda expression \f:N->N. f+2.20
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Example, take 2

There is actually a different derivation that could be given. It starts
in the same way as before, but there is another reason that f + 2 is
not well-typed, namely, that f does not have type N.
And here is the explanation that might correspond to this. Notice
that when the user expands the question as to why f has type
N→ N, we must jump down in the derivation to the rule that put
f into the context. So explanations do not necessarily simply step
through the tree to adjacent nodes. One could imagine storing in
the context alongside f a pointer to the node in the derivation
which put f into the context.



Correctness?

Q: How do we know if our definition of untyping is correct?
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Q: How do we know if our definition of untyping is correct?
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Correctness?

So I have just finished showing you a bunch of rules for untyping
derivations for the STLC. How can we have any confidence that
these rules are the right ones, or I haven’t left out any cases?



Correctness

A: prove a metatheorem!

¬Γ ` t : τ ⇐⇒ Γ 0 t : τ

Still a lot of room for variation: round-tripping need not be the identity!
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Explaining errors

Correctness

Well, untyping derivations are supposed to prove that a term does
not have a certain type, so we should just prove a metatheorem
showing that untyping is logically equivalent to the negation of
typing.
I have in fact formalized the system I just showed you in Agda, and
proved this metatheorem—in fact, through the process of proving it
I fixed a few bugs in my rules!
Notice that this metatheorem does not constrain untyping to a
single unique solution; in general there may be many different
definitions of untyping which all satisfy this theorem. Intuitively,
this is because round-tripping through this logical equivalence need
not get us back to where we started.



Challenges



Structure

How well do questions & explorations really correspond to the structure of
untyping derivations?
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untyping derivations?
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Structure

There are many remaining challenges; I have really only sketched an
idea.
One challenge is simply to see how well this correspondence
between untyping derivations and the kind of error explanations we
want to generate scales up. I have only tried it for small toy
languages so far.



Derive untyping derivations?

Can we automatically derive untyping rules from typing rules?

. . . mumble mumble inversion lemma mumble De Morgan mumble. . .
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Derive untyping derivations?

Another challenge: can we automatically derive an untyping
judgment from a typing judgment? Of course we do want the
freedom to design untyping judgments in order to get the error
explanations we want, but especially for larger systems it would be
tedious to have to design all the rules by hand.
I have some very vague ideas about how to do this but could really
only mumble about it at this point.



Unification?

Does (λf : Int → Int. f (3, 4)) (λx . x + 1) have a type?

Can’t unify Int and <Int, Int>
- Checking that Int = <Int, Int>

because the input types of Int -> Int and <Int, Int> -> u5 must match.
- Checking that Int -> Int = <Int, Int> -> u5

because it resulted from applying [u1 |-> <Int, Int>] to the constraint Int -> Int = u1 -> u5.
- Inferred that u1 = <Int, Int>

because <3, 4> is an argument to a function (namely, f), so its type <Int, Int> must be the same as the function’s
input type u1.

- Checking that Int -> Int = u1 -> u5
because it resulted from applying [u2 |-> u5] to the constraint Int -> Int = u1 -> u2.

- Inferred that u2 = u5
because the output types of (Int -> Int) -> u2 and (u3 -> Int) -> u5 must match.

- Inferred that (Int -> Int) -> u2 = (u3 -> Int) -> u5
because it resulted from applying [u4 |-> u3 -> Int] to the constraint (Int -> Int) -> u2 = u4 -> u5.

- Inferred that u4 = u3 -> Int
because ^x. x + 1 is an argument to a function (namely, ^f : Int -> Int. f <3, 4>), so its type
u3 -> Int must be the same as the function’s input type u4.

- Inferred that (Int -> Int) -> u2 = u4 -> u5
because ^f : Int -> Int. f <3, 4> is applied to an argument (namely, ^x. x + 1), so its type
((Int -> Int) -> u2) must be a function type.

- Checking that Int -> Int = u1 -> u2
because f is applied to an argument (namely, <3, 4>), so its type (Int -> Int) must be a function type.
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Unification?

Finally, what about systems where typing involves unification? I
tried implementing full type reconstruction for a version of the
STLC with no type annotations on lambdas via unification, which
kept track of what it was doing so it could generate explanations
when something went wrong.
Consider this simple example. It is not well-typed, and we would
like an explanation that says something about f expecting an Int
but being given a tuple. Unfortunately, this is the explanation that
was generated! As you can see, most of it has to do with
unification variables and substitutions and so on, and is very
difficult to follow unless you already know how unification works.



Unification?
Does (λp. fst p + 3) ((2, 5), 6) have a type?

Can’t unify <Int, Int> and Int
- Checking that <Int, Int> = Int

because it resulted from applying [u2 |-> <Int, Int>] to the constraint u2 = Int.
- Inferred that u2 = <Int, Int>

because the first components of <u2, u3> and <<Int, Int>, Int> must match.
- Inferred that <u2, u3> = <<Int, Int>, Int>

because the input types of <u2, u3> -> u2 and <<Int, Int>, Int> -> Int must match.
- Inferred that <u2, u3> -> u2 = <<Int, Int>, Int> -> Int

because it resulted from applying [u4 |-> <<Int, Int>, Int>] to the constraint <u2, u3> -> u2 = u4 -> Int.
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- Checking that <u2, u3> -> u2 = u4 -> Int
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- Inferred that u5 = Int
because fst p, which was inferred to have type u5, must also have type Int.

- Checking that <u2, u3> -> u2 = u4 -> u5
because fst is applied to an argument (namely, p), so its type (<u2, u3> -> u2) must be a function type.
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Unification?

In fact, it gets much worse: this term is not much more
complicated, and the error explanation does not even fit on the
slide. Again, most of it has to do with unification variables and
such.



Unification?

How to explain unification failures to the user?

• Implementation matters!
• Union-find might work better than substitutions?
• Come up with good untyping derivations and then write an algorithm to
produce them, rather than the other way around!
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Unification?

I think there are a few lessons I learned from this. One is that the
implementation matters! We are used to thinking of the
implementation as being unimportant, except perhaps for efficiency.
But actually it can make a big difference in terms of what sorts of
explanations are easy to generate.
The fastest implementations of unification actually use a union-find
structure rather than composing lots of substitutions; in this case, I
have a vague intuition that a union-find structure might actually
make things easier to explain.
More importantly, I think I did things sort of backwards: what I
should have done was first design an untyping judgment that
corresponds to the sort of explanations I would like to see, and then
figure out how to produce them, rather than the other way around.



Questions/comments/ideas/discussion?
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