
Finding Representative Objects with Sparse Modeling

Junier B. Oliva
joliva@cs.cmu.edu

Dougal J. Sutherland
dsutherl@cs.cmu.edu

Yifei Ma ∗
yifeim@cs.cmu.edu

Abstract

It is often useful to summarize a dataset by picking a small number of exemplars.
This aids in visualizing and interpreting datasets; it is also applicable e.g. in re-
ducing the search space for robotic motion planners or in reducing the size of a
training set given to a classifier. We give an approach inspired by sparse cod-
ing that picks a few elements which can best represent the entire dataset through
sparse linear combinations. We formulate the approach as a convex program, give
algorithms based on generalized gradient descent and coordinate descent, and in-
vestigate the dual problem. Finally, we evaluate the efficacy of the optimization al-
gorithms and the quality of the results on several synthetic and real-world datasets.

1 Introduction

In many situations, we wish to summarize a dataset with a handful of exemplars. This is useful in
visualizing and interpreting data, in limiting the dimension of the search space for a robotic motion
planner, or to reduce the size of a large training set for a classifier.

Many approaches exist that can address this problem, in particular clustering (where the data is
assumed to lie in tight clusters; e.g. k-means or k-medoids [1]) and matrix factorization (where the
data is assumed to be low-rank; [2, 3]). These also generally assume the data is low-dimensional.
We make a different assumption: we seek a few points that can reconstruct the rest of the data via
sparse linear combinations. We draw inspiration from sparse coding, where a signal is modeled as
the linear combination of a few dictionary elements via the following optimization program:

min
D,C

1

2
‖X −DC‖2F + λ

n∑
i=1

‖C̄i‖1, (1)

where X ∈ Rd×n is our dataset (columns are instances), D ∈ Rd×m is the dictionary, C ∈ Rm×n
are the coefficients combining dictionary elements, and C̄i represents the ith column of C. The `1
penalty in (1) over the reconstruction columns C̄i will result in sparse codings for each instance; i.e.
each instance is represented as a linear combination of a small number of dictionary elements.

The problem in (1) is a convex linear problem in each of the parameters C and D, but not simul-
taneously. Thus, Aharon, Elad, and Bruckstein [4] present an iterative algorithm that alternates
optimizing over C and then D, converging to a local minimum.

For some applications, it may be beneficial, or necessary, to restrict dictionary elements to be mem-
bers of the datasets themselves. This guarantees that the dictionary elements will be valid members
of the dataset, where in general they may sometimes comprise interpretable components of the data,
but will often look quite different than the data. In this case, we can use a different objective:

min
C

1

2
‖X −XC‖2F + λ1

n∑
i=1

‖C̄i‖1 + λ2

n∑
i=1

‖Ci‖2, (2)

∗Final project for 10-725 Optimization. TA Mentor: Shiva Kaul.

1

where Ci denotes the ith row of C (as a column vector) and ‖Ci‖2 is a group penalty pushing
whole rows towards zero, effectively reducing our dictionary to include only a few data points. Note
that (2) is a convex optimization problem in C, which allows us to simultaneously find an optimal
dictionary (over the dataset instances) and sparse codes using said dictionary. Furthermore, (2) can
be solved with generalized gradient methods, which can be further extended with acceleration.

To make our C matrix more interpretable, it may be beneficial to restrict the optimization to be over
C ≥ 0 (elementwise); note that convexity is preserved for (2) with this reformulation. This is analo-
gous to nonnegative matrix factorization [2], which often learns highly interpretable components of
objects rather than additive and subtractive components that are harder for humans to understand.

This problem is potentially useful in many contexts. Visualization and interpretation of datasets is
much easier if we can look at a few representative examples rather than the entire dataset (which
is overwhelming) or a random sample (which will probably have many similar examples and might
miss important sections of the space). We will show an application of this approach to modeling
snippets of songs, where the exemplars comprise a core library of “fundamental sounds” that can be
combined to reconstruct songs. Similarly, this approach might be helpful in reducing the complexity
of a training set for classification algorithms, since data instances would now be represented as sparse
linear combinations of a few canonical elements (i.e. using the codes that our method finds).

