
1

Monte-Carlo Planning

Look Ahead Trees

Alan Fern

2

Monte-Carlo Planning Outline

Single State Case (multi-armed bandits)

A basic tool for other algorithms

Monte-Carlo Policy Improvement

Policy rollout

Policy Switching

Monte-Carlo Look-Ahead Trees

Sparse Sampling

Sparse Sampling via Recursive Bandits

UCT and variants

3

Sparse Sampling

 Rollout and policy switching do not guarantee optimality
nor near optimality
 Guarantee relative performance to base policies

 Can we develop Monte-Carlo methods that give us near
optimal policies?
 With computation that does NOT depend on number of states!

 This was an open problem until late 90’s.

 In deterministic games and search problems it is common
to build a look-ahead tree at a state to select best action
 Can we generalize this to general stochastic MDPs?

4

Online Planning with Look-Ahead Trees

At each state we encounter in the environment we
build a look-ahead tree of depth h and use it to
estimate optimal Q-values of each action
Select action with highest Q-value estimate

s = current state of environment

Repeat
T = BuildLookAheadTree(s) ;; sparse sampling or UCT

;; tree provides Q-value estimates for root action

a = BestRootAction(T) ;; action with best Q-value

Execute action a in environment

s is the resulting state

5

Planning with Look-Ahead Trees

… …s

a2 a1

Build look-ahead tree Build look-ahead tree

Real world

state/action

sequence

s

a1 a2

…

a1 a2

…

s11

a1 a2

s1w
…

a1 a2

…

s21

a1 a2

s2w
…

R(s11,a1)R(s11,a2)R(s1w,a1)R(s1w,a2)R(s21,a1)R(s21,a2)R(s2w,a1)R(s2w,a2)

s

a1 a2

…

a1 a2

…

s11

a1 a2

s1w
…

a1 a2

…

s21

a1 a2

s2w
…

R(s11,a1)R(s11,a2)R(s1w,a1)R(s1w,a2)R(s21,a1)R(s21,a2)R(s2w,a1)R(s2w,a2)

………… …………

Sparse Sampling

Again focus on finite-horizons

Arbitrarily good approximation for large enough horizon h

h-horizon optimal Q-function (denoted Q*)

Value of taking a in s and following * for h-1 steps

Q*(s,a,h) = E[R(s,a) + βV*(T(s,a),h-1)]

Key identity (Bellman’s equations):

V*(s,h) = maxa Q*(s,a,h)

*(x) = argmaxa Q*(x,a,h)

Sparse sampling estimates Q-values by building

sparse expectimax tree

Sparse Sampling

Will present two views of algorithm

The first is perhaps easier to digest and doesn’t appeal to

bandit algorithms

The second is more generalizable and can leverage

advances in bandit algorithms

1. Approximation to the full expectimax tree

2. Recursive bandit algorithm

Expectimax Tree

Key definitions:

V*(s,h) = maxa Q*(s,a,h)

Q*(s,a,h) = E[R(s,a) + βV*(T(s,a),h-1)]

Expand definitions recursively to compute V*(s,h)

V*(s,h) = maxa1 Q(s,a1,h)

= maxa1 E[R(s,a1) + β V*(T(s,a1),h-1)]

= maxa1 E[R(s,a1) + β maxa2 E[R(T(s,a1),a2)+Q*(T(s,a1),a2,h-1)]

= ……

Can view this expansion as an expectimax tree

Each expectation is a weighted sum over states

Exact Expectimax Tree for V*(s,H)

Max

Exp Exp

Max Max Horizon

H

k

states

......

......

............

............

......

......
......

actions

(kn)H leaves

n

Alternate max &

expectation

Compute root V* and Q* via recursive procedure

Depends on size of the state-space. Bad!

V*(s,H)

Q*(s,a,H)

Sparse Sampling Tree

Max

Exp Exp

Max Max
Horizon H

k

states

......

......

............

............

......

Sampling

depth H
s

Sampling

width C

......
......

(kC)Hs leaves

actions

(kn)H leaves

n

V*(s,H)

Q*(s,a,H)

Replace expectation with average over w samples

w will typically be much smaller than n.

