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1 Introduction

Domains with disjoint closed intervals appear naturally in these applications: optimal
design of digital filters (Fuchs, Kaiser and Landau [10], and Shen and Strang [14]), and
polynomial based matrix iterations (Eiermann, Niethammer and Varga [4], Eiermann,
Li and Varga [3], Freund [7], and Wathen, Fischer and Silvester [15, 16]). Both

applications involve optimal polynomial approximations, with or without constraints.

Their analysis requires knowledge of the Green’s function and equilibrium distribution

of the underlying (real) domain in the complex plane.



1.1 Design of digital bandpass filters

A digital filter is specified by a trigonometric polynomial
H(e™) =" hlkle™™*.

In signal processing and especially in image processing, symmetric filters are preferred.
For simplicity, we will center these “linear phase” filters around the index k = 0, so
that h[—k] = h[k] and the frequency response H (&™) is real.

An ideal bandpass filter D is defined for several distinct bands of interest. These
are disjoint closed intervals Ji, Ja,--- ,J, of [0,7]. D is an even and 2m—periodic
zero-one function:

cr, on the interval Ji
D(w) =

0 elsewhere on [0, 7]

The value is ¢, = 1 in the passbands and ¢ = 0 in the stopbands. D is “ideal” because
it cannot be realized by digital filters of finite length.
A natural question is: given a fixed length N = 2m + 1, which filter gives the best

approximation to D? The error is usually evaluated in the maximum norm
ID — H||; = max |D(w) — H(e™)],
weJ

where J = Up_;J;. The symmetry assumption eventually leads to the following

standard polynomial approximation problem ( with z = cos8 ):
Minimize || D*(z) — p(z)|/x over all polynomials p(z) of degree < m.

Here K = cos(J) and D*(z) = D(cos™!z). Notice that K is a subset of [—1,1],
consisting of disjoint closed intervals.

Numerically, the optimal polynomial is computed by the Remez exchange algo-
rithm, developed for filter design as the Parks-McClellan algorithm. The MATLARB
code realizing this algorithm is remez.m . Probably it was Fuchs who first studied
this multi-interval approximation problem systematically. He obtained the leading
order of the optimal error ||[D — H|| in [8], and in [9], he studied the distribution
pattern of the extremal points (where the error is achieved). Shen and Strang [14]
extended these results to improve an empirical formula of Kaiser widely used in signal

processing. We will return to this in Section 4.

1.2 Polynomial based matrix iteration

In this short section, we present two classical matrix iteration methods, closely con-

nected to optimal polynomial approximations on a multi-interval domain.



1.2.1 Semi-iterative method (SIM)

The primitive iteration for solving Ax* = b is based on

Xm+1 = T'Xm + b, withA=1-"T.

Convergence requires a spectral radius p(T') < 1. The error vector e, = x, — x*

satisfies e,, = T™ey.

If the spectrum A(T) is clustered in a set K, the semi-iterative method can im-
prove the acceleration of convergence very efficiently (Eiermann, Niethammer, and
Varga [4]). In the example of Davis and Hageman [1], K is cross-shaped. From the
signal processing point of view, the method finds a filter p(z) = ¢gz™ + - - - + ¢, with
p(1) =1 (the “lowpass” condition) for each integer m, by which a new vector y,, is

generated from filtering the x;:
Ym = CoXm + C1Xmp—1 + *++ + CmXo-

Denote the new error y,,, — x* by f,;. Then f,, = p(T)e;. This key equation implies
that the best p(z) minimizes ||p(T)||. (See Driscoll, Toh and Trefethen [2] for the
most detailed discussion.) In practice, when the only information available is that
the eigenvalues of T are contained in a known domain K, the best possible choice for
p(z) comes from the following minimax optimization (over-constrained):

p(2)].

min max
p ofdegree m,p(1)=1 z€K

The convergence analysis involves the Green’s function of K. Domains formed from

several intervals are of particular interest in applications (Eiermann, Li and Varga [3]).