We can also use this model in planning or decision-making domains to reduce the search space, so
that we can consider combinations a small subset of “canonical actions” rather than any possible ac-
tion. We will show an example of using this techniques to find representative actions, also known as
motion primitives, from logs of actions taken under human control. In addition to helping understand
what types of trajectories are useful for surmounting a particular obstacle, certain combinations of
the exemplars can be used as the possible actions considered by a planner.

2 Related work

Model Elhamifar, Sapiro, and Vidal [5] used a similar model for finding representative items,
focusing on applications in computer vision, but used a different framework. They do not directly
enforce sparsity in the reconstructions, instead requiring that representative selection be invariant to
a global translation. They also prove that when the data comes from a union of low-rank models,
their method selects a few representatives from each. They later extended this work to employ
general pairwise similarity measures, rather than assuming the data lie in a Euclidean space [6]. Both
optimization problems were solved using the alternating direction method of multipliers (ADMM)
approach.

Esser et al. [7] also used a similar model, but encouraged row sparsity with the `∞ norm instead of
`2. They also consider the C ≥ 0 case, and optimize using ADMM.

Sprechmann et al. [8] used a general form of the regularization terms in (2) but used an arbitrary
dictionary rather than fixing it as the dataset elements themselves. They solve their optimization
problem using a proximal gradient method similar to ours, but do not employ acceleration.

Music components Infering music’s underlying structure from raw sound data is very difficult and
current methods for doing so achieve limited success. Rich interactions with our music data such as
library visualization, automatic playlist creation, and recommendation systems may be possible if
given relevant musical features from sound. Systems such as Pandora have implemented techniques
for playlist generation, but their methods rely heavily on costly human tagging. Instead of using
human generated tags to create richer user experiences, it may be possible to do music information
retrieval (MIR) from low level auditory features using machine learning.

Previous approaches such as [9, 10] use techniques like Gaussian Mixture Models that largely ignore
important temporal aspects of music to pick out salient sounds in very small windows. Given our
proposed algorithm’s scalabilty, we are able to pick canonical elements of sound that are an order of
magnitude or more longer than those with previous methods. Such longer canonical elements may
be used to better represent music data and preform MIR tasks.

Robotic motion primitives It has long been recognized that the problem of motor control can be
significantly simplified by decomposing motions into primitive “building blocks,” often referred to

2

as motion primitives (e.g. [11]). This can drastically reduce the dimensionality of the control space
in either biological or robotic settings. In most prior work, however, e.g. [12, 13, 14, 15], the learned
motion primitives typically are learned via k-means clustering, and so in addition to being unstable
across independent runs, they are not restricted to be motions actually observed, and so may be
impractical or misrepresent the geometry of the space.

3 Optimization algorithm

We first show how to solve (2) with a proximal gradient method. We then give an alternative ap-
proach based on coordinate minimization, and show that we can easily kernelize our model.

3.1 Proximal gradient method

Note that our objective function (2) contains a differentiable portion:

g(C) =
1

2
‖X −XC‖2F (3)

and another convex portion:

h(C) = λ1

n∑
i=1

‖C̄i‖1 + λ2

n∑
i=1

‖Ci‖2 = λ1

n∑
i=1

‖Ci‖1 + λ2

n∑
i=1

‖Ci‖2. (4)

Hence, we may use the generalized gradient descent method. Our updates will be of the form:

C(k) = proxtk(C(k−1) − tk∇g(C(k−1))). (5)

Note that this can be easily extended using acceleration [16]. Our implementation uses a backtrack-
ing line search search for step sizes.

3.1.1 Matrix derivative

Let C be the previous iterate. To calculate the next iterate, we must find the derivative of g(·):

dg(C) = d
(

1
2‖X −XC‖

2
F

)
= 1

2d tr
(
(I − C)TXTX(I − C)

)
.

Thus
∇g(C) = XTX(C − I). (6)

3.1.2 Proximal gradient

The proximal gradient corresponding to h(·) is, letting γ1 = tλ1 and γ2 = tλ1:

proxt(X) = argmin
Z

1

2
‖X − Z‖2F + γ1

n∑
i=1

‖Zi‖1 + γ2

n∑
i=1

‖Zi‖2

= argmin
Z

n∑
i=1

(
1

2
‖Xi − Zi‖22 + γ1‖Zi‖1 + γ2‖Zi‖2

)
.

