
Torch7: A Matlab-like Environment for Machine
Learning

Ronan Collobert1 Koray Kavukcuoglu2 Clément Farabet3,4

1 Idiap Research Institute
Martigny, Switzerland

2 NEC Laboratories America
Princeton, NJ, USA

3 Courant Institute of Mathematical Sciences
New York University, New York, NY, USA

4 Université Paris-Est
Équipe A3SI - ESIEE Paris, France

Abstract

Torch7 is a versatile numeric computing framework and machine learning library
that extends Lua. Its goal is to provide a flexible environment to design and
train learning machines. Flexibility is obtained via Lua, an extremely lightweight
scripting language. High performance is obtained via efficient OpenMP/SSE and
CUDA implementations of low-level numeric routines. Torch7 can easily be in-
terfaced to third-party software thanks to Lua’s light interface.

1 Torch7 Overview

With Torch7, we aim at providing a framework with three main advantages: (1) it should ease the
development of numerical algorithms, (2) it should be easily extended (including the use of other
libraries), and (3) it should be fast.

We found that a scripting (interpreted) language with a good C API appears as a convenient solu-
tion to “satisfy” the constraint (2). First, a high-level language makes the process of developing a
program simpler and more understandable than a low-level language. Second, if the programming
language is interpreted, it becomes also easier to quickly try various ideas in an interactive manner.
And finally, assuming a good C API, the scripting language becomes the “glue” between hetero-
geneous libraries: different structures of the same concept (coming from different libraries) can
be hidden behind a unique structure in the scripting language, while keeping all the functionalities
coming from all the different libraries.

Among existing scripting languages1 finding the ones that satisfy condition (3) severely restricted
our choice. We chose Lua, the fastest interpreted language (with also the fastest Just In Time (JIT)
compiler2) we could find. Lua as also the advantage to have been designed to be easily embedded in
a C application, and provides a great C API, based on a virtual stack to pass values to and from C.
This unifies the interface to C/C++ and makes library wrapping trivial.

Lua is intended to be used as a powerful, light-weight scripting language for any program that
needs one. Lua is implemented as a library, written in clean C (that is, in the common subset of
ANSI C and C++). Quoting Lua webpage3,

1For e.g. on http://shootout.alioth.debian.org.
2http://luajit.org/
3http://www.lua.org.

1

http://shootout.alioth.debian.org
http://luajit.org/
http://www.lua.org

Lua combines simple procedural syntax with powerful data description constructs
based on associative arrays and extensible semantics. Lua is dynamically typed,
runs by interpreting bytecode for a register-based virtual machine, and has auto-
matic memory management with incremental garbage collection, making it ideal
for configuration, scripting, and rapid prototyping.

Lua offers good support for object-oriented programming, functional programming, and data-driven
programming. Lua’s main type is the table, which implements associative arrays in a very efficient
manner. An associative array is an array that can be indexed not only with numbers, but also with
strings or any other value of the language. Tables have no fixed size, can be resized dynamically,
and can be used as “virtual tables” over another table, to simulate various object-oriented paradigms.
Tables are the only data structuring mechanism in Lua4, yet a powerful one. We use tables to
represent ordinary arrays, symbol tables, sets, records, queues, and other data structures, in a simple,
uniform, and efficient way. Lua uses tables to represent packages as well.

Why not Python? It is hard to talk about a language without starting a flame war. While Lua is
well known in the gaming programmer community (because of its speed advantage and great em-
bedding capabilities), Python is more popular in a more general public. With no doubt, Python ships
with more libraries. However, with no doubt5, “Integrating Lua with C is so easy a child could do
it. Lua was designed for this also, from the beginning, and it shows6. This means that with a few
hours’ work, any C or C++ library can become a Lua library.”. Another key advantage of Lua is its
embedding capabilities: once code has been prototyped, it can be turned into a final system/product
with very little extra work. Extra performance can be obtained using LuaJIT, yielding C-like perfor-
mance for most of the pure Lua code. Lua being written in pure ANSI C, it can be easily compiled
for arbitrary targets (cell-phones, embedded CPUs in FPGAs, DSP processors, ...). Adding Lua’
speed advantage, the choice was a “no brainer”.

