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Abstract

We present a new domain for unsupervised learning: auto-
matically customizing the computer to aspecificmelodic per-
former by merely listening to them improvise. We also de-
scribe BoB, a system that trades customized real-time solos
with a specific musician. We develop a probabilistic mix-
ture model, derived from the multinomial distribution, for
the clustering and generation of variable sample-sized his-
tograms. With this model, bars of a solo are clustered via the
pitch-classes contained therein, adding a new dimension to
the problem: the need to learn from sparse histograms. With
synthetic data, we quantify the feasibility of handling this is-
sue, and qualitatively demonstrate that our approach discov-
ers powerful musical abstractions when trained on saxaphon-
ist Charlie Parker.

Introduction
This research addresses the problem of the computer in-
teracting with a live, improvising musician in real-time.
Although a number of interactive improvisational sys-
tems have already been built, (Rowe 1993), (Penny-
cook & Stammen 1993), (Dannenberg & Bates 1995) and
(Walker 1997), these works place the burden of imple-
menting “musically-appropriate” behavior upon the musi-
cian/composer/programmer. Rather, we have developed a
model of improvisation that automatically customizes itself
to its user by first listening to them improvise (warmup), and
then probabilistically clustering localized segments (bars1)
of their solos in such a way that the warmup data appears
maximally likely.

While the long-term goal is to build an agent that isfun
to trade solos with, the immediate goal is to develop a
method that operationalizes (creates a computer algorithm
that does) what the musician does. An an improvisor’s in-
sight into what makes their behavior musically-appropriate
is necessarily non-technical, vague, and abstract (Thom
2000b); in our approach, notions of musical-appropriateness
are inferred (learned) by fitting a probabilistic model to the
melodic structure found in the user’s warmup bars.

Each bar of a warmup is transformed into apitch-class
histogram (PCH), which ignores the temporal ordering of
a bar’s note-sequence, instead focusing on the musician’s
preference for certain pitch types. We assume that each
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1Bold-face terms are musical; see Appendix A.

PCH corresponds to one of the improvisor’sC “modes-of-
playing,” each mode being one of the distinct ways in which
the user employs and prefers certain musicalscales. Under
certain assumptions, these histograms can be modeled as a
mixture ofC multinomials, provided the multinomial com-
ponents are extended to handle a variable number of sample-
sizes.

Existing multinomial mixture model based learners han-
dle at most one count, e.g.,AutoClass(Hanson, Stutz, &
Cheeseman 1991), or one-count-per-bin (Meila & Heck-
erman 1998). We develop avariable-sized-multinomial-
mixture model (vMn) in order to handle arbitrary num-
bers of counts. A new variant of the expectation-
maximization algorithm (EM) is derived in order to esti-
mate our model’s parameters, using a maximum-a-posteriori
(MAP) approach.

Thismodel-basedapproach to clustering is important be-
cause it provides essential musical skills: 1) abstract percep-
tion (what cluster is a bar in?); 2) abstract generation (sam-
ple another bar from some cluster); and 3) an estimation of
musical surprise (how likely is a bar?). This approach also
gives us a degree of statistical confidence that ad hoc meth-
ods — e.g., the melodic clustering methods of (Rolland &
Ganascia 1996) or (H¨ornel & Ragg 1996), which rely on
edit-based distance heuristics — lack (McLachlan & Bas-
ford 1988).

While in this paper, learning focuses on a solo’s simplest
tonal features (pitch-class), the same technical learning is-
sues that arise here also apply when learning with a more
complete representation. For example, (Thom 1999) also
considers intervallic and contour-based musical features; by
converting these sequences into per-bar histograms, analo-
gous models are learnable.

By fitting the vMn model to the user’s training data, we
get abstract,musician-specific perception: a bar is per-
ceived via what mode (class, cluster, ...) is most likely to
have generated it, which in turndepends upon the user’s
warmup data. It necessarily follows that new PCH sam-
ples taken from this vMn model (generation) are musician-
specific. As outlined in (Thom 2000b), this model provides
the skills needed for real-time musicianand solo specific
response, provided PCH samples can be transformed back
into musically-appropriate note-sequences. This transfor-
mation is addressed in (Thom 2000c); that appropriate note-



sequences can be derived from order-ignorant histograms is
due to the fact that in the complete representation scheme,
histograms embed more temporal knowledge (intervals de-
pend on successive note pairs; contours upon note strings).

