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The universe of problems ML/AI is trying to solve 
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Data and experiences of all kinds 

3

Data examples Rewards Auxiliary agentsConstraints

Type-2 diabetes 
is 90% more 
common than 
type-1 

Adversaries

And all 
combinations of 
of that …

…
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How human beings solve them ALL?
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The Zoo of ML/AI Models 

● Neural networks
◯ Convolutional networks
◯ AlexNet, GoogleNet, ResNet
◯ Recurrent networks, LSTM
◯ Transformers
◯ BERT, GPT2

● Graphical models
◯ Bayesian networks
◯ Markov Random fields
◯ Topic models, LDA
◯ HMM, CRF

5

● Kernel machines
◯ Radial Basis Function Networks
◯ Gaussian processes
◯ Deep kernel learning
◯ Maximum margin
◯ SVMs 

● Decision trees
● PCA, Probabilistic PCA, Kernel 

PCA, ICA
● Boosting
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The Zoo of algorithms and heuristics 
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actor-critic

imitation learning softmax policy gradient

policy optimization

posterior regularization
constraint-driven learning

regularized Bayes 

GANs

active learning

intrinsic reward

inverse RL

knowledge distillation

energy-based GANs 

maximum likelihood estimation

prediction minimization generalized expectation

learning from measurements 

adversarial domain adaptation

reinforcement learning as inference

data augmentation

data re-weighting

label smoothing

weak/distant supervision

reward-augmented maximum likelihood
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Really hard to navigate, 
● Depending on individual 

expertise and creativity

● Bespoke, delicate pieces of art

● Like an airport with different 
runways for every different 
types of aircrafts 
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and to realize 
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Physics in the 1800’s

● Electricity & magnetism: 
◯ Coulomb’s law, Ampère, Faraday, ...

● Theory of light beams:
◯ Particle theory: Isaac Newton, Laplace, Plank
◯ Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell

● Law of gravity
◯ Aristotle, Galileo, Newton, …

8
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Maxwell’s equations
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Diverse 
electro-
magnetic 
theories ∂vF

uV
=

4π

c
ju

εuvkλ∂vFkλ = 0

Maxwell’s Eqns: 
original form

Simplified w/ 
rotational symmetry

Further simplified w/ 
symmetry of special 

relativity
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How about a blueprint of ML

● Loss
● Optimization solver
● Model architecture

10

Optimization 
solver

Loss Model 
architecture

min$ ℒ &
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How about a blueprint of ML

● Loss
● Optimization solver
● Model architecture 
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!"#$, & ' − ) −ℍ

Experience Divergence Uncertainty
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MLE at a close look:

● The most classical learning algorithm 

● Supervised:
◯ Observe data ! = {(%∗, (∗)}
◯ Solve with SGD

● Unsupervised:
◯ Observe ! = %∗ , ( is latent variable
◯ Posterior +,((|%)
◯ Solve with EM:

§ E-step imputes latent variable ( through expectation on complete likelihood 
§ M-step: supervised MLE

12

min, − 2 %∗,(∗ ∼ !
1log +,((∗|%∗)

min, − 2%∗∼ !
1log8

(
+,(%∗, ()
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MLE as Entropy Maximization 

● Duality between Supervised MLE and maximum entropy, when ! is 
exponential family

13

min%(',)) + !

s.t. /% 0(', )) = /(2∗,4∗)∼6 0(', ))

features 0(', ))

⇒ data as constraints

Shannon entropy +

Solve w/ Lagrangian method

! ', ) = exp ; ⋅ 0 ' / >(;) Lagrangian multiplier ;

min? −/('∗,)∗)∼6 ; ⋅ 0(', )) + log >(;) Negative log-likelihood
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MLE as Entropy Maximization 

● Unsupervised MLE can be achieved by maximizing the negative free energy: 
◯ Introduce auxiliary distribution !(#|%) (and then play with its entropy and cross entropy, etc.)