Lua satisfied our initial constraints (2) and (3). In the next section, we show how we satisfied
constraint (1), that is, how we made easy to develop numerical algorithms, by developing a Tensor
object, which serves as a “glue brick” between all our library interfaces.

Torch5 is our previous version of Torch7, and was already leveraging Lua, as we do in Torch7. In
contrast, Torch7 allows the user to switch easily (on the fly) between floating types (float, doubles,
or CUDA), and has parallelization (OpenMP & CUDA) capabilities.

2 Efficient N-dimensional Tensor Object

Torch7 heavily relies on its Tensor class (provided by our own standalone C Tensor library), which
extends Lua’s basic set of types to provide an efficient multi-dimensional array type. Most packages
in Torch7, or third-party packages that depend on Torch7 rely on its Tensor class to represent signals,
images, videos..., allowing us to nicely “glue” most libraries together. The Torch7 Tensor library
provides a lot of classic operations (including linear algebra operations), efficiently implemented in
C, leveraging SSE instructions on Intel’s platforms and optionally binding linear algebra operations
to existing efficient BLAS/Lapack implementations (like Intel MKL). As we will see in the next
section, we also support OpenMP instructions and CUDA GPU computing.

The following code demonstrates a few standard Tensor-based operations:

1 t = torch.FloatTensor(100,100) -- create a tensor of single-precision floats
2 l = lab.randn(100,100) -- randomized: sampled from a normal distribution
3 r = t + l/2 -- basic operators
4 r:add(0.5, t) -- in-place operators
5 r = lab.log(lab.exp(-r)+10) -- common operators

4Lua also allows easy interfaces with C data structures, thanks to its C API.
5Quoting a post on http://www.stackoverflow.com.
6Some might argue that SWIG (http://www.swig.org/) would ease the interface of C/C++ libraries

with Python. We did use SWIG with Lua for a while, but we found it had more overhead than using the Lua C
API itself, while lacking flexibility. (Try and you will see!).

7http://torch5.sourceforge.net.

2

http://www.stackoverflow.com
http://www.swig.org/

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Si
n/

C
os

angle(PI)

sin
cos

Sin(x)+Cos(y)

 1
 0
 -1

-6 -4 -2 0 2 4 6x -6
-4

-2
 0

 2
 4

 6

y

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

’-’ matrix

 0 20 40 60 80

 0

 20

 40

 60

 80

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

Figure 1: Sample plots produced by Torch7 plot package. Left: Simple line plot. Middle: Surface
plotting using 2D tensors. Right: Matrix plotting using heat map.

As in Matlab, multiple types can co-exist in Torch7, and it is easy to go from one to the other:

1 float = torch.FloatTensor(100) -- a single-precision tensor
2 double = float:double() -- converted to double-precision
3 r = torch.FloatTensor(double:size())
4 r:copy(double) -- automatically casts from double->float

Related Approaches The Tensor idea existed long before Torch. We got mostly inspired from
SN [2] & Lush [3] toolboxes, which were (to our knowledge) the first to introduce the concept (in
a LISP language framework). More recently, Numpy8 proposed the same kind of library, but for
the Python language. Obviously, if we had chosen Python, we would have sticked to Numpy. As
mentioned before, we nevertheless believe that Lua is a better choice for us because of the (1) speed
advantage and (2) interface with any C library made really easy: in the end, our Tensor library (or
Numpy) is quite small compared to all the other modules we have in Torch.

