6.172 e
Performance I I I I I

Engineering
of Software
Systems

Bentley Rules for
Optimizing Work

Charles E. Leiserson
September 11, 2012

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

OO

PER ORDER OF 6.172

Definition.

The of a program (on a given input) is
the sum total of all the operations executed
by the program.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

Optimizing Work

e Algorithm design can produce dramatic
reductions in the amount of work it takes to solve
a problem, as when a O(n lg n)-time sort replaces
a ©(n?)-time sort.

e Reducing the work of a program does not auto-
matically reduce its running time, however, due
to the complex nature of computer hardware:
= instruction-level parallelism (ILP),
= caching,
= vectorization,
= speculation and branch prediction,
= etc.

e Nevertheless, reducing the work serves as a good
heuristic for reducing overall running time.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

© 2012

“BENTLEY”
OPTIMIZATION RULES

Charles E. Leiserson and I-Ting Angelina Lee

Jon Louis Bentley

= o £

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

PRANIICE ®ALL SCPTAAAT AT

1982

New Bentley Rules

e Most of Bentley’s original rules dealt with work, but
some dealt with the vagaries of computer
architecture three decades ago.

e We have created a new set of Bentley rules dealing
only with work.

e We shall discuss architecture-dependent
optimizations in subsequent lectures.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

New “Bentley” Rules

Data structures

e Packing and encoding

e Augmentation

e Precomputation

e Compile-time initialization
e Caching

e Sparsity

Loops

e Hoisting

e Sentinels

e Loop unrolling

e Loop fusion

e Eliminating wasted iterations

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

Logic

e Constant folding and
propagation

e Common-subexpression
elimination

e Algebraic identities

e Short-circuiting

e Ordering tests

e Combining tests

Functions

e Inlining

e Tail-recursion elimination
e Coarsening recursion

DATA STRUCTURES

© 2012 Charles E. Leiserson and I-Ting Angelina Lee 8

Packing and Encoding

The idea of packing is to store more than one data
value in a machine word. The related idea of encoding

is to convert data values into a representation
requiring fewer bits.

Example: Encoding dates

e The string “February 14, 2008" can be stored in 19
bytes (null terminating byte included), which means
that 3 double (64-bit) words must moved whenever
a date is manipulated using this representation.

e Assuming that we only store years between 1C.E. and
4096 C.E., there are about 365.25 x 4096 = 1.5 M
dates, which can be encoded in [Ig(1.5x 10°)] = 21
bits, which fits in a single (32-bit) word.

e But querying the month of a date takes more work.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

Packing and Encoding (2)

Example: Packing dates
e Instead, let us pack the three fields into a word:

typedef struct {
unsigned int year: 12;
unsigned int month: 4;
unsigned int day: 5;

} date t;

4

e This packed representation still only takes 21 bits,
but the individual fields can be extracted much
more quickly than if we had encoded the 1.5M
dates as sequential integers.

Sometimes unpacking and decoding are the
optimization, depending on whether more work is
involved moving the data or operating on it.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

10

Augmentation

The idea of data-structure augmentation is to add
information to a data structure to make common
operations do less work.

Example: Appending singly linked lists
e Appending one list to head

another requires walking

the length of the first list

to set its null pointer to l—> —> > /
the start of the second.

e Augmenting the list with head tail
a tail pointer allows

_ . : !
appending to operate in L L /

constant time.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee 11

Precomputation

The idea of precomputation is to perform calculations
in advance so as to avoid doing them at “mission-
critical” times.

Example: Binomial coefficients

(-)= al
b bl(a-Db)!

Expensive to compute (lots of multiplications), and
watch out for integer overflow for even modest
values of a and b.

ldea: Precompute the table of coefficients when
initializing, and do table look-up at runtime.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

12

Precomputation (2)

Pascal’s triangle

#define CHOOSE_ SIZE 100
unsigned int choose[CHOOSE SIZE][CHOOSE_SIZE];

void init _choose() {
for (int n=0; n<CHOOSE SIZE; ++n) {
choose[n][0@] = 1;
choose[n][n] = 1;
}
for (int n=1; n<CHOOSE SIZE; ++n) {
choose[0@][n] = ©;

HORM IRt KA, ARSI+ K)Ee
choose[n][k] = choose[n-1][k-1] + choose[n-1][k];
choose[k][n] = ©;

}

}

}

4

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

13

Compile-Time Initialization

The idea of compile-time initialization is to store the
values of constants during compilation, saving work at
execution time.