In this paper, we describe our solo trading system and its
learning scenario. We introduce the vMn model and an EM-
based method for fitting its parameters to the training data.
We discuss the unique challenge that arises in this domain.
Specifically, training sets are small (≈ 120 histograms), and
each histogram is relatively sparse (while there are 12 dis-
crete and nominal pitch-class values, the expected number
of counts per histogram is≈ 12.2). This research addresses
not onlyhow to learn a vMn model, butwhatwe can learn
from challengingly sparse datasets. The “what” question
is investigated by: 1) quantitatively evaluating the perfor-
mance of synthetic datasets; and 2) qualitatively evaluating
the musical-appropriateness of the pitch-class modes that are
learned for Bebop saxaphonist Charlie Parker.

In addition to presenting a novel domain and demon-
strating that powerful musical abstractions emerge with this
vMn approach, our work is significant because it empirically
demonstrates that probabilistic clustering of sparse, unla-
belled histograms is useful. This success is in part due to
the fact that we take advantage of the knowledge that per
histogram,all counts are generated by the same component,
whereas “one count” style approaches treateach as indepen-
dent of the others. Histograms with larger sample-sizes have
more information with which to distinguish themselves — it
makes sense to directly incorporate this knowledge into the
learning process.

Band-out-of-a-Box (BoB)
We are building Band-OUT-of-a-Box (BoB), an interactive
soloist that trades bars of a customized solo with a sin-
gle musician (Thom 2000b). We now describe how BoB’s
melodic representation is used to configure itself to the user.

The Domain
BoB is specifically designed for the following scenario.
Each time the musician wants to trade solos, they first
warmup (for≈ 10 minutes), improvising freely over a de-
sired song at a fixed tempo. During this time, BoB col-
lects training data by recording their note-stream in real-
time. Next, BoB goes offline, creating training setX =<
x1, . . . , xi, . . . , xn > by: 1) segmenting the note-stream
into bars; 2) building one PCH per bar. (Note our use of up-
per and lower-case letters to distinguish between data points
and sets). For PCHxi, anm = 12 dimensional histogram,
xij is the number of times that pitch-classj occurs in bari.
szi =

∑m

j=1
xij is the total sample-size.

BoB uses a stability/usefulness heuristic toestimatehow
many playing modes,̂C, are present in the training data,
which in turn, allows aĈ-component vMM parameteriza-
tion,Ω̂, to be estimated so thatX appears maximally likely.2

When BoB goes back online, trading bars of solo with the
musician in real-time,̂Ω is used to abstractly perceive and

2The hat superscript denotes an estimate.

generate new PCHs with: 1) situation and musician based
specificity; and 2) per-bar real-time response.

Representational Issues
Solo segmentation is per bar. While this small,fixed time
window (≈ 2 [sec]) affords fine-grained responsiveness, it
means that PCHs are sparse; it is also the reason that sample-
size varies.

Offline learning must occur quickly; small training sets
are desirable. Also, musically, local context is crucial (Thom
2000a); one cannot assume that combining multiple warmup
sessions necessarily yields better customization.

Unsupervised Learning
We now introduce our probabilisticmodel,vMn(Ω), a mix-
ture of C variable-sizedmultinomials. Parametric infer-
ence is non-trivial when training data is both observable
(histogram bin counts) and unobservable (which component
generated what histograms). Learning amounts to segre-
gating the histograms according to those bins that are most
heavily used (or vacant).

Example
A subset (21 histograms) of sparse, simulated datasetII (de-
scribed later) is shown in Figure 1. Each subplot is a dif-
ferent histogram. Bin counts are stacked wire boxes. The
gray columns reflect the shape of a histogram’s generative
probabilities, indicating which bins are highly probable, or
important.

This dataset, generated by seven components, is displayed
so thateach column of subplots has the same generator.
Thus,x1 is generated by the same component asx8 andx15.
As x1’s first bin has three counts, and this bin is gray, we
know these counts makex1 more likely. “×” marked sub-
plots are less likely, so much so that even when the genera-
tive model’s parameters are known, if we have toguessthese
histogram generators, we would guess incorrectly.
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Figure 1: A subset of dataset II

The purpose of this example is to illustrate that learning is
not trivial. Even knowing the column-arrangement, (which



is equivalent to having labels), when the gray columns are
hidden, it is not obvious which bins of each component are
most important. This figure also illustrates some subtle is-
sues related to sparsity. For example, while smaller than
average sample-sizes (szi ≤ 8) coincide with 4

5
of the×’s

(x2, x3, x5, x9), the smallest sample-size (x18) is not only
correctly classified but also has its counts placed on impor-
tant bins. On the other hand, whilex10 has the largestsz, 1

3

of its counts are misleading (reside on non-important bins).
Also, in many cases, counts without gray backgrounds do
not hurt classification, although they may hurt learning. On
example of this isx8, where non-important counts happen to
reside on bins that do not cause other components to appear
more likely.