Hence, we can minimize each row separately. Consider y = Zi, x = Xi for some i ≤ n. Then:

z = argmin
y

1

2
‖x− y‖2 + γ1‖y‖1 + γ2‖y‖2 (7)

0 = z − x+ γ1v + γ2u

z = x− γ1v − γ2u

where v ∈ ∂‖ · ‖1(z) and u ∈ ∂‖ · ‖2(z). Note that

(∂‖·‖1(z))i ∈
{

[−1, 1] if zi = 0

{sign(zi)} otherwise

3

and

∂‖·‖2(z) ∈

{
B2(1) if z = 0{

z
‖z‖2

}
otherwise

where B2(1) is the `2 unit ball in Rn. Hence, z = 0 iff for some v ∈ B∞(1), u ∈ B2(1)

0 = x− γ1v − γ2u

x− γ1v = γ2u

‖Sγ1(x)‖2 ≤ γ2, (8)

where Sγ1(x) is vector soft-thresholding. Furthermore, z 6= 0, zi = 0 iff

0 = xi − γ1vi − γ2
0

‖z‖2
xi ∈ [−γ1, γ1]. (9)

Likewise, z 6= 0, zi 6= 0 iff

zi + γ2
zi
‖z‖2

= xi − γ1 sign(zi) (10)

zi =
xi − γ1 sign(xi)

1 + γ2
‖z‖2

, (11)

where sign(zi) = sign(xi) because the LHS of (10) has the same sign as zi, and (9) implies that the
RHS has the same sign as xi. Thus, combining (9) and (11), z 6= 0 iff

zi =
Sγ1(xi)

1 + γ2
‖z‖2

= ‖z‖2
Sγ1(xi)

‖z‖2 + γ2
. (12)

And so z 6= 0 iff

‖z‖22 = ‖z‖22 ‖Sγ1(x)‖22 / (‖z‖2 + γ2)
2

‖z‖2 = ‖Sγ1(x)‖2 − γ2. (13)

Thus, with (8), (12), and (13), we have that:

z = proxt(x) = Stλ2

(
‖Stλ1(x)‖2

)
Stλ1(x)

‖Stλ1
(x)‖2

, (14)

so that we do `1 and then `2 soft-thresholding. When the C ≥ 0 restriction is present, we simply set
any negative components to zero before thresholding; the proof is similar.

3.2 Coordinate descent

The nonsmooth portion of the objective (4) can be separated into functions on each row of C:

h(C) =

n∑
i=1

Ω (Ci) where Ω(x) = λ1‖x‖1 + λ2‖x‖2. (15)

Coordinate descent on the rows, where at each step we update one row to its optimum holding
other points fixed, will therefore converge to the global optimum [17]; we can also use an active set
strategy to speed up the process. Let fi(y) be the objective value of C with the ith row replaced by
y; we will minimize fi for each i sequentially. Defining Zi =

∑
j 6=i X̄jC

T
j , we have

argmin
y

fi(y) = argmin
y

1
2‖X −

∑
j 6=i

X̄jC
T
j − X̄iy

T ‖2F +
∑
j 6=i

Ω(Cj) + Ω(y)

= argmin
y

1
2 tr

(
yX̄T

i X̄iy
T
)
− tr

(
(X − Zi)T X̄iy

T
)

+ Ω(y)

= argmin
y

1
2y
T y − 1

‖X̄i‖22
yT (X − Zi)T X̄i +

1

‖X̄i‖22
Ω(y)

= argmin
y

1

2

∥∥∥∥ 1

‖X̄i‖22
(X − Zi)T X̄i − y

∥∥∥∥2

2

+
λ1

‖X̄i‖22
‖y‖1 +

λ2

‖X̄i‖22
‖y‖2,

4

which is exactly the form of (7). Thus, using (14), the coordinate minimizer is:

C+
i = prox1/‖X̄i‖22

 1

‖X̄i‖22

XT −
∑
j 6=i

CjX̄
T
j

 X̄i


= prox1/‖X̄i‖22

(
1

‖X̄i‖22

(
XT − CTXT + CiX̄

T
i

)
X̄i

)
= prox1/‖X̄i‖22

(
Ci +

1

‖X̄i‖22
(I − C)

T
XT X̄i

)
. (16)

Unfortunately, this requires a matrix-vector multiplication at each step, and so is too slow for large
problems.