1.2.2 Minimal residual method (MR)

To solve Ax = b (already preconditioned or not), one chooses X, in the m-th Krylov

space generated from b:
K. = span{b, Ab,--- , A" b},
To minimize the norm of r,;, = b— Ax,, is to solve the following optimization problem:

i A)b||.
pofdegrgzil?n,p(o)zl Hp( ) H

The corresponding residual vector r,, and iterate x,, are what is computed by the

MR method. When it is only known that the spectrum A(A) lies in some domain K,

the best choice of p(z) solves the minimax problem:

min ma T
p of degree m,p(0)=1 we% p(z)],



the solution of which gives a bound on the convergence of MR. Notice that this time,
the constraint becomes p(0) = 1, instead of p(1) = 1.

If A is discretized from a self-adjoint differential operator, its eigenvalues are
normally real. Further information can restrict A(A) to specific intervals (as in the
case of Wathen, Fischer, and Silvester [15]) — in particular, there must be at least
two intervals if A is indefinite. The Green’s function of a several-interval domain K

provides useful information for the convergence analysis.

1.3 The Green’s function

To begin with, let us formulate the problem abstractly. Given 2n points between —1
and 1:

—1l<a<b<ay<: - <a,<b, <1,
we can define n + 1 disjoint intervals:

Kl = [—1,0,1], K2 = [bl,a2], e, Kn+1 = [bn, 1]; with K = U?illK]
Between the K; are n “gaps” (or “transition bands” in signal processing)
I = (al,bl),fg = (a2,b2), N I (an,bn); with I = Uzzljk-

Thus I U K = [—1,1]. The complement of K in the complex plane is K¢ = C\K.
The Green’s function g(z) is the unique function with these properties: (1) g(z) is
harmonic on K¢\oo; (2) near z = oo, ¢g(z) — In |z| is finite; (3) g(z) is continuous
up to the boundary of K¢ (which is K in this case), and (4) g(z) = 0 on K. The
main purpose of this paper is to study this function, its related functions, and their
applications in the two classes of target problems. For convenience, g(z) is simply
called the Green’s function of K.

Our main tool throughout is an integral formula based on a particular Schwarz-
Christoffel map (SCM), which maps the upper half plane onto a special polygon
domain. This integral formula first appeared in Widom [17] and the beautiful con-
nections to SCM are developed by Embree and Trefethen [5]. The SCM is a suitable
geometric tool for studying the Green’s function and equilibrium distribution of a
multi-interval domain. Each analytical property has a simple geometric picture. To
the best of our knowledge, it was Trefethen who first introduced these connections.

The advantage of the SCM idea can be seen more clearly by reviewing related
work. Earlier approaches of Eiermann, Li and Varga [3] and Shen and Strang [14]
involve elementary polynomial transforms: for the special case of 2 intervals their
approaches required a symmetry property not needed in the SCM method. Freund [7]

and Fischer [6] turned to a conformal map involving elliptic functions and converted



the domain to an annulus. Wathen, Fischer and Silvester [15, 16] avoided Green'’s
functions, but employed a technical perturbation in the two-interval case for which
a differential equation can be established. The SCM method is more elementary,
universal, and better suited for asymptotic analysis.

In the presentation, special attention has been paid to two aspects. First, the
two-interval case has been singled out because of its importance in applications and
its simplicity in analysis. Second, domains with narrow gap intervals are given special
care since asymptotic analysis can lead to simple and useful leading terms.

We also borrow some ideas from the Hilbert space theory and probability theory,

to inspire deeper insights into this analytical problem.

1.4 Organization

Section 2 studies the Green’s function for the two-interval case. The main result is
the “square root law”, which characterizes the special asymptotic behavior of the
Green’s function on a narrow gap. Section 3 discusses the Green’s function and
critical polynomial for a general multi-interval domain. In Section 4, we demonstrate
two applications in digital filter design and numerical analysis for the Stokes equation.

Section 5 studies the equilibrium distribution and its applications in filter design.
2 The Square Root Law for Two Intervals
In this section, we study the Green'’s function for the two-interval case:

K =[-1,a] U [b,1], -l1<a<b<l

This case is particularly important in practice, and simpler to analyze than the gen-
eral multi-interval case. For nice computational results, we refer to Embree and
Trefethen [5].