Example

unsigned int choose[10][10] = {
{ 1) e) e) e) @) @) e) e) @) @J })
{ 1) 1) e) @) @) @) OJ @) @) @J })
{ 1) 2) 1) @J @) @) O’ e) @J @J })
{ 1) 3) 3) 1) @) @J e) e) @) @J })
{ 1) 4) 6) 4) 1) @) @J @) @) e) })
g 5, F ORS00, 5, L 0, 9, 0, 0, },
i, 6, L5Ee " 20Es SL5K 651, 1 9, 9, 0 =%
T . 7 ;' 2155 o 35, 2% b/ 1% 9, 05 Ty
i 3% = 2855705 T L0, 1565, 4 288 8, i 5.3}
=11 9, 36, 84, 126, 126, 84, 36,) 4 K

}s 7

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

14

Compile-Time Initialization (2)

Idea: Create large static tables by metaprogramming.

int main(int argc, const char *argv[]) {
init_choose();
printf("unsigned int choose[10][10] = {\n");
for (int a = @0; a < 10; ++a) {
PRTNERGRS 1)
for (int b = 9; b < 10; ++b) {
printf("%3d, ", choose[a][b]);
}
prant £ (" \ AT
}
printf("};\n");

) 7

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

15

Caching

The idea of caching is to store results that have been
accessed recently so that the program need not
compute them again.

}

inline double hypotenuse(double A, double B) {
return sgrt(A * A + B * B);

About 30% faster
if cache is hit
2 /3 of the time.

double cached A
double cached B
double cached h

J

LI | B ||

(O BN RN

(O RO RN
e \we

J

inline double hypotenuse(double A, double B) {

}

if (A == cached A && B == cached B) {
return cached_h;

}
cached A = A;
cached '\B.= B;

cached h = sqrt(A * A + B * B);
return cached_h;

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

16

The idea of exploiting is to avoid storing and
computing on zeroes. “The fastest way to compute is
not to compute at all.”

Example: Sparse matrix multiplication
(V4)

<<

[
OUVTUITO O W
OO0,
OO OCORrO
OWCOWNOO®
NOoOOO OV -
O OO LW

Dense matrix-vector multiplication performs n? = 36
scalar multiplies, but only 14 entries are nonzero.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

17

Sparsity (2)
Compressed Sparse Rows (CSR)

%) 1 2 3 4 5 6 7 8 9

rows: © 8 10 11 14
cols: © 1* 5/ ©
vals: 3 1 4 1 5 9 2 6/ 5 3
0 / 3 © 06 06 1 ©
1 O 4 1 06 5 9
2 O 0 0 2 O 6
3 5 © 06 3 0 0
4 O 06 0 0 5 0
5 \0 6 0 8 9 7
o 1 2 3 4 5

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

10

%)
5

11 12 13

4
8

3 4
9 7

hnz = 14

18

Sparsity (3)

CSR matrix-vector multiplication

typedef struct {
O G M mRZY;
int *rows; // length n
nt. ol s // length nnz
double *vals; // length nnz
} sparse matrix_t;

void spmv(sparse matrix_t *A, double *x, double *y) {
for (int 1 = @; i < A->n; i++) {
y[i] = ©;
for (int k = A->rows[i]; k < A->rows[i+1]; k++) {
int j = A->cols[k];
y[i] += A->vals[k] * x[j];
}
}
j

4

Number of scalar multiplications = nnz,
which is potentially much less than nZ.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

19

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

PER ORDER OF 6.172

20

Constant Folding and Propagation

The idea of constant folding and propagation is to
evaluate constant expressions and substitute the
result into further expressions, all during compilation.