3 Torch7 Packages

At this time, Torch7 comes with 8 built-in packages:

torch: Torch7’s main package: provides Tensors, easy serialization and other basic functionalities.

lab & plot: These two packages provide standard Matlab-like functions, to create, transform and
plot Tensors as shown in Figure 1.

qt: Full bindings between Qt and Lua9, with transparent conversion of Torch7 Tensors from/to
QImages. Great for quickly developing interactive demos with s nice GUI (running natively on
Linux, Mac or Windows platforms).

nn: The nn package provides a set of standard neural network modules, as well as a set of container
modules that can be used to define arbitrary directed (acyclic or not) graphs. By explicitly describing
the graph’s architecture, using pluggable modules, we avoid the complexity of a graph parser, or any
other middle-ware compiler.

In practice, most networks are either sequential, or have simple branching patterns and recursions.
The following example shows how to describe a multi-layer perceptron:

1 mlp = nn.Sequential()
2 mlp:add(nn.Linear(100,1000))
3 mlp:add(nn.Tanh())
4 mlp:add(nn.Linear(1000,10))
5 mlp:add(nn.SoftMax())

Each module, or container provides standard functions to compute its output state, and back-
propagate derivatives to its inputs, and to its internal parameters. Given the previous network, an
input X , and the gradient of some error E with respect to the output Y —dE/dY —these three
functions can be called like this:

8http://numpy.scipy.org.
9Thanks to Léon Bottou for this huge piece of work.

3

http://numpy.scipy.org

1 Y = mlp:forward(X) -- compute the activations Y = f(X)
2 E = loss:forward(Y,T) -- compute some loss E = l(Y,T)
3 dE_dY = loss:updateGradInput(Y,T) -- compute the gradient dE/dY = dl(Y,T)/dY
4 dE_dX = mlp:updateGradInput(X,dE_dY) -- back-propagate the gradients, down to dE/dX
5 mlp:accGradParameters(X,dE_dY) -- compute the gradients wrt the weights: dE/dW

image: An image processing package. It provides all the standard image processing functions:
load/save images, rescale/rotate, remap colorspaces, convolve, gaussian kernels, . . .

optim: A compact package providing steepest descent, conjugate gradient and limited memory
BFGS implementations.

unsup: Contains several unsupervised learning algorithms like K-means, sparse coding and auto
encoders.

third-party: On top of these packages, an ever growing list of third-party packages is available.
Some convenient packages are: mattorch, which provides a two-way interface between Matlab’s
matrix format and Torch’s tensor; parallel, which provides simple routines to fork and execute Lua
code on local or remote machines, and exchange data using Torch7’s serialization mechanism; cam-
era, a simple wrapper to camera/webcam drivers on Linux and MacOSX; imgraph, a package that
provides lots of routines to create edge-weighted graphs on images, and manipulate these graphs.
And the list never stops growing, as Lua makes it easy to interface any C library.

4 Torch7 is efficient (actually, it is the most efficient)

Torch7 has been designed with efficiency in mind, leveraging SSE when possible and supporting
two ways of parallelization: OpenMP and CUDA. The Tensor library (interfaced with the “torch”
package in Lua) makes a heavy usage of these techniques. From the user viewpoint, enabling CUDA
and OpenMP can lead to great speedups in any “Lua” script, at zero implementation cost (because
most packages rely on the Tensor library). Other packages (like the “nn” package) also leverage
OpenMP and CUDA for more specific usages not covered by the Tensor library.

4.1 OpenMP support

Open Multi-Processing (OpenMP) provides a shared memory CPU parallelization framework on
C/C++ and Fortran languages on almost every operating system and compiler toolset. It generally
requires minimal modification for integrating into an existing project. Torch7 is designed and de-
veloped to use OpenMP directives for various operations in its tensor library and neural network
package. Although the details of the OpenMP specification is beyond the scope of this work, below
we show one of the most commonly used OpenMP directive, parallelization over for-loops:

1 #pragma omp parallel for private(i) // private makes a copy for each thread
2 for (i=0; i<N; i++)
3 {
4 a[i] = i*i;
5 }

Without the omp parallel for directive at line 1, this piece of code will run to completion on a single
core. However, since each loop iteration is independent from each other, it becomes a trivial single
line addition to existing code that parallelizes this computation over many cores.