3.3 Kernelization

Note that the update steps of Sections 3.1 and 3.2 only use the data as XTX , the Gram matrix of
inner products between data points. We can also express the objective in terms of the Gram matrix:

‖X −XC‖2F = ‖X(I − C)‖2F = tr
(
(I − CT)XTX(I − C)

)
.

Thus we can apply our techniques to data from any Hilbert space, including ones that are high- or
even infinite-dimensional, without penalty.

4 Dual problem

We now introduce the dual problem to (2), whose investigation will yield insight into the properties
of the primal problem. Using the notation of Section 3.2, we introduce a dummy variable Z = XC:

min
C,Z

1
2‖X − Z‖

2
F +

n∑
i=1

Ω(Ci) s.t. Z = XC.

Introducing a dual (matrix) variable U , our dual problem becomes

max
U

min
C,Z

1
2‖X − Z‖

2
F +

n∑
i=1

Ω(Ci) + tr
(
UT (Z −XC)

)
. (17)

Splitting up the minimization, the Z terms in (17) yield:

min
Z

1
2‖X − Z‖

2
F + tr(UTZ) = min

Z

1
2 tr(XTX)− tr(XTZ) + 1

2 tr(ZTZ) + tr(UTZ)

= 1
2 tr(XTX) + min

Z
tr
(
(U −X)TZ

)
+

1

2
tr(ZTZ)

= 1
2 tr(XTX)− 1

2‖U −X‖
2
F + min

Z
‖(U −X) + Z‖2F

= 1
2 tr(XTX)− 1

2‖U −X‖
2
F .

The C terms are:

min
C

n∑
i=1

Ω(Ci)− tr(UTXC) =

n∑
i=1

min
Ci

(
Ω(Ci)−

(
UT X̄i

)T
Ci

)
= −

n∑
i=1

I
{

Ω∗(U
T X̄i) ≤ 1

}
,

where Ω∗(y) is the dual norm of Ω(y). The dual norm has value µ such that µ = 1
λ2
‖Sµλ1(y)‖2;

the appendix gives a derivation and a method for evaluation. Thus (17) becomes:

1
2 tr

(
XTX

)
−min

U

1
2‖X − U‖

2
F s.t. ∀i. Ω∗(U

T X̄i) ≤ 1. (18)

5

(a) The data; red circles are the dictionary elements. (b) Sparsity of the C matrix found for data in (a).

Figure 1: Results of optimization using non-negative C and λ1 = .5, λ2 = .5.

The stationarity condition of (17) with respect to Z is Z −X + U = 0, so that XC = X − U . The
condition with respect to Ci is UT X̄i = λ1vi + λ2ui, where vi ∈ ∂‖·‖1(Ci) and ui ∈ ∂‖·‖2(Ci),
so that Ci = 0 iff ‖Sλ1(UT X̄i)‖2 ≤ λ2.

This tells us that for a given λ1, the value λmax
2 (λ1) which results in an optimum of C = 0 (i.e.

U = X) is maxi‖Sλ1
(XT X̄i)‖2. Note U = X then satisfies the dual norm constraint in (18).

A SAFE rule that zeroes out complete rows of C [18] only requires solving

max
U
‖Sλ1

(UT X̄i)‖22 s.t. 1
2 tr(XTX)− 1

2‖X − U‖
2
F ≥ γ. (19)

5 Experiments

5.1 Simulated data

In order to test the behavior of our optimization program, we optimized our objective on two differ-
ent simulated datasets.

First, we generated 50 data points from a 2-d standard normal. We ran our optimization program on
the dataset, restricting C to be non-negative. As one would expect, the dictionary elements found
correspond to the convex hull of the dataset (Figure 1). These are by definition the elements that can
be combined in a non-negative linear combination to form all other elements.

We next considered a dataset of 150 data points drawn from a mixture of three 2-d normals, each
equally likely, with identity covariance and means (1, 1), (7, 7), and (1, 7) respectively. We then
optimized the kernelized version of our problem with an RBF kernel (σ = 1). The optimization
was then carried out using various configuration of λ2 (Figure 2). We see that the optimization in a
way subsamples the data (to a degree controlled by penalties) while biasing the selected dictionary
elements to be close to their respective centers. That is, kernelized optimization with the RBF kernel
seems to be similar to medoid sub-sampling.