Larger histogram dimensions mean that more binscould
be important when estimating generators, which means that
sample-size may be distributed amongst more bins, less in-
formation regarding a particular bin may be available. On
the flip side, more dimensions means less chance for com-
peting components to interfere with one another. Regard-
less, with sparsity,specific examples are not likely to con-
tain enough information by themselves,which alsoaffords
more powerful generalization!A rigorous probabilistic pro-
cedure, one that weighs larger sample-sizes more heavily,
especially when they boost other data, is needed.

Music Issues
Modelling PCHs with vMn introduces strong assumptions:

1. For each bar, the musician choosesat randomfrom a fixed
set of probabilities in order to determine what mode (com-
ponent) to use. Thus, the musician does not switch modes
mid-bar, each bar’s mode has nothing to do with its neigh-
boring bar’s mode, etc.

2. Per bar, mode and the number of notes played are inde-
pendent. The number of notes in different bars are also
independent.

3. For a given a mode, one pitch-class does not depend upon
another (feature independence). Melodically, this means
that previously improvised notes do not affect future notes
(and vice-versa).

4. Pitch-class bins are nominal/discrete. We do not impose
any similarity metric upon pitch-class values.

5. Bars that contain more notes contain more information
about what mode the musician is realizing (PCHs arenot
normalized).

The first three items deal with independence, reducing the
model’s complexity, making it less susceptible to over-
fitting. As (Nigamet al. 1998) notes, the focus on decision
boundaries often makes a classifier robust to independence
violations. Most serious is Item 1; musical bars certainly af-
fect one another — our datasets are not independently sam-
pled. Fortunately, the quality of our music results empiri-
cally validates our approach’s usefulness.

Item 4 is crucial. While simpler pitch-class similarity
schemes have been used to provide learning feedback —
e.g., Euclidean, or theδ−based distance metric used to
train melody generation in (Feulner & H¨ornel 1994) —

other context-dependent aspects (for example, scales) are
more perceptible musically (Bartlett 1993). Ournominal
viewpoint allows another mechanism, and, importantly, a
customizable one, to determine pitch-class similarity: how
likely is it that certain values are preferred in a given mode?

The Multinomial Distribution
The multinomial family,Mnom(sz, θ), extends the bi-
nomial so as to handle more than two discrete, nom-
inal outcomes. Sample-sizesz is constant; θ is the
r−dimensional probability vector used to weight outcomes
< 1, . . . , 2, . . . , r >. When sampling from this distribution,
v ∼Mnom(sz, θ), v is anr-dimensional histogram withsz
trials distributed amongstr bins. Histogram likelihood is:

Pr(v|sz, θ) =

m∏
j=1

vj!

sz!
(θj)

vj .

The vMn Distribution
We now define the variable-sized multinomial mixture
model, vMn(Ω), where ind(·) maps a single-count his-
togram (vector) into the index of the bin that contains the
count (scalar):

sz ∼ ind(Mnom(1, η))

y = ind(z), where z ∼Mnom(1, π)

x|y ∼Mnom(sz, θy).

The multinomial components of this model,
Θ =< θ1, . . . , θc, . . . , θC >, control the distribution of
counts among bins. Variable sample-size is handled by
assuming that a histogram’s generator,y, and its sample-
size, sz, are independent.Ω refers to parametersΘ, π,
and η. π =< π1, . . . , πc, . . . , πC > controls how often a
component is chosen;η =< ηmin(sz), . . . , ηmax(sz) > how
often particular sample-sizes occur. The joint likelihood,
< x, y >, or equivalently< x, z >, is:

Pr(x, y|Ω) = Pr(sz|η)Pr(y|π)Pr(x|sz, θy).

Naive Bayes Classification and vMn
With estimateΩ̂ a Naive-Bayes-Classifier can be built,
which maps histograms into one ofĈ classes. Bayes-Rule
is used to turn the generative model around, so that thecom-
ponent posteriors,̂z =< z1, . . . , zc, . . . , zĈ >, can be esti-
mated:

zy = Pr(y|x, Ω̂) =
Pr(y|Ω̂)Pr(x|y, Ω̂)

Pr(x|Ω̂)
=

π̂yPr(x|sz, θ̂y)∑C

c=1
π̂cPr(x|sz, θ̂c)

.