(kw)H leaves

Sampling

width w

Sparse Sampling Tree

s

a1 a2

a1 a2

s11

a1 a2

s1w
…

a1 a2

s21

a1 a2

s2w
…

sampled

average

max

node

… … … … … … … …

V*(s,H)
Q*(s,a1,H)

We could create an entire tree at each decision step and return

action with highest Q* value at root.

High memory cost!

Sparse Sampling [Kearns et. al. 2002]

SparseSampleTree(s,h,w)

If h=0 Return [0, null]

For each action a in s

Q*(s,a,h) = 0

For i = 1 to w

Simulate taking a in s resulting in si and reward ri

[V*(si,h-1),a*] = SparseSample(si,h-1,w)

Q*(s,a,h) = Q*(s,a,h) + ri + β V*(si,h-1)

Q*(s,a,h) = Q*(s,a,h) / w ;; estimate of Q*(s,a,h)

V*(s,h) = maxa Q*(s,a,h) ;; estimate of V*(s,h)

a* = argmaxa Q*(s,a,h)

Return [V*(s,h), a*]

The Sparse Sampling algorithm computes root value via depth first expansion

Return value estimate V*(s,h) of state s and estimated optimal action a*

Sparse Sampling (Cont’d)

For a given desired accuracy, how large

should sampling width and depth be?

Answered: Kearns, Mansour, and Ng (1999)

Good news: gives values for w and H to

achieve PAC guarantee on optimality

Values are independent of state-space size!

First near-optimal general MDP planning algorithm

whose runtime didn’t depend on size of state-space

Bad news: the theoretical values are typically

still intractably large---also exponential in H

Exponential in H is the best we can do in general

 In practice: use small H & heuristic value at leaves

Sparse Sampling w/ Leaf Heuristic

SparseSampleTree(s,h,w)

If h=0 Return [0, null]

For each action a in s

Q*(s,a,h) = 0

For i = 1 to w

Simulate taking a in s resulting in si and reward ri

[V*(si,h-1),a*] = SparseSample(si,h-1,w)

Q*(s,a,h) = Q*(s,a,h) + ri + β V*(si,h-1)

Q*(s,a,h) = Q*(s,a,h) / w ;; estimate of Q*(s,a,h)

V*(s,h) = maxa Q*(s,a,h) ;; estimate of V*(s,h)

a* = argmaxa Q*(s,a,h)

Return [V*(s,h), a*]

Let 𝑉 𝑠 be a heuristic value function estimator

Generally this is a very fast function, since it is evaluated at all leaves

Shallow Horizon w/ Leaf Heuristic
s

a1 a2

a1 a2

s11

a1 a2

s1w
…

a1 a2

s21

a1 a2

s2w
…

… … … … … … … …

Often a shallow sparse sampling search with a simple
 𝑉 at leaves can be very effective.

 𝑉(⋅) 𝑉(⋅) 𝑉(⋅) 𝑉(⋅) 𝑉 ⋅ 𝑉 ⋅ 𝑉(⋅) 𝑉(⋅) 𝑉(⋅) 𝑉(⋅) 𝑉(⋅) 𝑉(⋅) 𝑉(⋅) 𝑉(⋅) 𝑉(⋅) 𝑉(⋅)

16

Anytime Behavior (or lack of it)

Bad News: sparse sampling has poor “anytime

behavior”, which is often important in practice

Anytime Behavior: good anytime behavior

roughly means that an algorithm should be able

to use small amounts of additional time to get

small improvements

Why doesn’t sparse sampling have good

anytime behavior?

 Increasing information about a root action at depth h

requires computing a sparse sub-tree of depth h.

Takes a lot of time for information to propagate to

root

Sparse Sampling

Will present two views of algorithm

The first is perhaps easier to digest

The second is more generalizable and can leverage

advances in bandit algorithms

1. Approximation to the full expectimax tree

2. Recursive bandit algorithm

 Consider horizon H=2 case first

 Show for general H

Sparse Sampling Tree

s

a1 a2

a1 a2

s11

a1 a2

s1w
…

a1 a2

s21

a1 a2

s2w
…

sampled

average

max

node

… … … … … … … …

V*(s,H)
Q*(s,a1,H)

Each max node in tree is just a bandit problem.

I.e. must choose action with highest Q*(s,a,h)---approximate via bandit.