#include <math.h>

void orrery() {
const double radius = 6371000.0;
const double diameter = 2 * pradius;
const double circumference = M_PI * diameter;
const double cross_area = M_PI * radius * radius;
const double surface area = circumference * diameter;
const double volume = 4 * M PI * radius * radius * radius / 3;

A

4

With a sufficiently high optimization level, all the
expressions are evaluated at compile-time.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

21

Common-Subexpression Elimination

The idea of common-subexpression elimination is to
avoid computing the same expression multiple times
by evaluating the expression once and and storing the
result for later use.

a=b+ c; a=>b+ c;
bi¥snah - O b= ah - d';
o= ERIC; o= ERJC;
Qe =2t =0l e =21v"

7 7F

The third line cannot be replaced by c = a, because
the value of b changes in the second line.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee 22

©2

Algebraic Identities

The idea of exploiting algebraic identities is to replace
expensive logical expressions with algebraic
equivalents that require less work.

#tinclude <stdbool.h>
##tinclude <math.h>

typedef struct {
double x; // x-coordinate
double vy; // y-coordinate
double z; // z-coordinate
double r; // radius of ball
Tliall” T

double square(double x) {
return x * Xx;

}

bool collides(ball t *bl, ball t *b2) {
double d = sqgrt(square(bl->x - b2->x)
+ square(bl->y - b2->y)
+ square(bl->z - b2->z));
return d <= bl->r + b2->r;

}

23

©2

Algebraic Identities

The idea of exploiting algebraic identities is to replace
expensive logical expressions with algebraic
equivalents that require less work.

#include <stdbool.h>
#include <math.h> \/a <V exaCtly when
typedef struct { U< V2_
double x; // x-coordinate
double vy; // y-coordinate
double z; // z-coordinate bool collides(ball t *bl, ball t *b2) {
double r; // radius of ball double dsquared = square(bl->x - b2->x)
} ball t; + square(bl->y - b2->y)
2 + square(bl->z - b2->z);
double square(double x) { return dsquared <= square(bl->r + b2->r);
return x * Xx; I

}

bool collides(ball t *bl, ball t *b2) {
double d = sqgrt(square(bl->x - b2->x)
+ square(bl->y - b2->y)
+ square(bl->z - b2->z));
return d <= bl->r + b2->r;

}

24

Short-Circuiting

When performing a series of tests, the idea of short-
circuiting is to stop evaluating as soon as you know

the answer.

#include <stdbool.h>

int sum = 0;

sum += A[i];

¥

return sum > limit;

bool sum_exceeds(int *A, int n, int limit {

FORN(inERik=""0.,, W< " ST

Note that && and ||
are short-circuiting

logical operators.

© 2012 Charles E. Leiserson and |-Ting Angelmaree

¥

#tinclude <stdbool.h>

bool sum_exceeds(int *A, int n, int limit) {

int sum = 0;
FOrRN(IR =" 10, A< N)R

sum += A[i];

if (sum > limit) {

return true;

}

}

return false;

25

Ordering Tests

Consider code that executes a sequence of logical
tests. The idea of ordering tests is to perform those
that are more often “successful” — a particular
alternative is selected by the test — before tests that
are rarely successful. Similarly, inexpensive tests
should precede expensive ones.

#include <stdbool.h>
bool is_whitespace(char c) {

fge(enE= ANERE [Co=5 L VERR] [Mci"S=he . SRS chs=tin.) 5]
return true;
} :
return false; #1nc19de <§tdbool.h>
} bool is whitespace(char c) {
1fe(ege=. VRN et s=R N0 TG s Nt DRI che==Rii) T
return true;
}
return false;
J 7

© 2012 Charles E. Leiserson and I-Ting Angelina Lee 26

Combining Tests

The idea of combining tests is to replace a sequence
of tests with one test or switch.

id full add (int
Full adder e P i

— — 0o o —-— —- o o

a,

b,

C,

*sum,
*carry) {

} else {
it Com=="0%)
8 (c ==40
*sum = 1
*carry =
} else {
ESIlNe="Y';
REQr T,

} else {

Be (' == N
ESilmy =0k

*carry = 1;

} else {

*sum =

*carry

i =
oo

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

27

Combining Tests (2)

The idea of combining tests is to replace a sequence
of tests with one test or switch.