Component estimation (abstract perception) is then:

ŷ = argmaxc
(
Pr(c|x, Ω̂)

)
.

Ŷ andẐ are the dataset’s estimated generators and posteri-
ors respectively. With synthetic data, we also knowY , the
true generative components.

With synthetic data,Ω is known, so we can build an
Optimal-Bayes-Classifier, whose component estimation (de-
noted by superscript “∗”), is guaranteed to have a minimal
expected error rate:

err∗ = E [y 6= y∗] ≈ |Y 6= Y ∗|
n

= e∗.



The “≈” here indicates our estimation of this expectation.
err∗ quantifies thehardnessof parameterizationΩ, which
depends upon the overlap between component distributions,
and is a function of the entire input space. Our approxima-
tion, e∗, is based on finite datasetX. When the learning al-
gorithm knowsC, hardness can also provide a lower bound
with which to compute the additional loss of having to infer
Ω:3

∆err = E [y 6= ŷ]−E [y 6= y∗] ≈ |Y 6= Ŷ |
n

− e∗ = ∆e.

The values ofe∗ and ∆e that we report are based on an
independent test set.

Unsupervised Learning and vMn
For independent and identically sampled histograms,aver-
agelog-likelihood of labelleddataset< X, Y > is:

LL(X,Y |Ω̂) =
log(Pr(X,Y |Ω̂))

n
=∑n

i=1
log(Pr(szi|η̂)) + log(π̂yi) + log(Pr(xi|szi, θ̂yi))

n
. (1)

For anunlabelleddataset,Y andC are hidden. Average
log-likelihood is now the joint marginalized with respect to
the posterior:

LU (X|Ω̂) =
log(Pr(X|Ω̂))

n
=∑n

i=1
log(Pr(szi|η̂)) + log

(∑C

c=1
zicπ̂cPr(xi|szi, θ̂c)

)
n

. (2)

Warmup PCHs are unlabelled; BoB seeks to estimateΩ̂ so
thatLU is maximized. However,̂C must be estimated else-
where, for to optimize it here is under-constrained.

In vMn, sample-size doesnotaffect classification, which
is not to say that assz increases, classification does not be-
come easier. In fact,sz anderr∗ are inversely related. How-
ever, in and of itself,sz provides no information about which
component generated a histogram.

With synthetic data, the loss in likelihood associated with
having to inferΩ can also be estimated:

∆l = l∗ − LU (X|Ω̂), where l∗ = LU (X|Ω)

These values are also based on an independent test set.

EM and vMn
Supervised and unsupervised learning both amount to find-
ing an Ω̂ for which their appropriateL is maximal. It is
the log of sums inLU that makes its optimization difficult
(whereas a closed-form optimum forLL exists). LU ’s op-
timization is non-linear and has multiple roots. We use the
EM-algorithm to control the search for local optima (Demp-
ster, Laird, & Rubin 1987). This search is repeated multiple
(25) times from different random starting points; the best
(most likely) solution is reported.

With each subsequent iteration at timet, EM guar-
antees thatLU (X|Ω̂t) ≤ LU (X|Ω̂t+1). In theory, finding
a local maximum is equivalent to finding a fixed-point,

3Ŷ must first be permuted to approximateΩ’s ordering.

LU (X|Ω̂t) = LU (X|Ω̂t+1). In practice, a computer’s preci-
sion requires another form of termination (we stop after 8
digits of improvement and/or 1500 iterations).

EM involves two steps per iteration. The E-step cal-
culatesE[LL(X,Z|Ω̂t)]. Indicator vectorZ is the only
random variable, so this expectation amounts to solv-
ing Ẑt = E[Z|X, Ω̂t], whose solution is the posteriors,
ẑti = Pr(y|xi, Ω̂t).

In the M-step,Ẑt is used in place ofZ. Ω is re-estimated
according tôΩt+1 = argmaxv(LL(X, Ẑt|v)). The solution to
this equation is

πt+1
c =

1
C +

∑n

i=1
Pr(zic|xi, Ω̂t)

1 + n

θt+1
cj =

1
m

+
∑n

i=1
Pr(zic|xi, Ω̂t)xij

1 +
∑n

i=1

∑m

j=1
Pr(zic|xi, Ω̂t)xij

,

Both of these estimates are MAP-based: optimal Bayesian
parameter estimation, augmented by Laplacean priors onπ
andθ (Vapnick 1982).