Bandit View of Sparse Sampling (H=2)
s

a1 a2

…

a1 a2

…

s11

a1 a2

s1w…

a1 a2

…

s21

a1 a2

s2w…

R(s11,a1) R(s11,a2) R(s1w,a1) R(s1w,a2) R(s21,a1) R(s21,a2) R(s2w,a1) R(s2w,a2)

h=1: Traditional bandit problem

(stochastic arm reward R(s11,ai))

V*(s11,1)

estimate

Implement bandit alg. to

return estimated expected

reward of best arm

Consider 2-horizon

problem

Bandit View of Sparse Sampling (H=2)

s
a1 a2

…

a1 a2

…

s11

a1 a2

s1w…

a1 a2

…

s21

a1 a2

s2w…

R(s11,a1) R(s11,a2) R(s1w,a1) R(s1w,a2) R(s21,a1) R(s21,a2) R(s2w,a1) R(s2w,a2)

h=2: higher level bandit problem (finds arm with best Q* value for h=2)

Pulling an arm returns a Q-value estimate by: 1) sample next state s’,

2) run h=1 bandit at s’, return immediate reward + estimated value of s’

Bandit View of Sparse Sampling (h=2)

s

a1
a2

a1 a2

…

s11

a1 a2

s1w…

a1 a2

…

s21

a1 a2

s2w…

R(s11,a1) R(s11,a2) R(s1w,a1) R(s1w,a2) R(s21,a1) R(s21,a2) R(s2w,a1) R(s2w,a2)

V*(s1w,1)

estimate

V*(s11,1)

estimate

Q*(s, a1, 2)

estimate

Consider UniformBandit using w pulls per arm

V*(s2w,1)

estimate

V*(s21,1)

estimate

Q*(s, a2,2)

estimate

𝑟11, … , 𝑟1𝑤 𝑟21, … , 𝑟2𝑤 𝑟11, … , 𝑟1𝑤 𝑟21, … , 𝑟2𝑤𝑟11, … , 𝑟1𝑤 𝑟21, … , 𝑟2𝑤 𝑟11, … , 𝑟1𝑤 𝑟21, … , 𝑟2𝑤

22

Bandit View: General Horizon H
s

a1 a2 ak

SimQ*(s,a1,h) SimQ*(s,a2,h) SimQ*(s,ak,h)

…

• SimQ*(s,a,h) : we want this to return a random sample

of the immediate reward and then h-1 value of resulting

state when executing action a in s

• If this is (approx) satisfied then bandit algorithm will

select near optimal arm.

Bandit View: General Horizon H
s

a1 a2 ak

SimQ*(s,a1,h) SimQ*(s,a2,h) SimQ*(s,ak,h)

…

BanditValue(𝑨𝟏, 𝑨𝟐, … , 𝑨𝒌)
returns estimated expected

value of best arm

(e.g. via UniformBandit)

SimQ*(s,a,h)
r = R(s,a)

If h=1 then Return r

s’ = T(s,a)

Return 𝑟 + 𝛽 BanditValue(SimQ∗ 𝒔′, 𝒂𝟏, 𝒉 − 𝟏 ,… , SimQ∗ 𝒔′, 𝒂𝒌, 𝒉 − 𝟏)

Definition:

k-arm bandit problem at state s’

Recursive UniformBandit: General H

s

a1
a2

a1 a2

s11

a1 a2

…

a1 a2

and so on …..

a1 a2

…

a1 a2

s1w

a1 a2

Clearly replicating Sparse

Sampling.

. . .

.

Consider

UniformBandit

Recursive Bandit: General Horizon H

SelectRootAction(s,H)
Return BanditAction(SimQ∗ 𝑠, 𝑎1, 𝐻 , … , SimQ∗ 𝑠, 𝑎𝑘 , 𝐻)

• When bandit is UniformBandit same as Sparse Sampling

• Can plug in more advanced bandit algorithms for possible

improvement!

SimQ*(s,a,h)
r = R(s,a)

If h=1 then Return r

s’ = T(s,a)

Return 𝑟 + 𝛽 BanditValue(SimQ∗ 𝑠′, 𝑎1, ℎ − 1 , … , SimQ∗ 𝑠′, 𝑎𝑘 , ℎ − 1)

26

Uniform vs. Non-Uniform Bandits

 Sparse sampling wastes time

on bad parts of tree

Devotes equal resources to each

state encountered in the tree

Would like to focus on most

promising parts of tree

 But how to control exploration

of new parts of tree vs.

exploiting promising parts?