Torch7 automatically detects if the compiler supports OpenMP directives and compiles a high level
package that adds multi-threaded tensor operations, convolutions and several neural network classes.
The switch from single threaded code to multi-threaded code is completely transparent to the user
and it only requires -l openmp argument to be passed to executable. With this option, Torch7 by
default uses the OpenMP enabled function calls when available. The number of threads to be used
can be specified by either setting and environment variable to desired number:

1 bash# export OMP_NUM_THREADS=4

or from inside lua by

1 openmp.setNumThread()

4

function. Moreover, openmp can even be temporarily enabled or disabled using the following func-
tion calls.

1 openmp.enable()
2 openmp.disable()

Mutli-threading of BLAS operations rely on the specific BLAS library that Torch7 is linked against.
For example Intel’s MKL library also uses OpenMP for parallelizing Level 3 BLAS operations.
In the neural network package nn, the convolutional layers, most common non-linearity functions
like tanh and sigmoid, pooling operations like average, sum and max pooling and various other
primitive operations like sum, square modules are all parallelized. For all the models that apply
elementwise operations, the parallelization is almost as trivial as shown in the example above. For
more complicated modules like convolutional layers with multiple input output feature maps, the
function evaluation pass is parallelized over output feature maps so that every output feature is
calculated in parallel. For calculating the gradient wrt kernels, operations are parallelized over
kernels and over input features for gradient wrt inputs. Using this strategy the convolutional network
architecture can be sped up almost linearly.

4.2 CUDA support

CUDA (Compute Unified Device Architecture) is nVidia’s framework for programming their graph-
ics processors to perform general purpose computations. CUDA exposes the hierarchy of memo-
ries available to the graphics processor, the two main ones being the external (large, high-latency)
DRAM and the internal shared memory (a couple of kB, low-latency). It also exposes the hierarchy
of compute cores, and how they interact with each other, and with the different types of memory.

Writing CUDA code (kernels) turned out to be simpler than expected. Contrary to common say-
ings, it is very easy to obtain decent performance, and the simplest kernels already yield satisfying
speedups over regular C. The only three things to know, and carefully handle are: understand the
interaction between shared memory and threads; understand memory coalescing, to maximize band-
width to/from external DRAM; understand the hierarchy of processing units, to efficiently divide the
workload between blocks and threads. Once understood, these concepts were sufficient to allow us
to write our own 2D convolutions, which are computed at about 200GFLOP/s on a GTX580, for
large enough inputs. For smaller inputs, our OpenMP+SSE implementation remains more efficient.

Once built against CUDA, Torch7 provides a new Tensor type: torch.CudaTensor. Once created,
such a Tensor lives in the GPU’s DRAM memory. All operators defined on standard Tensors are
also defined on CudaTensors, which completely abstracts the use of the graphics processor. Here is
a small illustrative example, that demonstrates the simplicity of the interface:

1 tf = torch.FloatTensor(4,100,100) -- lives in the CPU’s DRAM
2 tc = tf:cuda() -- lives in the GPU’s DRAM
3 tc:mul(3) -- performed by the GPU
4 res = tc:float() -- res lives in the CPU’s DRAM

On top of the Tensors’ main operators, all the matrix-based operators are available, as well as most
standard convolution routines.

4.3 Benchmarks

In a recent paper [1], the authors introduced a new compiler for mathematical expressions, built
upon Python and Numpy. As for Torch7, Theano is (at this time) mainly used in a neural network
framework. Theano can be either run on a CPU or a GPU. The authors of Theano showed bench-
marks (involving the training of various neural networks architectures) crushing other alternative
implementations (when running Theano over a GPU), including Torch5, Matlab with GPUmat (run-
ning over a GPU) or EBLearn. We decided to reproduce these exact benchmarks, limiting ourselves
to Torch7 versus Theano, as Theano appears already faster than any existing implementation.