14

log*
#
+,(%∗, #) = 01(#|%∗) log

+, %∗, #
! # %∗ + KL ! # %∗ || +, # %∗

≥ 6 ! #|%∗ + 01(#|%∗) log +,(%∗, #)
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Algorithms for Unsupervised MLE

1) Solve with EM

q E-step:  Maximize ℒ ", $ w.r.t ", equivalent to minimizing KL by setting 

q M-step: Maximize ℒ ", $ w.r.t $: max* +,(.|0∗) log 6* 0∗, .
15

min* − +0∗∼ ;
1log=

.
6*(0∗, .)

" . 0∗ = 6*?@A(.|0∗)

log=
.
6*(0∗, .) = +,(.|0∗) log

6* 0∗, .
" . 0∗ + KL " . 0∗ || 6* . 0∗

≥ D " .|0∗ + +,(.|0∗) log 6*(0∗, .)
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Algorithms for Unsupervised MLE (cont’d)

2) When model !" is complex, directly working with the true posterior !"($|&∗)
is intractable ⇒ Variational EM

§ Consider a sufficiently restricted family * of +($|&) so that minimizing the 
KL is tractable

q E.g., parametric distributions, factorized distributions

§ E-step: Maximize ℒ +, " w.r.t + ∈ *, equivalent to minimizing KL
§ M-step: Maximize ℒ +, " w.r.t " : max4 56($|&∗) log !4 &∗, $

16

log:
$
!4(&∗, $) = 56($|&∗) log

!4 &∗, $
+ $ &∗ + KL + $ &∗ || !4 $ &∗

≥ > + $|&∗ + 56($|&∗) log !4(&∗, $)
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Algorithms for Unsupervised MLE (cont’d)

3) When ! is complex, e.g., deep NNs, optimizing ! in E-step is difficult (e.g., 
high variance) ⇒ Wake-Sleep algorithm [Hinton et al., 1995]

17

• Sleep-phase (E-step):

• Wake-phase (M-step): Maximize ℒ !, % w.r.t % : max) *+(-|/∗) log 5) /∗, -

min8 KL(5) - /∗ ||!8 - /∗ ) Reverse KL

Other tricks: reparameterization in VAE (‘2014), control variates in NVIL (‘2014)

log;
-
5)(/∗, -) = *+(-|/∗) log

5) /∗, -
! - /∗ + KL ! - /∗ || 5) - /∗

≥ ? ! -|/∗ + *+(-|/∗) log 5)(/∗, -)
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Quick summary of MLE

● Supervised:
◯ Duality with MaxEnt
◯ Solve with SGD, IPF …

● Unsupervised:
◯ Lower bounded by negative free energy

◯ Solve with EM, VEM, Wake-Sleep, …

● Close connections to MaxEnt
● With MaxEnt, algorithms (e.g., EM) arises naturally

18
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Posterior Regularization (PR)

● Make use of constraints in Bayesian learning
◯ An auxiliary posterior distribution ! "
◯ Slack variable #, constant weight $ = & > 0

◯ E.g., max-margin constraint for linear regression [Jaakkola et al., 1999] and 
general models (e.g., LDA, NNs) [Zhu et al., 2014]   –– more later 

● Solution for !

19

min
,, .

− $0 ! − &1,
1 + #log 78 9, :

[Ganchev et al., 2010];. =. −1, >8 9 , : ≤ #

! @ = exp D
D / F& log 78(9, :) + > 9 , :

$
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More general learning leveraging PR
● No need to limit to Bayesian learning
● E.g., Complex rule constraints on general models [Hu et al., 2016], where 
◯ ! can be over arbitrary variables, e.g., !(#, %)
◯ '( #, % is NNs of arbitrary architectures with parameters )

20

*. ,. -. #,%
1 ≤ 11 − 3(#, %)

min., (,7 − 89 ! − :-.
1 + 1log '( #, %

E.g., 3(#, %) is a 1st-order logical rule:
If sentence # contains word ``but’’ 
⇒ its sentiment % is the same as the 
sentiment after “but”
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EM for the general PR