From an improvisational standpoint, theθ priors encode
the reasonable musical assumption that no pitch-class is
never played. The appropriateness ofπ’s priors depends
upon the appropriateness ofĈ; they encode the belief that
the musician is nevernotgoing to use one of their “̂C” play-
ing modes.

Estimating C
Estimating C by optimizing LU is under-constrained.
Rather than adding more constraints, we pickĈ to be the
largestvalue that produces astableandusefulclustering of
the training set.

A stableC is defined as one that, when five identical
learning experiments are run, produces no disagreements on
pair-wise comparisons of solutions. A usefulC is defined
as one that, on average, is well separated (whose estimated
error is below0.20). Stability quantifies the discrepancies
between pairs of solutions’partitioningof the training set,
shedding light upon how repeatable a learning solution is
— how real it is. In BoB, usefulness makes sense: we are
most interested in adapting to those playing modes that are
markedly different.

Related Work
We know of no other work that empirically validates the
feasibility of fully unsupervised vMn learning, or presents
learning details for for the fully unsupervised case. While a
full-blown vMn style model was used in text-classification
(Nigam et al. 1998), the focus was on combining la-
belled and unlabelled data, and sample-size was ignored
(histograms were normalized). Fully unsupervised multi-
nomial mixture models usually impose serious restrictions
upon the number of samples allowed; in (Hanson, Stutz, &
Cheeseman 1991)sz = 1. Another common approach, dis-
cussed in (Meila & Heckerman 1998), (Hanson, Stutz, &
Cheeseman 1991) and (McLachlan & Basford 1988), is to
demand that each bin has at most one count. We have de-
veloped a new model for this domain because it is important



to consider the additional information that larger histograms
provide.

Results: Synthetic Data
This domain introduces unique challenges — variable
sample-size and sparsity. We now quantify the degree to
which learning in such conditions is possible.

In particular, we generate training and test sets with:
C = 7, πc = 1

C
, n = 175 (≈ 25 histograms per cluster),

m = 12, and sz ∼ Uniform(3, 15). On the one hand,
we report optimistic results because our learning algorithm
knowsC. On the other hand, our parameterizations ofΩ
make learning more difficult than it is likely to be for PCH
data. For example, our uniformsz has a larger variance and
a smaller mean than Parker’s bell-shaped distribution. Also,
our components are as “entropic” as possible. Specifically,
for each component, four bins are equallyimportant(have
high probabilityα of occurring). The other eight bins are
equallynon-important(have low probabilityβ). Each com-
ponent’s important bins are arranged so as to provide maxi-
mal interference with the other component’s important bins.
Thus, discriminating these histograms requiressetsof fea-
tures; single features are never sufficient.

We quantified learning performance for three datasets,
each harder (having largere∗) than its predecessors. The
values in the right five columns are averaged over25 ex-
periments.∆× is the number of misses directly caused by
havingto learn (compare this ton = 175 total guesses).

dataset α β l∗ ∆l e∗ ∆e ∆×
I .248 .001 -9.2 0.18 0.11 0.00 0
II .21 0.02 -12 0.38 0.22 0.07 12
III .188 .031 -13 0.40 0.31 0.16 28

While having to learn degrades a classifier’s accuracy, and
the harder the problem, the worse the degradation, the aver-
age cost of having to learn (∆e) ranges from negligible to12
of the optimal (e∗). To add some perspective, consider the
worst case,III . We expect to miss0.47 guesses; an optimal
classifier would miss0.31; a random classifier would miss
0.85. Even with this sparse data (some is shown in Figure 1),
learning produces useful results.

Results: Music Data
We now qualitatively argue that our approach produces pow-
erful, customized abstraction when applied to Parker’s PCH
data. This argument is all the more crucial given that, dur-
ing solo improvisation, vMn assumptions are likely to be
violated.