Fu” adder void full add (i:t E: ciiEmB; L
N E™ G5 *carry = 1;
int *sum, break;
0O 0 O 0 0 int-sicankry) i case 4:
int test = B == N < < 0D *sum = 1;
0 0 1 0] ?(((b ==)1) <<)1) *carry = 0;
0 1 0 0 1 | (c == 1); break;
0o 1 1 ! 0 switch(test) { case 5:
case 0: &sum ="09;
1 0 O 0 1 *sum = 0; *carry = 1;
1 0 1 1 0 *carry = 0; break;
break; case 6:
11 0 1 0 case 1: LSUNT=re ;
T 1 1 1 1 *sum = 1; *carry = 1;
*carry =.0; break;
break; case 7:
For this example, case 2: *sum = 1;
table look-up is TN p
carry = 0; break;
even better! break; }
}

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

PER ORDER OF 6.172

29

Hoisting

The goal of — also called
— is to avoid recomputing loop-invariant code

each time through the body of a loop.

#include <math.h>

void scale(double *X, double *Y, int N) {
For WL L=, O i WENE *ct +,) »4
Y[i] = X[i] * exp(sqrt(M_PI/2));

}
} #include <math.h>

void scale(double *X, double *Y, int N) {
double factor = exp(sqrt(M _PI/2));
for (int 1 = 0@; i < N; i++) {
Y =2k 1A Facters
}
}

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

Sentinels

are special dummy values placed in a data
structure to simplify the logic of boundary conditions,

and in particular, the

nandling of loop-exit tests.

#include <stdint.h>

#include <stdbool.h>

bool overflow(uint64_ t *A, siz¢
uinté4 t sum = 0;
fOr alhstTZa t.NE O d™ <N ;.5
sum += A[i];

if (sum < A[i]) return ti

¥

return false;

}

j

#include <stdint.h>
#include <stdbool.h>

// Assumes that A[n] and A[n+1] exist and
// can be clobbered

bool overflow(uint64 t *A, size t n) {

A[n] = UINT64 MAX;
A[n+l1l] = 1; // or any positive number
size't 1 =.0;
uint64 t sum = A[Q];
while (sum >= A[i]) {
sum += A[++1i];
}
iy (I) return Y tedes;
return false;

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

31

attempts to save work by combining
several consecutive iterations of a loop into a single

iteration, thereby reducing the total number of
iterations of the loop and, consequently, the number
of times that the instructions that control the loop
must be executed.

o loop unrolling: All iterations are unrolled.

o loop unrolling: Several, but not all, of the
iterations are unrolled.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

32

Full Loop Unrolling

int sum = 0; int sum = 0;
ol (#sn T ™TE 0N - <] BT ¥k i sum += A[0O];
sum += A[1i]; sum += A[1];

} sum += A[2];
’ sum += A[3];

sum += A[4];

sum += A[5];

sum += A[6];

sum += A[7];

sum += A[8];

sum += A[9];

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

33

Partial Loop Unrolling

Nt Sums=""9; Nt “Sums="0;
e (g T INEY 0, A < TRy R 1 g L
sum += A[i]; Foris(Ie=R05 o<t N%=t"8caF £=24% 1
} sum += A[F];
7

sum += A[j+1];
sum += A[j+2];
sum += A[j+3];
I
FOF(INT, 1 = 1< N0, ++19%{
sum += A[i];

}

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

34

Loop Fusion

The idea of loop fusion — also called jamming — is to

combine multiple loops over the same index range
into a single loop body, thereby saving the overhead

of loop control.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

for (Ll = O 17X . niefr+i)
@] i = P Sr] RSGE Bl T) RS B [T
}
TOrGINT« TR0 w1 N S o R
BT s RN |G B (Rl JRRgB [Al hs
J 7
For S 1nfi = O 1% nkpfi)%
(8]t = PN S| RS - Bl | A i B Y] %
D[S=hy CA LTS < SNET~2 BFEA]_Sg AN 5
}

35

Eliminating Wasted Iterations

The idea of eliminating wasted iterations is to modify
loop bounds to avoid executing loop iterations over
essentially empty loop bodies.