To stay fair, we compiled both Numpy (on which Theano relies) and Torch7 against MKL Intel
library. We ran the experiments on a Intel i7 950 with 4 cores. We optionally used a nVidia GTX
460 GPU. Following [1] benchmark suite, we considered the training of three kinds of multi-layer

5

 0
 20000
 40000
 60000

CPU
OpenMP

GPU

ex
am

pl
es

/s

MLP 784/10

 100000
 150000
 200000
 250000

CPU
OpenMP

GPU

MLP 784/10 (batch)

 0
 1000
 2000
 3000

CPU
OpenMP

GPU

CNN 32x32

 0
 3000
 6000
 9000

 12000

CPU
OpenMP

GPU

CNN 32x32 (batch)

 1000
 2000
 3000
 4000
 5000

CPU
OpenMP

GPU

ex
am

pl
es

/s

MLP 784/500/10

 0
 20000
 40000
 60000
 80000

CPU
OpenMP

GPU

MLP 784/500/10 (batch)

 0

 200

 400

CPU
OpenMP

GPU

CNN 96x96

 0
 250
 500
 750

CPU
OpenMP

GPU

CNN 96x96 (batch)

 0

 500

 1000

CPU
OpenMP

GPU

ex
am

pl
es

/s

MLP 784/1000x3/10

 0
 3000
 6000
 9000

 12000

CPU
OpenMP

GPU

MLP 784/1000x3/10 (batch)

 0

 50

 100

CPU
OpenMP

GPU

CNN 256x256

 0

 50

 100

CPU
OpenMP

GPU

CNN 256x256 (batch)

Figure 2: Benchmarks of Torch7 (red stripes) versus Theano (solid green), while training various
neural networks architectures with SGD. We considered a single CPU core, OpenMP with 4 cores
and GPU alternatives. Performance is given in number of examples processed by second (higher is
better). “batch” means 60 examples were fed at the time when training with SGD. Note that we do
not handle batch convolutions using CUDA yet (but we will in few days!).

Perceptrons (with 784 inputs, 10 classes, cross-entropy cost, and respectively no-hidden layer, one
hidden layer of size 500 and three hidden layers of size 1000). We also considered the training of
three kinds of convolutional neural networks (on 32 × 32, 96 × 96, and 256 × 256 input images),
following exactly the architectures of [1]. The optimization algorithm we used was pure stochastic
gradient descent (SGD), or SGD with a mini-batch of 60 examples. We compare all architectures
running on a single CPU core, over 4 cores thanks to OpenMP, or over the GPU. Note that Theano
does not support OpenMP. However, it gets a speedup (on the multi-layer Perceptron benchmarks),
thanks to the Intel MKL library (called through Numpy) which does supports OpenMP.

As shown in Figure 2, Torch7 is faster than Theano on most benchmarks. Interestingly, Theano
really lags behind for small architectures, which might be explained by a heavy Python overhead.
Another interesting comment is the great performance of OpenMP compared to the GPU implemen-
tation: only largest architectures will benefit from the GPU.

Acknowledgments

We’d like to thank our wives and families for staying nice while we were spending all our nights
coding Torch7.

References
[1] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, and

Y. Bengio. Theano: a CPU and GPU math expression compiler. In Proceedings of the Python
for Scientific Computing Conference (SciPy), 2010. 4.3

[2] L.-Y. Bottou and Y. LeCun. Sn: A simulator for connectionist models. In Proceedings of
NeuroNimes 88, Nimes, France, 1988. 2

[3] Y. LeCun and L. Bottou. Lush reference manual. Technical report, 2002. code available at
http://lush.sourceforge.net. 2

6

	Torch7 Overview
	Efficient N-dimensional Tensor Object
	Torch7 Packages
	Torch7 is efficient (actually, it is the most efficient)
	OpenMP support
	CUDA support
	Benchmarks

