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Structured prediction plays a central role in machine
learning applications from computational biology to
computer vision. These models require significantly
more computation than unstructured models, and, in
many applications, algorithms may need to make pre-
dictions within a computational budget or in an any-
time fashion. In this extended abstract we examine an
anytime technique for learning structured predictors
that, at training time, incorporates both structural el-
ements and feature computation trade-offs that affect
test-time inference. We apply our technique to the
challenging problem of scene understanding in com-
puter vision and demonstrate efficient and anytime
predictions that gradually improve towards state-of-
the-art classification performance as the allotted time
increases.

1. Structured Prediction Setting

In the structured prediction setting, we are given in-
puts x ∈ X and associated structured outputs y ∈ Y.
These outputs are variable length vectors (y1, . . . , yJ).
Furthermore, we assume that each element of the
structured output, yj , lies in some vector space yj ∈ Z.

The goal is to find a function f : X → Y which mini-
mizes the risk R[f ], typically a pointwise loss:

R[f ] = EX [
∑
j

l(f(x)j)]. (1)

We additionally assume we are given structural infor-
mation about the outputs consisting of a set of group-
ings, or nodes, N ∈ N each of which is linked to some
subset of the output, j ∈ N . For example, in the scene
labeling domain we are given a set of input images X ,
and output for each pixel j in a given image a vector
yj ∈ RK containing the scores with respect to each
of the K possible class labels. The structural informa-
tion comes from segments, or superpixels, of the image
which group together similar pixels.

2. Anytime Structured Prediction

To obtain predictions for varying test-time budgets,
we use the SpeedBoost framework (Grubb & Bag-
nell, 2012), which is itself based on functional gradi-
ent boosting (Mason et al., 1999; Friedman, 2001), for
learning an additive predictor f =

∑
t αtht. To obtain

the functions h : X → Y we consider weak predictors
with two parts: a selection function hS : X × Y → 2N

which takes in an input x and current prediction ŷ and
outputs a subset of structural nodes N to update, and
a predictor hP : N → Z which updates the prediction
for each element of the output corresponding to the
selected region N .

These two components can be put together to create a
weak structured predictor, h, which produces a struc-
tured output where element j of the output has pre-
diction:

h(x)j =
∑

N∈hS(x,ŷ)

1(j ∈ N)hP(N). (2)

We use the SpeedBoost approach to select the com-
bined predictor with the best gain per unit cost

ht, αt = arg max
hS∈HS,hP∈HP,α∈R

R [ft−1]−R [ft−1 + αh]

c(h)
(3)

where h is defined from hS and hP as in Eq. 2.

Similar to previous work (Grubb & Bagnell, 2012) we
make the above weak learner selection feasible by only
evaluating the performance gain for a small set of weak
learners near the gradient ∇R[ft−1]. Given a fixed se-
lection function hS, and weak learning algorithm A,
and current predictor f , we can select a candidate
predictor hP using functional gradient projection as
follows. The standard gradient projection (Friedman,
2001) for a predictor h of the form in (Eq. 2) can be
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Figure 1. Average pixel classification accuracy for Stanford Background (left) and CamVid (right) datasets as a function
of inference time.

reduced to finding hP that minimizes

arg min
hP∈HP

EX

 ∑
N∈hS(x,ŷ)

|N | ‖Ej∈N [∇(x)j ]− hP(N)‖2
 .

(4)

2.1. Predictor Cost

We adopt a modified computational cost model of the
feature extraction cost model of Xu et al. (2012). Like
previous work, each feature incurs a fixed cost the first
time it is used, but we additionally consider the case
where groups of features share a common base feature
that need only be computed once for everything in the
group. Let φ ∈ Φ be the set of features and γ ∈ Γ be
the set of feature groups, and cφ and cγ be the cost for
computing derived feature φ and the base feature for
group γ, respectively. Let Φ(f) be the set of features
used by predictor f and Γ(f) the set of its used groups.
Given a current predictor ft−1, we can express the cost
of a predictor hP as the cost of the newly computed
features and groups:

cΓ(hP) =
∑

γ∈Γ(hP)\Γ(ft−1)

cγ ,

cΦ(hP) =
∑

φ∈Φ(hP)\Φ(ft−1)

cφ.

The total cost for a predictor h is then

c(h) = εS + εP + cΓ(hP) + cΦ(hP), (5)

where εS and εP are small fixed costs for evaluating a
selection and prediction function, respectively.

In order to generate hP with a variety of costs, we use a
modified regression tree impurity function which uses

a cost regularizer, as in (Xu et al., 2012):∑
i

wi‖yi − hP(xi)‖2 + λ (cΓ(hP) + cΦ(hP)) ,

where λ regularizes the cost. Training regression trees
with different values of λ and using the selection cri-
teria in Eq. 3 enables StructuredSpeedBoost to
consider predictors with a variety of costs and select
the most beneficial.

3. Results

We now present preliminary results of our Struc-
turedSpeedBoost method applied to the scene un-
derstanding domain, where the goal is to label every
pixel in an image with the appropriate class label (e.g.
car, building, etc). We compare directly to the state-
of-the-art technique of Hierarchical Inference Machines
(HIM) from Munoz et al. (2010). Our approach uses
the same hierarchical structure, random forest weak
learners and features, to obtain Speedy Inference Ma-
chines (SIM). We additionally compare to other scene
understanding methods from the literature.

Fig. 1 shows the classification performance of SIM on
two datasets. We compare to a number of versions of
HIM which use different subsets of the available fea-
tures, at the expense of significant manual tuning. We
also compare to the reported performances of other
techniques and stress that these timings are reported
from different computing configurations. The single
anytime predictor generated by our anytime struc-
tured prediction approach is competitive with all of
the standalone models without requiring any of the
manual analysis necessary to create the different fixed
models.
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