2.1 The SCM and Green’s function

Trefethen’s central idea is to profit from the symmetry of K with respect to the real
axis, by working with its (simply connected) complement K¢ in the upper half plane.

In that upper half plane, define a one-parameter SCM family (¢5) by

s—u)du _(a
w = (2 / v sel=(ah).

1—u2)(b—u)(u—a)

We take the i branch that is positive for all w € I. Under this choice, the image
¢s(I) must be a subset of the real line in the w-plane. By the general theory of SCM,

¢s maps the upper half plane onto a polygon in the w-plane. Its vertices are oo and



the images of —1, a, s, b, and 1, denoted by C, A, S, B,D. The interior angles of
the polygon at C, A, S, B, D are w/2,7/2,2m,7/2, and 7/2. With the knowledge that
¢s(a) = A =0 and ¢s(a, s) is a subset of the positive half axis, we conclude that the

polygon must have the shape and orientation plotted in Figure 1.
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Figure 1: The image of the upper half plane and the interval —1 < a < s <b < 1
under a general Schwarz-Christoffel map ¢, (left) and with the critical parameter
s = o (right).

A critical parameter s = ¢ is needed to achieve B = A = 0. This amounts to
requiring

(0 — z)dz
\/1—x2 —z)(z —a)

The integral form leads to a probability interpretation of the critical parameter o.

Proposition 1 (The critical parameter) Define

dx
a VI=2%)(b—1z)(z—a)
Let X be a random wvariable supported in (a,b) and with probability density function
p(z) = [(1—-22)(b—2z)(z—a)]"*?/y. Then o = E{X}, the mean value (or expectation)
of X.

For the critical parameter, denote ¢, simply by ¢. Define

B Rep(z) Imz >0
gle) = {g(?) Tmz <0

Proposition 2 g(z) is the Green’s function of K.



Proof. From the definition, the image of the two separated intervals ¢(K) is a subset
of the imaginary axis (see Figure 1). Hence g(K) = {0}. Since ¢(R\K) consists
of three horizontal open lines, ¢(z) can be analytically continued locally near any
z € R\K (by Schwarz’s Reflection Principle). This shows that g(z) is harmonic on
K¢. Finally, from our choice of the ,/ branch, ¢(z) = Inz + ¢y + c1/z + -+, near
z = oo. Hence g(z) — In|z| is finite near z = oco. The proof is complete. O

Recall that z = o is a critical point of g(z) if the level line through o is self-

intersected. Equivalently, the gradient of g(z) vanishes at o.

Corollary 1 (The Green’s function on the gap) For all z € I = (a,b),

/ a—t)dt
VA=) (b—-t)(t—a)

Especially, z = o is the unique critical point of g(z).

Proof. For all z € I, ¢(z) is real. Hence g(z) = ¢(x) is given by the above integral.
The same integral shows dg/0z(c) = 0. Since dg/dy(o) = 0 follows automatically
from the vertical symmetry of g(z), o is a critical point of g(z). Uniqueness follows
from the general principle that the Green’s function for an n + 1-multiply connected

domain has exactly n critical points (Nevanlinna [12]). O

2.2 Asymptotics for a small gap

Domains with a small gap interval (a,b) arise from both digital filter design and

matrix iterations. Define the midpoint ¢ and the half~width § by:

a+b b—a
= and (5—2.

From now on, we assume that ¢ belongs to a fixed compact set of (—1, 1), and § — 0.
The change of variables 6 = (z — ¢) /6 is useful. Then for any f(¢),

c+ 0s)ds
/\/1—t2 b—1t)(t—a) /\/1—3 (I —(c+ds)?) @

Lemma 1 The location of the critical point is

o =c+ 0(5?).

A similar result was also proved in Wathen, Fischer and Silvester [15], but in a

quite different context.



Proof of Lemma 1. Following the notation of Proposition 1, and using Eq. (1), we

have

1 1 ds ds
—¢=E{X—¢} == .
e t ° 7/1 V1—52/1—(c+ 6s)?