Our training set was Parker’sMohawk improvisations
(Goldsen 1978). Figure 2 (left) displays how BoB perceived
these solos. Each subsequent row is Parker’s nextMohawk
solo (chorus). The columns are each choruses’ bars. The
symbol shown in each< bar, chorus > indicates what
mode BoB assigned it to. The corresponding mode genera-
tor estimates are shown in Figure 2 (right). WhileĈ = 4 and
5 were both stable/useful, solution̂C = 4 is presented due
to space limitations. Details concerning thechords, scales,

and melodic styles of the Bebop genre are beyond this pa-
per’s scope. The goal here is to merely provide a flavor of the
powerful types of musical abstractions that were discussed
in (Thom 1999).
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Figure 2:Mohawk: ClusteringŶ (left); Parameterŝθc (right)

Several musically appropriate correlations emerge when
Ω̂ and Ŷ are analyzed. For example, modesand were
most common, accounting for80

119
of the bars.4 The gray

backgrounds of these components (right, Figure 2) iden-
tify those pitch-classes in theb[-Bebop-Major ande[-Bebop-
Dominant scales respectively. Given thekey of this song (a
12-bar blues inb[), it is appropriate that Parker used these
scales,especiallysince they were invented in part to explain
his playing style (Baker 1983).

To cite another example, notice the segregation of modes
as a function of column (bar), which makes sense given that
the chordschange(and hence the underlying tonal function
changes) on bars 1, 5, 7, 9 and 11. A particularly important
change occurs in bars 5-6, the only columns in which Parker
exclusively uses the Bop-modes. Another case is bars 9-10,
the only place were is used more than50% of the time.
Also, bar 12 ends the blues progression. At this point if an-
other chorus is played, it has the musical distinction of be-
ing called a “turn-around,” whereas if the tune ends, (which
is the case in choruses 5 and 10), then a resolution to the
tonic (b[) is expected. BoB captured Parker’s accommoda-
tion of these distinctions, using (the e[-Major scale) in
turn-arounds and restating the tonic via theb[-Bop mode.

The component we have not yet discussed,, exempli-
fies another powerful aspect of our approach. Notice how
all pitch-classes bute[ (the bin betweend and e) are rea-
sonably probable. While it is musically reasonable to view
this component as theb[-Major scale (shown in gray), by
itself, this viewpoint is limited. For example, with respect
to we know: 1) how often on average Parker chooses to
include non-scalar pitch-classes; 2) that scale-tonee[, rather
than the non-scalar and musically special “tritone”e, is more
surprising; 3) how Parker employs modes in particular con-
texts (e.g., a choruses’ mode-sequence).

In short, a musician’s specific improvisational style isem-
bedded, or distributed within the learned representation at
multiple different and important levels, giving BoB knowl-
edge about what contexts a mode can be used in, what con-
texts the musician is in, and how to realize a particular mode
(i.e., which pitches are most important).

4No notes were played in< 5, 8 >; this bar was omitted.



Conclusion
We have presented a novel domain for unsupervised learn-
ing: automatically customizing the computer to itsspecific
melodic performer by listening to them improvise. We also
described our system BoB, which performs this task in the
context of real-time four bar solo trading. We developed
a probabilistic mixture model of variable-sized multinomi-
als and a procedure that uses this model to learn how to
perceive/generate variable-sized histograms. Because this
model was used to cluster per-bar pitch-class histograms,
we added a new dimension to the problem: the need to
learn from sparse data, and use synthetic data to show that
useful results can be learned in this case. We have also
shown that when trained on saxophonist Charlie Parker,
powerful musical abstractions emerge on many levels. For
example, Parker’s playing-modes (scales, or sub/supersets
of scales) are distributed among a component parameters,
which in turn quantifies the relative importance of various
pitch-classes, giving us an idea ofhowto realize a particular
mode (something rule/scale-based systems must be told how
to do). Parker’s contextual employment of mode, which al-
lows one to consider generatingnew like-minded contexts,
is also embedded within this learned representation, opening
up a whole new range of creative possibilities.

Appendix A: Musical Terms
Term Definition
bar the grouping caused by the regular recurrence of ac-

cented beats, typically4 taps of a listener’s foot (e.g.,
≈ 2.5 seconds)

pitch-
class
(PC)

a pitch’s tone, that piano key on the single octave piano
that would be played if octave was ignored:PC ∈
{c, d[, d, ..., b[ , b}

octave two pitches with the same PC and 1:2 frequency ratio
scale a subset of PC’s differing in pitch according to a spe-

cific scheme
tonal the principle ofkey in music conveyed through the

family relationship of all its tones and chords, (one af-
fect of this is your being able to singdoh-re-mi-fa-...
on top of a given harmony/melody)

chord combination of pitches simultaneously performed,
producing more or less perfect harmony
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