 Use non-uniform bandits

27

Non-Uniform Recursive Bandits

UCB-Based Sparse Sampling

Use UCB as bandit algorithm

There is an analysis of this algorithm’s bias

(it goes to zero)

H.S. Chang, M. Fu, J. Hu, and S.I. Marcus. An adaptive

sampling algorithm for solving Markov decision

processes. Operations Research, 53(1):126--139, 2005.

Recursive UCB: General H

s

a1
a2

a1 a2

s11

a1 a2 a1 a2 a1 a2

…

a1 a2

s1w

a1 a2

UCB in Recursive Bandit

s1w

a1 a2

29

Non-UniformRecursive Bandits

UCB-Based Sparse Sampling

 Is UCB the right choice?

We don’t really care about cumulative regret.

My Guess: part of the reason UCB was tried was

for purposes of leveraging its analysis

𝜖 − Greedy Sparse Sampling

Use 𝜖 − Greedy as the bandit algorithm

 I haven’t seen this in the literature

Might be better in practice since it is more geared

to simple regret

This would raise issues in the analysis (beyond

the scope of this class).

30

Non-Uniform Recursive Bandits

Good News: we might expect to improve over

pure Sparse Sampling by changing the bandit

algorithm

Bad News: this recursive bandit approach has

poor “anytime behavior”, which is often

important in practice

Anytime Behavior: good anytime behavior

roughly means that an algorithm should be able

to use small amounts of additional time to get

small improvements

What about these recursive bandits?

Recursive UCB: General H

s

a1
a2

a1 a2

s11

a1 a2 a1 a2 a1 a2

…

a1 a2

• After pulling a single arm at root we

wait for an H-1 recursive tree expansion

until getting the result.

32

Non-Uniform Recursive Bandits

 Information at the root only increases after each

of the expensive root arm pulls

Much time passes between these pulls

Thus, small amounts of additional time does not

result in any additional information at root!

Thus, poor anytime behavior

Running for 10sec could essentially the same as

running for 10min (for large enough H)

Can we improve the anytime behavior?

33

Monte-Carlo Planning Outline

Single State Case (multi-armed bandits)

A basic tool for other algorithms

Monte-Carlo Policy Improvement

Policy rollout

Policy Switching

Monte-Carlo Look-Ahead Trees

Sparse Sampling

Sparse Sampling via Recursive Bandits

Monte Carlo Tree Search: UCT and variants

UCT is an instance of Monte-Carlo Tree Search

Applies bandit principles in this framework

Similar theoretical properties to sparse sampling

Much better anytime behavior than sparse sampling

Famous for yielding a major advance in

computer Go

A growing number of success stories

Practical successes still not understood so well

UCT Algorithm Bandit Based Monte-Carlo Planning. (2006).

Levente Kocsis & Csaba Szepesvari. European

Conference, on Machine Learning,

file:///C:/Users/afern/root/classes/cs533/web-13/notes/uct.pdf

Idea #1: board evaluation function via random rollouts

Evaluation Function:

- play many random games

- evaluation is fraction of games won by current player

- surprisingly effective

Monte Carlo Tree Search

Even better if use rollouts that select better than random moves

Idea #2: selective tree expansion

Monte Carlo Tree Search

Default

PolicyTree Policy

Idea #2: selective tree expansion

Monte Carlo Tree Search

Non-uniform tree growth

 Builds a sparse look-ahead tree rooted at current state by

repeated Monte-Carlo simulation of a “rollout policy”

 Rollout policy is the combination of tree policy and default policy

on previous slide (produces trajectory from root to horizon)

 During construction each tree node s stores:

 state-visitation count n(s), action counts n(s,a),

action values Q(s,a)

 Repeat until time is up

1. Execute rollout policy starting from root until horizon

(generates a state-action-reward trajectory)

2. Add first node not in current tree to the tree (expansion phase)

3. Update statistics of each tree node s on trajectory

 Increment n(s) and n(s,a) for selected action a

 Update Q(s,a) by total reward observed after the node

Monte-Carlo Tree Search: Informal

What is the rollout policy?