Since ¢ is assumed to be in a compact set of (—1,1), the following infinite series

converges uniformly for small ¢:

t
— =ttt
1—(c+1t)?
Therefore
1.2
co s“ds
oc—c=06=2 / 4.
Y Joa V1= s?
The proof is complete by noticing that v and ¢ are both of order O(1). O

Proposition 3 (The square root law) Suppose the midpoint c lies in a fized com-
pact set of (—1,1). Then um'formly for all x € (a,b),

Vg \/m+0 §2)
= V(W — wp) (Wa — w) + O(Aw?).

Here w = cos™ ', wy = cos™ta, wy = cos™' b, and Aw = w, — wp (the “transition

g(z) =

bandwidth” in signal processing).

Proof. The second line follows from the first by a change of variables to x = cosw.
To prove the first line, Lemma 1 implies
(0 —¢)—ds

\/1—32 1 —(c+ ds)?)

sds 9

N _5/1 SO0t o).

Suppose for small ¢,
1 1

Sl ror Viie ot

Then
g(ac)z—\/li__@/_l\/%—1—0(52 \/_ 1—62

This completes the proof since §2(1 — 6%) = (b — z)(z — a). O

In certain cases, we have to allow ¢ = 1 —c or ¢ = 1 4+ ¢ to be small too. Set

r = ¢/e. A modification of the above proof leads to the stronger version.

Theorem 1 Suppose r < 1. Then uniformly for all z € (a,b),

1
g(z) = \/17——02\/ (b—z)(z —a) + O(r*Ve).

Here ¢ denotes the midpoint (a + b)/2.



3 The Critical Polynomial for a Multi-interval Domain

In this section, we study the Green’s function for a domain with multiple interval
components. K still denotes the union of n 4 1 disjoint intervals Ki, Ks,--- , Kpy1,
and I is the union of all gap intervals Iy, I, - ,I,. Thus K UI = [—1,1]. Since
K¢ is n+ 1-multiply connected, the Green’s function g(z) must have n critical points
01 < 09 < -+ < 0,. The symmetry of the domain demands that all critical points sit
along the real axis. It is clear that there is one critical point on each gap Ik.

3.1 The configuration polynomial and critical polynomial

We define the configuration polynomial Q(z) b
n
Q(z) = (2 -1) Hz—ak )(z — b).

This is a monic polynomial of degree 2n + 2 and contains all the information of K.

One useful property is that @) is positive on all n gaps, and in fact
Q(z) >0  forallz € R\K.
The critical polynomial P(z) is
P(z)=(z—01)(z—02) - (z —0p).
It is also monic and of degree n. We can suppose
P(z) =2" —c12" ' — 2" % — o — ¢y,
for some set of coefficients cq,--- , cy.
Theorem 2 (The Green’s function) For any z in the gap I,

T n—|—1 k
g9(z) = \/—

Proof. The proof is exactly the same as the two-interval case. O

This integral form first appeared in Widom [17]. The major advantage of the
SCM approach adopted here is its clear geometric meaning. Many quantities related

to the Green’s function have very simple correspondences in the w = ¢(z) plane.

3.2 Critical polynomial: a linear algebra approach

In this subsection, we illustrate one way to compute the critical polynomial P(z) for a
given configuration polynomial Q(z). By finding the roots of P(z), we can then find

all the critical points of the Green’s function, which are the necessary information



in most applications. In the next subsection, we provide another geometric way to
compute P(z).

Since the Green’s function g(x) vanishes on K, we have

/ * PO 4y )
a VQ(1)

for all kK =1,--- ,n. Assume

P(z)=z" —ciz™ ' —cpa™ 2 — .. — .

Then the next theorem asserts that P(x) can be obtained by solving a linear system

of equations.

Theorem 3 ¢ = (c1,¢2,+* ,¢,) is the unique solution to the n by n linear system
Mec =b. Here the configuration matrizc M = (Mji) and vector b = (b;) are defined

by
kgt tndt
M, = b, = )
7 /I Qw7 /f Q)

J J

Proof. By applying Eq.(2) for £ = 1,2,--- ,n, the coefficient vector c is easily seen to

solve Mc = b. Uniqueness follows from the following lemma. O

Lemma 2 The configuration matriz is non-singular.

