
MIT 18.06 Exam 2 Solutions, Spring 2017

Problem 1:
You are given the 6× 6 matrix.

A =


1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2

 .

(a) Find the determinant of A.

Solution : since the determinant is not changed by elimination, we first
do Gaussian elimination to put this in upper-triangular form. Similar to
exam 1, elimination on this matrix follows a simple pattern:

1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2

 


1 −1
0 1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2

 .

 · · · 


1 −1
0 1 −1

0 1 −1
0 1 −1

0 1 −1
0 1

 = U

(Unlike in exam 1, our matrix A is nonsingular: the 2 in the lower-right
corner of A gives a 1 in the lower-right corner of U .) No row swaps were
required, and hence the determinant is just the product of the diagonals
of U : detA = 1 .

(b) What is the projection matrix onto C(A)?

Solution: A is a nonsingular square matrix, so C(A) = R6 (the whole
space).
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(c) If you perform Gram–Schmidt orthogonalization on the columns of A,
what is the pattern of nonzero entries in the resulting orthogonal matrix
Q? (Note: this is not the same as Gram–Schmidt on U !)

Solution: in Gram–Schmidt, we subtract multiples of previous columns
from subsequent ones. This will introduce new nonzero factors above the
diagonal but not below the diagonal, leading to the nonzero pattern:

Q =


× × × × × ×
× × × × × ×
× × × × ×
× × × ×
× × ×
× ×

 .

That is, it is upper-triangular plus one additional nonzero entry below
each diagonal. (This pattern is called an “upper Hessenberg” matrix.)

(If we want to be really careful here, we have to ensure that the Gram–Schmidt
process does not introduce zeros above the diagonal by fortuitous cancel-
lations. That doesn’t happen for this matrix, but I don’t expect you to
verify this.)

Problem 2:
The equations of two lines in Rn are

~y1(x1) = ~a1x1 +~b1

~y2(x2) = ~a2x2 +~b2

where ~a1,~a2,~b1,~b2 ∈ Rn and x1 and x2 are scalars. (On the exam, I originally
wrote “~y(x1)” and “~y(x2)”, which is notationally a bit ambiguous, but no one
seemed to have been confused on that point.)

Write down a 2×2 system C~x = ~d of linear equations for ~x = (x1, x2) whose
solution gives the (x1, x2) that minimizes the distance between the two
lines. That is, find the entries of C and ~d (in terms of ~a1,~a2,~b1,~b2) so that
~x = C−1~d solves:

min
x1,x2

‖~y1(x1)− ~y2(x2)‖ .

Solution:

To start with, let’s take the hint and write ~y2(x1) − ~y2(x2) in terms of linear-
algebra operations on ~x:

~y2(x1)− ~y2(x2) = ~a1x1 +~b1 − ~a2x2 −~b2 =
(
~a1 −~a2

)︸ ︷︷ ︸
A

~x− (~b2 −~b1)︸ ︷︷ ︸
~b

,
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where we have defined the n× 2 matrix A whose columns are ~a1 and −~a2 (note
the sign!).

Now, we can see that we are really solving the least-square problem:

min
~x∈R2

‖A~x−~b‖

whose solution ~x, from class, is given from the 2× 2 normal equations:

ATA︸ ︷︷ ︸
C

~x = AT~b︸︷︷︸
~d

.

with

~d = AT (~b2 −~b1) =

(
~aT1
−~aT2

)
(~b2 −~b1) =

(
~aT1 (

~b2 −~b1)

−~aT2 (~b2 −~b1)

)

and

C = ATA =

(
~aT1 ~a1 −~aT1 ~a2
−~aT2 ~a1 ~aT2 ~a2

)
.

Common mistakes: Many people wrote something of the form y1 − y2 =(
~a1

−~a2

)
~x− (· · · ), but this is wrong:

(
~a1

−~a2

)
~x =

(
~a1x1

−~a2x2

)
, and

so you don’t get y1 − y2 from this 2n× 2 matrix. Many people got the correct
A and ~b, but then wrote A~x = ~b, which is a non-square problem that has no
solution in general —you need to minimize ‖A~x −~b‖ via least-squares. Many

people got the correct A, but then wrote AT =

(
~a1
−~a2

)
(which has the wrong

size!) instead of
(

~aT1
−~aT2

)
— you then get terms like “~a1~a2” and “~a1~b2”, and you

should always be suspicious if your answer involves the nonsensical operation
vector× vector!

Problem 3:
(a) If P projects onto C(AT ), the row space of some m × n matrix A, then

(I − P )2x for any x ∈ Rn gives a vector in which fundamental subspace?

Solution: The matrix I−P is the projection matrix onto the orthogonal
complement C(AT )⊥ = N(A). The square of a projection matrix is the
same matrix; explicitly: (I−P )2 = I2+P 2− IP −PI = I+P −P −P =

I − P since P 2 = P . Hence (I − P )2x ∈ N(A) .

(b) If A is a symmetric matrix and P is the projection matrix onto N(A),
what is PA?
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Solution: since AT = A, we have N(A) = N(AT ) = C(A)⊥, and hence
PA = 0 (the zero matrix). That is, every column of A is in C(A), and
hence P times each column (the result of PA) gives zero (the intersection
of C(A) and N(AT )).

(c) If P is a permutation matrix, what is its QR factorization?

Solution: a permutation matrix already has orthonormal columns (they
are just a permutation of the columns of I), and hence QR factorization
does nothing. You simply get Q = P, R = I .

(d) If A and B are two matrices such that ATB = 0 (the zero matrix), with
QR factorizations A = QARA and B = QBRB , write down the QR fac-
torization of the matrix C =

(
A B

)
(that is, C is the columns of A

followed by the colums of B) in terms of QA, QB , RA, RB .

Solution: ATB computes the dot products of all the columns of A (=
rows of AT ) with all the columns of B. ATB = 0 means that these are all
orthogonal, i.e. C(A) ⊥ C(B). Since QA and QB span the same space,
QT

AQB = 0 as well. When we perform Gram–Schmidt on C =
(
A B

)
, we first orthonormalize the columns of A, getting QA again. Then we
orthonormalize the columns of B, projecting out QA via I −QAQ

T
A. But

since
(
I −QAQ

T
A

)
B = B (the columns of B are already orthogonal to the

A columns), the projection with QA does nothing. We will end up just
doing ordinary Gram-Schmidt on B, obtaining QB as before, to finally
obtain the QR factorization

C =
(
QA QB

)︸ ︷︷ ︸
Q

(
RA

RB

)
︸ ︷︷ ︸

R

=
(
QARA QBRB

)
=
(
A B

)
.

It is easy to check that this is indeed a QR factorization of C. R is upper-

triangular and QTQ =

(
QT

A

QT
B

)(
QA QB

)
=

(
QT

AQA QT
AQB

QT
BQA QT

BQB

)
=(

I 0
0 I

)
= identity, as desired.
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