Monte-Carlo Tree Search algorithms mainly

differ on their choice of rollout policy

Rollout policies have two distinct phases

Tree policy: selects actions at nodes already in tree

(each action must be selected at least once)

Default policy: selects actions after leaving tree

Key Idea: the tree policy can use statistics

collected from previous trajectories to

intelligently expand tree in most promising

direction

Rather than uniformly explore actions at each node

Rollout Policies

Current World State

Default

Policy

Terminal

(reward = 1)

1

Q(s,a)=1

At a leaf node tree policy selects a random action then executes default

Initially tree is single leaf

Assume all non-zero reward occurs at terminal nodes.

new tree node

Iteration 1

Current World State

1

Must select each action at a node at least once

0

Default

Policy

Terminal

(reward = 0)

new tree node

Iteration 2

Current World State

1

Must select each action at a node at least once

0

Iteration 3

Current World State

1 0

When all node actions tried once, select action according to tree policy

Tree Policy

Iteration 3

Current World State

When all node actions tried once, select action according to tree policy

Tree Policy

0

Default

Policy

new tree node

Iteration 3

1 0

Current World State

When all node actions tried once, select action according to tree policy

Tree

Policy
0

Iteration 4

01/2

Current World State

1

1/2

When all node actions tried once, select action according to tree policy

Iteration 4

0

0

Current World State

2/3

When all node actions tried once, select action according to tree policy

0
Tree

Policy

What is an appropriate tree policy?

Default policy?

1

0

0

49

Basic UCT uses a random default policy

 In practice often use hand-coded or learned policy

Tree policy is based on UCB:
Q(s,a) : average reward received in current

trajectories after taking action a in state s

n(s,a) : number of times action a taken in s

n(s) : number of times state s encountered

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Theoretical constant that is empirically selected in practice

(theoretical results based on c equal to horizon H)

UCT Algorithm [Kocsis & Szepesvari, 2006]

Current World State

[1,1]

[1/2, 2]

When all state actions tried once, select action according to tree policy

[0,1]

Tree

Policy
[0,1]

a1 a2
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Edges/actions store [Q(s,a), n(s,a)]

Nodes/states stores n(s)

= sum of n(s,a) over all actions

(not shown in animation)

Current World State

When all node actions tried once, select action according to tree policy

Tree

Policy

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

[1,1]

[1/2, 2] [0,1]

[0,1]

Edges/actions store [Q(s,a), n(s,a)]

Nodes/states stores n(s)

= sum of n(s,a) over all actions

(not shown in animation)

Current World State

When all node actions tried once, select action according to tree policy

Tree

Policy

0

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

[1,1]

[1/2, 2] [0,1]

[0,1]

Edges/actions store [Q(s,a), n(s,a)]

Nodes/states stores n(s)

= sum of n(s,a) over all actions

(not shown in animation)

Current World State

1

When all node actions tried once, select action according to tree policy

Tree

Policy

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

0

[1,1]

[1/3, 3] [0,1]

[0,2]

[0,1]

Edges/actions store [Q(s,a), n(s,a)]

Nodes/states stores n(s)

= sum of n(s,a) over all actions

(not shown in animation)

Current World State

When all node actions tried once, select action according to tree policy

Tree

Policy

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

1

[1,1]

[1/3, 3] [0,1]

[0,2]

[0,1]

Edges/actions store [Q(s,a), n(s,a)]

Nodes/states stores n(s)

= sum of n(s,a) over all actions

(not shown in animation)

Current World State

When all node actions tried once, select action according to tree policy

Tree

Policy

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Edges/actions store [Q(s,a), n(s,a)]

Nodes/states stores n(s)

= sum of n(s,a) over all actions

(not shown in animation)

[1,1]

[1/3, 3] [1/2,2]

[0,2]

[0,1]

[0,1]

56

UCT Recap

To select an action at a state s

Build a tree using N iterations of monte-carlo tree

search

 Default policy is uniform random

 Tree policy is based on UCB rule

Select action that maximizes Q(s,a)

(note that this final action selection does not take

the exploration term into account, just the Q-value

estimate)

The more simulations the more accurate

Garry Kasparov vs. Deep Blue (1997)

Watson vs. Ken Jennings (2011)

Deep Mind’s AlphaGo vs. Lee Sedol (2016)

Computer Go

“Task Par Excellence for AI” (Hans Berliner)

“New Drosophila of AI” (John McCarthy)

“Grand Challenge Task” (David Mechner)

9x9 (smallest board) 19x19 (largest board)

A Brief History of Computer Go
1997: Super human Chess w/ Alpha-Beta + Fast Computer

2005: Computer Go is impossible!