Proof. Otherwise, we can find a non-zero polynomial ¢(¢) of degree no more than

n — 1 such that
/ a®)dt _
I Q(t)

for k =1,2,--- ,n. Therefore ¢(¢) must change its sign on each gap Iy, implying that

q(t) has at least one zero on each Ij. It is impossible since ¢(t) can have at most n—1

Zeros. O

3.3 Ciritical polynomial: a geometric approach

This subsection computes the critical polynomial P(z) in a geometric way based on
the orthogonal projection in a Hilbert space.

On the gap set T = I; U---U I, define a measure du = [Q(t)]~'/?dt. Then (I,dy)
is a finite measure space. We work in the Hilbert space L?(I,dy) with the inner
product denoted by (-, -).

Let xx(t) be the indicator function of Iy. Consider two sets of linearly independent
functions in L2(I, du):

{17t7"' atn_l} and {XlaX?a"' 7X7L}

10



The linear space P,,_; spanned by the first set contains all polynomials of degree no
more than n — 1.
The entries of the configuration matrix can be expressed by M;; = (x;, t"%).

The non-singularity of M implies the existence of a dual basis in P,,_;:

Corollary 2 There exists a unique set of vectors {qi,--- ,qn} in Pp_1 that is dual to

{Xla e aXn}
(Xj» @) = 0k,  1<jk<n.
With this dual basis, the critical polynomial can be computed explicitly.

Proposition 4 The critical polynomial is given by

n

P(t) =t" =) {t", xk)qn(t)-

k=1
We now illustrate how to obtain the dual basis algorithmically.
Let S denote any non-empty subset of [n] = {1,2,--- ,n}. For each subset S of k

elements, we shall define a monic polynomial Pg(t) of degree k, subject to
(Ps, xj) =0 for any j € S. (3)
The computation can be realized by the following inductive projection algorithm.
Step 1 For any subset S = {j} of one element, define

<ta Xj>
Ps(t) =t — ===
aen)
Obviously (Ps, x;) = 0.
Step k Suppose at the end of Step k — 1, we have defined all polynomials Pg(t) subject

to condition (3), for all subset S with k£ — 1 elements. For any subset S with &

elements, define

Ps(t) =tF -3 {5 X)) Poy; (1)

This is well-defined since (Pg\;, X;) cannot be zero ( Pg\; has no zero on Ij).

Obviously Ps satisfies condition (3).

Proposition 5 Py (t) is the critical polynomial. After normalization by multiplica-
tive constants, the dual basis of {x1,--- ,Xn} consists of the polynomials
Bapts -5 Papya-

Besides its role in characterizing the critical polynomial and dual basis, this algo-
rithm also works efficiently in practice for n = 2, 3,4. For large n, the algorithm is in

no way economic since at least 2" — 1 polynomials are to be computed.

11



3.4 Asymptotics for a small gap I,

The square root law (Proposition 3) for a small gap still holds for several intervals.
Let us fix an index j. Set ¢; = 3(a; + b;) and &; = 3(b; — a;). For simplicity,

we assume that all the other gaps Iy, : k # j are fixed (this restriction can be easily
relaxed), and ¢; belongs to a compact set of (bj_1,a;4+1), and ; — 0. Define
Q(z)

Q](JJ) = (1—x2)(bj—:c)(:1:—aj)’ Pj($) :]g($_0k)'

Then we have the following version of the square root law. Its proof is similar to

Proposition 3.

Proposition 6 (The square root law) Suppose c; belongs to a fired compact set

of (bj—1,aj4+1). Then uniformly for all z € I; = (aj;, b;),

o(z) = 1Fie)) \/(w—w;?)(w‘-‘—w)—FO(é]Q-).

Qi) 7
1

Here w = cos™ z, wj = cosa;, and w? = cos ™1 b;.

Similar results can be established for the delicate case when c¢; approaches b;_;

or Gjy1-

4 Applications of the Square Root Law

In this section, we apply our results to the two target problems mentioned earlier:
the design of optimal (equiripple) lowpass filters, and the convergence analysis of the
minimum residual (MR) method for solving indefinite linear systems such as arise
from the Stokes equation in fluid dynamics. We anticipate more applications in other
fields.