5.2 Music

In this section we outline our methodology’s use on a collection of nearly 90,000 30-second mp3
previews of songs scraped from Amazon’s online music store, in the genres of classical, electronica,
hip-hop, pop, and rock. Using those songs from the genre of electronica, a subset of 10,000 snipets
of 0.1 seconds of sound was randomly subsampled. Each snippet was in turn represented as a vector
of power spectrogram features (2570 features in total). In order to optimize our problem with this
dataset and choosing λ1 = 200, λ2 = 20, 000, both a back-tracking version of non-accelerated and
accelerated proximal gradient descent were run (Figure 3a). As can be seen from Figure 3a, the
accelerated version of the optimization algorithm runs much faster, finishing in about 38 minutes
versus over 7 hours with no acceleration.

6

(a) λ2 = 0.5 (b) λ2 = 1 (c) λ2 = 1.5 (d) λ2 = 2.03

Figure 2: The exemplars found by optimization using an RBF kernel with the C ≥ 0 constraint,
λ1 = 0.5, and various λ2.

0 0.5 1 1.5 2 2.5 3

x 10
4

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

7

Time (seconds)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Proximal Gradient vs. Accelerated Proximal Gradient
Using X = 2570x10000

(a) Objective versus runtime for accelerated (red)
and non-accelerated (blue) algorithms.

(b) An original feature vector for 0.1 seconds of sound (left),
versus a reconstruction using the found dictionary (right).

Figure 3: Results on the music dataset.

Preliminary experiments suggest that the found dictionary of 329 data elements is well suited for
sparse coding. An example reconstruction of an unseen feature vector using the dictionary found can
be seen in Figure 3b. Typically, encoding a song sparsely with the dictionary and then reconstructing
the raw sound data kept the song recognizable. Moreover, in 10 different trials of sparse coding 20
different unseen songs with a `1 penalty of 200 using the found dictionary versus a dictionary of
329 randomly selected data instances (from the same set X), the found dictionary had an average
RMSE reconstruction error of 25.5 per 2570 dimensional feature vector versus 29.5 for the random
dictionaries.

5.3 Robotic motions

We now present an example of using our system to find motion primitives for a snake-like robot.
We have logs of 304 trials where users attempted to control the robot to climb over a low wall-
like obstacle. Each trial is approximately one to two minutes long; we have traces of the joint
motor activations of the robot and an annotation as to whether the robot successfully passed over the
obstacle. 23% of trials were successful.

To construct the dictionary, we randomly sampled 5,000 static snake poses of successful trials and
found with λ1 = 2, λ2 = 100 a dictionary of 15 elements. Figure 4a shows six of these static
poses, placed such that the heads of the six snakes are held together at the origin. We also found

7

0
5

10 −5
0

5
10

−4

−2

0

2

4

6

y
x

z

(a) Dictionary from successes.

0
5

10
−5

0
5

10

−4

−2

0

2

4

6

y
x

z

(b) Dictionary from failures. (c) The dataset of original (left) and recon-
structed (right) poses.

Figure 4: Learned dictionaries, and the reconstructed dataset of successful trials. In (c), each row
is a single sampled vector of joint angle positions. The reconstruction is not perfect because the
number of representatives is small.

the dictionary from 500 static snake poses in failed attempts in Figure 4b. Comparing the two
dictionaries, successful poses tend to be more curled, as more snapshots are taken when the snake is
over the obstacle than when the snake is beginning to crawl onto the obstacle.

We also tried to reconstruct the original 5,000 successful poses, each represented by a vector of its
16 joint angles, using the 15 dictionary elements we learned. The reconstructed poses are shown in
Figure 4c.

6 Discussion

Across a wide array of different domains finding exemplars, or canonical elements, in a dataset is a
useful task. We present a study of a convex optimization problem for finding data instances that may
be sparsely linearly combined to form all other data instances. While the usual formulation (1) for
finding a dictionary D and sparse codes C to encode a dataset is not convex in all primal variables,
our problem (2) is convex and hence does not suffer from any local minima.

In order to solve our algorithm we derived a proximal gradient descent algorithm (which may be
accelerated) and a coordinate descent algorithm that works through the rows of C. While the co-
ordinate descent algorithm may be more efficient for smaller problems, the accelerated proximal
gradient descent algorithm is better suited for larger datasets.