Why?

Branching Factor

Chess ≈ 35

Go ≈ 250

Required search depth

Chess ≈ 14

Go ≈ much larger

Leaf Evaluation Function

Chess – good hand-coded function

Go – no good hand-coded function

VS VS

MiniMax Tree

A Brief History of Computer Go
1997: Super human Chess w/ Alpha-Beta + Fast Computer

2005: Computer Go is impossible!

2006: Monte-Carlo Tree Search applied to 9x9 Go (bit of learning)

2007: Human master level achieved at 9x9 Go (bit more learning)

2008: Human grandmaster level achieved at 9x9 Go (even more)

2012: Zen program beats former international champion Takemiya Masaki

with only 4 stone handicap in 19x19

2015: DeepMind’s AlphaGo Defeats European Champion 5-0

(lots of learning)

2016: AlphaGo Defeats Go Legend Lee Sedol 4-1 (lots more learning)

Computer GO Server rating over this period:

1800 ELO  2600 ELO

62

March 2016 :

AlphaGo beats Lee Sedol 4-1

AlphaGo

• Deep Learning + Monte Carlo Tree Search + HPC

• Learn from 30 million expert moves and self play

• Highly parallel search implementation

• 48 CPUs, 8 GPUs (scaling to 1,202 CPUs, 176 GPUs)

63

Arsenal of AlphaGo

AlphaGoDeep Neural Networks

Monte Carlo Tree Search

Supervised Learning Reinforcement Learning

Distributed High-Performance

Computing

Huge Data Set

Mastering the game of Go with deep neural networks and tree search

Nature, 529, January 2016.

Deep Neural Networks

State-of-the-Art Performance: very fast GPU implementations allow

training giant networks (millions of parameters) on massive data sets

Deep Neural Network

Go Move

Could a Deep NN learn to predict expert Go moves

by looking at board position? Yes!

Supervised Learning for Go

Input: Board Position

Output: probability of each move

Deep NN Internal

Layers

Trained for 3 weeks on 30 million

expert moves

• 57% prediction accuracy!

Playing strength further improved

via reinforcement learning

Idea: use deep NN for rollout evaluation

Monte Carlo Tree Search

Idea: use deep NN for rollout evaluation

Monte Carlo Tree Search

Idea: use Deep NN for rollouts in Monte Carlo Tree Search

Monte Carlo Tree Search

Problem: deep NN takes too

long (msec) to evaluate

Monte Carlo Tree Search

Solution: use deep NN to define tree policy in

• Evaluate once per tree node

• Use probabilities to bias search toward actions

that look good to deep NN

Monte Carlo Tree Search

AlphaGo Tree Policy:

argmax
𝑎

𝑄 𝑠, 𝑎 + 𝑐
𝑃 𝑠, 𝑎

1 + 𝑛(𝑠, 𝑎)

𝑃(𝑠, 𝑎) probability

of action from NN

Monte Carlo Tree Search

Solution Part 1: train smaller network for rollout

• Less accurate but much faster

Monte Carlo Tree Search

learn value estimate
 𝑉(𝑠) of policy network value

Solution Part 2: learn state value estimator 𝑽(𝑠)
• leaf evaluation combines rollout and 𝑽(𝑠)

Other Successes

Klondike Solitaire (wins 40% of games)

General Game Playing Competition

Probabilistic Planning Competition

Real-Time Strategy Games

Combinatorial Optimization

Active Learning

Computer Vision

List is growing

Usually extend UCT is some ways

74

Summary

When you have a tough planning problem

and a simulator

Try Monte-Carlo planning

Basic principles derive from the multi-arm

bandit

Policy rollout and switching are great way to

exploit existing policies and make them better

 If a good heuristic exists, then shallow sparse

sampling can give good results

UCT is often quite effective especially when

combined with domain knowledge