4.1 Design of equiripple lowpass filters

Our first application is to give a simple proof of Shen and Strang’s result [14].
Recall that the ideal lowpass filter D(w) equals 1 on the passband [0,w,] and 0
on the stopband [ws,7]. With z = cosw, the polynomial approximation problem

corresponding to each fixed order m is:
Minimize || D*(z) — p(z)| x over all polynomials of degree < m.

Here K = [—1,z,] U [zp, 1], with 2, = cos(wp) and z; = cos(w,). In the L*> norm,
the optimal filter is “equiripple” by Chebyshev’s theory. The optimal error is of

order O(m~1/2¢=8), where 3 is the value of the Green’s function g(z) at the unique

12



critical point o (Fuchs [8]). This exponent § is a function of wy, = 3(wp + ws) and
the transition bandwidth Aw = %(ws —wp). Now we are ready to give a simple proof

of its leading term.

Theorem 4 (Shen and Strang [14, Theorem 5]) In the range of Aw < min(wy,, T—
W), the leading term of B(wpy,, Aw) is B(7/2, Aw).

Proof. Without loss of generality, assume wy, € [0, 7/2]. From our Theorem 1,

9(@) = /(@ — wp) (s — w) + O(r2 V).
Since Aw = O(d/+/€), and wy,, = O(y/€), we have

06ve) = 0(2%),

Wm

which is an order smaller than O(Aw) since Aw < min(wy,, ™ — wy,). Therefore

B=g(c)= max g¢g(r)= max (w = wp)(ws —w) + o(Aw) = Aw + o(Aw).

Ts<z<T)p wp <wlws 2

Hence the leading term of 3 is independent of wy,. Especially one can take w,, to be
/2. O
For the symmetric case (w,, = m/2), Shen and Strang [14] showed that

—A
B(m/2, Aw) = Incot = 1 “

For small Aw, this again gives Aw/2 as the leading order. Numerical evidence showed

T—Aw
t 4

that taking Inco as an approximation to 3(wy,, Aw) is better than Aw/2.

The theorem has played a crucial rule in Shen and Strang’s interpretation and
improvement of the celebrated empirical formula of Kaiser in optimal filter design
(see Shen and Strang [14]).

4.2 Estimation of the asymptotic convergence factor

Wathen, Fischer and Silvester [15] studied the numerical solution of the Stokes prob-

lem of fluid dynamics:

—V?u+gradp=f in €,
divua=0 in Q.

With suitable boundary conditions, the equation is discretized (by the finite element

method, say) to yield a linear system of equations of the form

(o ) ()= ()

13



or simply Ax = b. The matrix C' is often zero, but in any case the coefficient matrix is
symmetric and indefinite so that A has both positive and negative (real) eigenvalues.
For such an indefinite system, the Minimum Residual method is more robust than
Conjugate Gradients. It involves only one more vector operation per iteration.
After preconditioning, the eigenvalues of the discrete Stokes operator A lie in two

intervals:
Kj, = [~a,—bh] U [ch?,d], a,b,c,d,h > 0.

Here h is the characteristic mesh size that discretizes the underlying domain 2. The

asymptotic convergence factor p is

p = exp(—g(0)).

Here g(z) is the Green’s function of Kp. The main result of Wathen, Fischer and

Silvester is the following.
Theorem 5 (Wathen, Fischer and Silvester [15, Theorem 4.1])

p<1—+/bcjad B*'? + O(h*/?).

Their proof strategy was based on the equiripple property of the optimal poly-
nomial p,,(z), which is as small as possible on K under the constraint p,,(0) = 1.
By perturbing the interval a little bit, p,,(z) can have m + 2 extremal points. This
makes it possible to establish a differential equation and apply asymptotic analysis
successfully. The proof is complicated though it does yield a better exponent for the
higher order terms than the result given below. The important leading terms are
identical.

Here we use our square root law in Section 2 to give a simple proof of

p=1—+/bc/ad h*?+ O(h?). (4)

Proof. To apply Proposition 3, normalize the set K} by introducing

zZ+a
z*:zp(z):—1+2d+a.