Also, in order to further analyze the nature of the solutions to our optimization problem we derived
its dual problem (18). Among other things, the dual formulation allows us to find a λ2 value such
that it will completely zero out the C matrix. Moreover, with the dual problem, we see that a SAFE
rule for ruling out entire rows of C may be derived by solving the optimization problem in (19) for
each row of C.

Experiments on synthetic data provide confirmation that the solution to our objective behaves in a
desirable fashion. Furthermore, experiments on music and robot data suggest that our optimization
technique is finding useful canonical elements in real-world datasets.

Future work will focus on fully developing a SAFE rule for our objective, studying the statistical
properties of solutions, and further evaluating the quality of found canonical elements in real-world
datasets.

8

References

[1] L. Kaufman and P. J. Rousseeuw. “Clustering by Means of Mediods”. In: Statistical Data
Analysis based on the L1 Norm. Ed. by Y Dodge. 1987, pp. 405–416.

[2] D. D. Lee and H. S. Seung. “Learning the parts of objects by non-negative matrix factoriza-
tion”. In: Nature 401.6755 (1999), pp. 788–791.

[3] M. Gu and S. C. Eisenstat. “Efficient algorithms for computing a strong rank-revealing QR
factorization”. In: SIAM Journal on Scientific Computing 17.4 (1996), pp. 848–869.

[4] M. Aharon, M. Elad, and A. Bruckstein. “The K-SVD algorithm”. In: vol. 5. 2005.
[5] E. Elhamifar, G. Sapiro, and R. Vidal. “See All by Looking at A Few: Sparse Modeling for

Finding Representative Objects”. In: Computer Vision and Pattern Recognition. 2012.
[6] E. Elhamifar, G. Sapiro, and R. Vidal. “Finding Exemplars from Pairwise Dissimilarities via

Simultaneous Sparse Recovery”. In: Advances in Neural Information Processing Systems.
2012.

[7] E. Esser et al. “A Convex Model for Nonnegative Matrix Factorization and Dimensionality
Reduction on Physical Space”. In: IEEE Trans on Image Processing 21.7 (2012), pp. 3239–
3252.

[8] P. Sprechmann et al. “C-HiLasso: A Collaborative Hierarchical Sparse Modeling Frame-
work”. In: IEEE Transactions on Signal Processing 59.9 (2011), pp. 4183–4198.

[9] B. Logan, D. Ellis, and A. Berenzweig. “Toward evaluation techniques for music similar-
ity”. In: SIGIR 2003: Workshop on the Evaluation of Music Information Retrieval Systems, 1
August 2003, Toronto, Canada. 2003.

[10] M. Mandel and D. Ellis. “Song-level features and support vector machines for music clas-
sification”. In: ISMIR 2005: 6th International Conference on Music Information Retrieval:
Proceedings: Variation 2: Queen Mary, University of London & Goldsmiths College, Univer-
sity of London, 11-15 September, 2005. Queen Mary, University of London. 2005, pp. 594–
599.

[11] E. Todorov and Z. Ghahramani. “Unsupervised learning of sensory-motor primitives”. In:
International Conference of the IEEE Engineering in Medicine and Biology Society. 2003.

[12] J. DiGiovanna et al. “Arm Motion Reconstruction via Feature Clustering in Joint Angle
Space”. In: International Joint Conference on Neural Networks. 2006.

[13] D. Kulić, W. Takano, and Y. Nakamura. “Incremental on-line hierarchical clustering of whole
body motion patterns”. In: IEEE International Symposium on Robot and Human interactive
Communication (2007).

[14] D. Kulić et al. “Incremental learning of full body motion primitives for humanoid robots”. In:
IEEE-RAS International Conference on Humanoid Robots. 2008.

[15] C.-S. L. Elgammal and Ahmed. “Human Motion Synthesis by Motion Manifold Learning
and Motion Primitive Segmentation”. In: Articulated Motion and Deformable Objects. 2006,
pp. 1–10.

[16] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear
Inverse Problems”. In: SIAM Journal on Imaging Sciences 2.1 (2009), pp. 183–202.

[17] P. Tseng. “Convergence of a block coordinate descent method for nondifferentiable mini-
mization”. In: Journal of optimization theory and applications 109.3 (2001), pp. 475–494.

[18] L. El Ghaoui, V. Viallon, and T. Rabbani. Safe Feature Elimination for the LASSO and Sparse
Supervised Learning Problems. Sept. 2010. arXiv: 1009.4219 [cs.LG].