QP (LN -= Ok 1K « Nkpfi.) 5 For (L= - 1%e 1% - nhpf i) 5
for (int j =0; j < n; ++j) { o k(T hitSdy = Rk ™ 19 SETi, e
. (L B TR init “temps = ALTEE S
int temp = A[i][]]; A[i][3] = A[J]I[1];
A[i][3] = A[3]1[1]; A[J][1] = temp;
A[J]1[i] = temp; }
} }
} i/
i 7

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

36

FUNCTIONS

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

PER ORDER OF 6.172

37

Inlining

The idea of inlining is to avoid the overhead of a
function call by replacing a call to the function with
the body of the function itself.

double square(double x) {
return x * Xx;

}

double sum = 0.0;

for (Ent e 0; A< ettt {
sum += square(A[i]);

}

return sum;

double sum_of_squares(double *A, int n) {

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

double sum_of squares(double *A, int n) {
double sum = 0.0;

For (MEnt i =98; F1%< NS ++i)
double temp = A[i];
sum += temp * temp;

}

return sum;

38

Inlining (2)

The idea of inlining is to avoid the overhead of a
function call by replacing a call to the function with
the body of the function itself.

double square(double x) {
return x * Xx;

}

double sum = 0.0;

for (Ent e 0; A< ettt {
sum += square(A[i]);

}

return sum;

}

double sum_of_squares(double *A, int n) {

Inlined functions can
be just as efficient as
macros, and they are
better structured.

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

inline double square(double x) {
RETURNSTEE o

}

double sum_of squares(double *A, int n) {
double sum = 0.90;
feor (int . a0E 05 d¥< negeeEEI {
sum += square(A[i]);
}

return sum;

39

Tail-Recursion Elimination

The idea of tail-recursion elimination is to replace a
recursive call that occurs as the last step of a function
with a branch, saving function-call overhead.

voids quiheksortiGint; *Asfint M- {
TR b D
e = ekt 1 &i0n0A .05
gUitks ort (ATuR)S
quicksort (A + r+ 1, n - r - 1);
¥
}

void: quikcksortiGints *Asfint N9 {
while (n > 1) {
int r = partition(A, n);
gUitks ort (Asur)s
A+=1r + 1;
n -=r + 1;

}
} 7

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

Coarsening Recursion

The idea of coarsening recursion is to increase the
size of the base case and handle it with more efficient
code that avoids function-call overhead.

void quicksort(int *A, int n) { #define THRESHOLD 10
while (n > 1) { void quicksort(int *A, int n) {
TR = PEEtI TLom@As i) ; while (n > THRESHOLD) {
guilekSorLs (A or); 1 nikAr="-partition(a,%n),
A +=r + 1; quEtcKsonta (A, ik
n -=r + 1; A+=1r + 1;
} n-=r + 1;
) ")

// insertion sort for small arrays
o) A 1 1 e I R R T N T B
int*key ="A[Jj];
o) e M Ly L
while (i >= 0 && A[i] > key) {
A[i+1] = A[i];
<

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

SUMMARY

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

PER ORDER OF 6.172

43

Bentley Rules

Data structures

e Packing and encoding

e Augmentation

e Precomputation

e Compile-time initialization
e Caching

e Sparsity

Loops

e Hoisting

e Sentinels

e Loop unrolling

e Loop fusion

e Eliminating wasted iterations

© 2012 Charles E. Leiserson and I-Ting Angelina Lee

Logic

e Constant folding and
propagation

e Common-subexpression
elimination

e Algebraic identities

e Short-circuiting

e Ordering tests

e Combining tests

Functions

e Inlining

e Tail-recursion elimination
e Coarsening recursion

44

Conclusions

e Avoid premature optimization. First get correct
working code. Then optimize.

e Reducing the work of a program does not
necessarily decrease its running time, but it is a
good heuristic.

e The compiler automates many low-level
optimizations.

e To tell whether the compiler is actually automating
a particular optimization, look at the assembly
code (next lecture).

If you find interesting examples of work
optimization, please let me know!

© 2012 Charles E. Leiserson and I-Ting Angelina Lee 45