¥ (z) maps K}, to
K.=[-1,a]U[bs,1],  a. = 1(—bh),b. = 1h(ch?).

The gap size is
2bh

20, = by — @y = ¥/ (0)(ch” — (=bh)) + O(h?) = ——

2

or, O(d,) = O(h). The center point is ¢, = ¥(0) + O(h).

14



Let g«(2«) denote the Green’s function for the normalized domain. Then

9(0) = g:(4(0)) = %V[w(ﬂ) —1p(=bh)] [1p(ch?) — p(0)] + O(h?)

B 11+—0¢2h(0 VE (0)bh - ' (0)ch? + O(h*) + O(h?)
~ /1=9200) (1 + O(h)) + O(K?)

= /bc/ad h*? + O(h?).
Therefore
p = exp(—g(0)) = 1 — \/bc/ad B** + O(h?).
O

Similarly, by normalizing the domain and applying Theorem 1, one can give a

short proof to their second result:

Theorem 6 (Wathen, Fischer and Silvester [16, Theorem 5.1])
If the domain is K = [—ah®, —bh!] U [ch",d] for some positive a,b,c,d, with L < r
and L <1, then the leading term is

p=~1—+/bc/da HTH-1)/?

5 The Equilibrium Distribution and Asymptotics of Ex-

tremal Points

5.1 The potential and equilibrium distribution

Closely related to the Green’s function is the equilibrium distribution. In this section,
we give an explicit expression for the equilibrium distribution of a multi-interval
domain.

Let u be a probability measure on K. The potential generated by p is

Vu(z):/Kln|z—s|,u(ds).

The potential must be subharmonic on C and harmonic away from K.

The total energy generated by u is

By == [ V(o) ulas).

The equilibrium distribution v is a special one that minimizes the total energy. The
potential associated to the equilibrium distribution is called the equilibrium poten-
tial. For a “regular” domain, v exists and is unique. Frostman’s Theorem gives a

characterization of the equilibrium potential.

15



Theorem 7 (Frostman’s Theorem) Let K be a “regular” compact set in C and v

the equilibrium distribution of K. Then
(i) Vu,(z) > —E, on C.
(i) V,(2) = —E, on K.

Conversely, a subharmonic function V(z) with the following two properties must

be the equilibrium potential.
(i) V() is harmonic on the complement of K and V(z) —In|z| = o(1) near z = co.
(ii) V(z) = —FE for all z € K and a certain constant E.

The inverse problem is solved by the generalized Laplacian: v = AV/2x (in the sense
of generalized functions).

The Green’s function g(z) and the equilibrium potential V,(z) are connected by
9(z) =V,(2) + E,.
Our main result of this section is the expression for the equilibrium measure.

Theorem 8 Following the notation of section 3, let Q(z) and P(z) denote the con-
figuration polynomial and critical polynomial. Then the equilibrium distribution v is

supported on K and given by

v(dx) = CMdaE
Q@)

where the positive constant C normalizes v to be a probability measure. Especially, in
terms of the Schwarz-Christoffel map ¢(z), v is the pullback by ¢(z) of the uniform
distribution on ¢(K) (the purely imaginary edge of the polygon domain. See Figure 1).

Proof. The general case is proved in the same fashion as for K = [—1,a] U [b,1]. The

equilibrium distribution is
v(dz) = p(z)dx.
By definition, for all z in the gap I = (a,b),
V(o) = [ a1 plo)ie

and the Green’s function is (by Corollary 1)
z J—
g(z) = / 7
a VQ()
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Differentiating g(z) = V,(z) + E, yields

oz _ / p(t) it
Q) Jrkz—t
for all z € (a,b). Define two analytic functions on C\K:

_ o=z _ [ p®)
®() = o q>2(z)_/Kmdt.

Take /@ to be positive on I = (a,b). Since ®1(z) = P3(z) on I, P1(2) = Py(2)
for all z € C\K. Notice that ®5(z) is a Cauchy integral. Therefore, for any z € K

(excluding the end points),
() — Do
pla) = 5= (22(a™) = @2(a7)),
where ®(zF) = limy_,g+ ®2(z £ 46) (Plemelj’s formula). Hence
1 |o—z

™/1Q@)|

This completes the proof of the first part. For the remaining part, notice that

1

o= (21— 01a)) =

p(z)

g—2z

do = )
*= /A

and so v(dz) = C|d¢|.