9

http://arxiv.org/abs/1009.4219

A Appendix: Dual Norm

We now consider the dual of the norm Ω(x) = λ1‖x‖1 + λ2‖x‖2. We can write its dual as an
optimization problem:

Ω∗(y) = max yTx s.t. Ω(x) ≤ 1

= −min−yTx s.t. λ1‖x‖1 + λ2‖x‖2 ≤ 1.

The KKT conditions of this strictly feasible convex minimization problem are

−y + µλ1v + µλ2u = 0

v ∈ ∂‖·‖1(x) u ∈ ∂‖·‖1(x)

λ1‖x‖1 + λ2‖x‖2 ≤ 1 µ ≥ 0

µ (λ1‖x‖1 + λ2‖x‖2 − 1) = 0.

First note that µ = 0 implies y = 0. Thus for any nonzero y, these reduce to

−y + µλ1v + µλ2u = 0

v ∈ ∂‖·‖1(x) u ∈ ∂‖·‖1(x)

λ1‖x‖1 + λ2‖x‖2 = 1 µ > 0.

For any y 6= 0, clearly x 6= 0 at optimum. Thus v = x/‖x‖2, and the stationarity condition is

x

‖x‖2
=

1

λ2µ
(y − µλ1v). (20)

Suppose that xi 6= 0. Then vi = sign(xi) and

xi
‖x‖2

=
1

λ2µ
(yi − µλ1 sign(xi)).

If xi > 0, this requires that yi > µλ1; if xi < 0, yi < −µλ1, so that sign(xi) = sign(yi) for all
xi 6= 0. On the other hand, if xi = 0, then yi = µλ1vi, so that yi ∈ [−µλ1, µλ1]. Thus

x̂ =
x

‖x‖2
=

1

µλ2
Sµλ1(y), (21)

so that µ = 1
λ2
‖Sµλ1

(y)‖2.

Suppose that we knew the set of indices I(µ) = {i : |yi| > µλ1}. Then we would have that

λ2
2µ

2 =
∑
i∈I(µ)

(|yi| − µλ1)
2

=
∑
i∈I(µ)

(
y2
i − 2µλ1|yi|+ µ2λ2

1

)
, (22)

which is a quadratic in µ we can easily solve in closed form.

But note that clearly ν(µ) = ‖Sµλ1(y)‖2 is nonincreasing in µ. Also, the I(µ) changes only at
points such that µ = |yi|/λ1 for some i. Thus to find the optimal µ, define z to be the sorted array
of |yi|/λ1, so that z1 = min|yi|/λ1. We then perform binary search over z to find an index k such
that ν(zk) ≥ λ2 > ν(zk+1). We then know that I(µ) = I(zk) and can solve (22) to find µ. Since ν
is quadratic and nonincreasing on the interval [zk, zk+1), there will be a unique solution.

We now know that our optimum has x = αx̂ for some scalar α. But we also have

λ1‖αx̂‖1 + λ2‖αx̂‖2 = 1

α =
1

λ1‖x̂‖1 + λ2‖x̂‖2

x = αx̂ =
Sµλ1(y)

µλ1λ2‖x̂‖1 + µλ2
2‖x̂‖2

=
Sµλ1(y)

λ1‖Sµλ1
(y)‖1 + λ2‖Sµλ1

(y)‖
.

10

Using the original stationarity condition:

yTx = µλ1v
Tx+ µλ2

xTx

‖x‖2

= λ1
α

λ2
vTSµλ1

(y) + λ2
α

λ2

Sµλ1
(y)TSµλ1

(y)

‖Sµλ1
(y)‖2

= α
λ1

λ2
‖Sµλ1

(y)‖1 + α‖Sµλ1
(y)‖2

=
1

λ2

λ1‖Sµλ1
(y)‖1 + λ2‖Sµλ1

(y)‖2
1
λ2µ

(λ1‖Sµλ1(y)‖1 + λ2‖Sµλ1(y)‖2)

= µ.

Thus Ω∗(y) = −(−µ) = µ.

11

	Introduction
	Related work
	Optimization algorithm
	Proximal gradient method
	Matrix derivative
	Proximal gradient

	Coordinate descent
	Kernelization

	Dual problem
	Experiments
	Simulated data
	Music
	Robotic motions

	Discussion
	Appendix: Dual Norm