O

Remark. Peherstorfer [13] also obtained the first part of the theorem based on
Widom’s formula [17] for the complex Green’s function. The proof presented here
avoids the multivalue problem caused by the multi-connectivity of the domain. The
first part can also be obtained from Geronimo and Van Assche’s result on polyno-
mial maps [11]. Our second part gives a clear geometric meaning to the equilibrium
measure. ]
An asymptotic result for the two-interval case can thus be established based on

this theorem and Lemma 1 (on the location of o).

Corollary 3 Suppose K = [—1,a] U [b,1], and a,b are contained in a fized compact
set of (—1,1). Let 6 = (b—a)/2 < 1 and choose ¢ < d in [—1,a] or in [b,1] with
e = min{|a — d|, |c — b|} > §. Then

vie,d) = (we — wa) /m + O((§/€)?),

1

where w, = cos™ ' ¢ and wg = cos™ ! d.
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5.2 Asymptotics of extremal points and applications

The design of optimal lowpass filters or bandpass filters is realized by the Remez-
Parks-McClellan exchange algorithm. The algorithm needs improvement in at least
two aspects. First, it has no recursive structure. This forces one to rerun the program
to get a filter of length 65 even when the optimal one of length 33 is available.
Secondly, the efficiency of the algorithm can be improved if one can initiate it with
an approximate set of extremal points that are very close to the real ones.

These two problems are closely connected. We are led to investigate the distri-
bution pattern of the extremal points, or equivalently, the zeros of r,(x) = D*(x) —
pm(z), where p,,(x) is the optimal polynomial of degree m and D*(z) is the ideal
lowpass filter. With enough information about the zeros, it is possible to design an
approximately optimal filter by a once-and-for-all interpolation. It is also possible to
provide good initial points for the exchange algorithm.

This has been the major motivation of Fuchs paper [9] and the current section.

Let F.(z) denote the cumulative distribution function (c.d.f.) of the equilibrium

distribution:
F.(z) = v(—o0,x].

Let yo,y1, - , Ym+1 denote the m+2 extremal alternating points on K of the optimal

error 7y, (z):

Tm(Yi) = £lrmll, Tm (Yi)rm(Yi+1) <O0.
By assigning each point y; a uniform weight 1/(m + 2), we can define another c.d.f.:
1
Fy(z) = —

m+2
1:y; <x +

The main result of Fuchs is

Theorem 9 (Fuchs [9, Theorem 3]) Uniformly for all z € R,
Fu(z) — F.(z) = O(m™'/?), as m — oo.
It follows immediately that

Corollary 4 Let Z,,(z) denote the c.d.f for the zeros of rp(x) (assigning each zero
a weight 1/m). Then uniformly for all x € R,

Zm(z) — Fo(z) = O(m~ /%), as m — oo.

This is because in between each pair of y; and y;+1 (excluding one i), there exists

exactly one zero.
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Corollary 5 Let [c,d] be any interval contained in K. Then the fraction of extremal
points (or zeros) on [c,d] is v[c,d] + O(m_1/5),

Especially, for the two-interval case, as m — oo,

# of zeros on [—1, d] /#ofzerosonbl —)/ dm// T 9

Furthermore, if the gap (a,b) is narrow, under the condition of Corollary 3, we

have

Proposition 7 The fraction of extremal points (or zeros) on [c,d] is
(we = wa)/m+ O((6/6) +m™117).

Under the Schwarz-Christoffel map ¢(z), the equilibrium distribution of K be-
comes the uniform distribution on the imaginary edge ¢(K) in Figure 1. Therefore,
the numerical position of the zeros of 7, (x) can be approximated by the preimages of
any m points equidistributed along ¢(K). The resulted interpolation leads to nearly
optimal filters in the sense of Shen and Strang [14]. For numerical examples and a

deeper discussion, see Embree and Trefethen [5].
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