● Rewrite without slack variable:

◯ Solve with EM

§ E-step:

§ M-step:   

21

! ", $ = exp )
) / +, log 01(", $) + 5 " , $

6

min1 :;
1

min;, 1 − 6> ! − ,:;
1 − :; ",$

15 " , $log 01 ", $

log 01 ", $
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Reformulating unsupervised MLE with PR

● Introduce arbitrary ! " #

22

Data as constraint. 
Given # ∼ %, this constraint doesn’t 
influence the solution of ! and &

log*
"
+,(#∗, ") ≥ 2 ! "|#∗ + 56("|#∗) log +,(#∗, ")

min
6, ,, :

− <2 ! − =56
1

+ ?

@. B. −56
1

< ?D # ; %

log +, #, "

◯ D # ;% ∶= log 5H∗∼% I#∗ #
§ A constraint saying # must equal to one of the true data points
§ Or alternatively, the (log) expected similarity of # to dataset %, with 

I ⋅ as the similarity measure (we’ll come back to this later)
◯ < = = = 1
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The standard equation 

Equivalently:

23

min$, &, '() *+
1 − .ℍ 0 + 2

3. 5. −6$ 7,8
1 < 2

0 7, 8 , :& 7, 8

; 7 , 8

min$, & − 6$ 7,8
1 + *+ 1 − .ℍ 0; 7 , 8 0 7, 8 , :& 7, 8

3 terms: Experiences
(exogenous regularizations)
e.g., data examples, rules

Textbook
; 7 , 8| .

Divergence
(fitness)

e.g., Cross Entropy

Teacher
0 7, 8

Student
:& 7, 8

Optimization 
solver

Loss Model 
architecture

	min%	ℒ '

Uncertainty
(self-regularization)

e.g., Shannon entropy

Uncertainty
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! ≔ !($ ; &) = log ,$∗∼& /$∗ $

min3, 5 − 78 9 − :,3
1 − ,3

1 ! $, <log =5 $, <

Re-visit unsupervised MLE under SE

24

7 = : = 1

9 = 9(<|$)
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min$, & − () * − +,$
1 − ,$ .,/

10 ., /log 4& ., /

Re-visit supervised MLE under SE

25

( = 1, + = 60:= 0 . , / ;9 = log , (.∗, /∗)∼9 >(.∗,/∗) ., /
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Active learning under SE

26

! ≔ !($, & ; ()*+,-) + 0($) 1 = 3 (> 0), 6 = 7

!($, & ; ()*+,-) = log ; $∗∼>, &∗∼?@ABCD($∗) E($∗,&∗) $, &
prediction uncertainty on $, 
e.g., Shannon entropy F(GH & $ )

Equivalent to:
• Draw a data point $∗ according to exp{0($)/3}
• Get label &∗ for $∗ from the oracle
• Maximize log likelihood on ($∗, &∗)

min
R, H

− 1F T − 6;R
1

− ;R $,&
1
! $, &log GH $, &
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Reinforcement learning (RL) under SE -- I

● RL-as-inference 
[Dayan’97; Levine’18, …]

27

• Map to RL 
language

! = # = $ (> 0)) *, , ∶= ./0 *, ,

min
4, /

− !6 7 − #84
1

− 84 *,,
1
) *, ,log =/ *, ,

o * − >?@?A >, , − @B?CDE @
o =F * − state distribution 
o ./0 *, , − expected future reward of taking action , in state *

and continuing the current policy =/0 ./0 *, , = 8GH0 ∑JKL
M NO | *L = *, ,L = ,
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Reinforcement learning (RL) under SE -- II

● Policy gradient

◯ E-step
◯ M-step

28

o ! − #$%$& #, ' − %($)*+ %
o ,- ! − state distribution 
o ./0 !, ' − expected future reward of taking action ' in state !

and continuing the current policy ,/0

2 = 4 = 16 !, ' ∶= log ./0 !, '

• Map to RL 
language

;<(!,') ∇/log ,/ '|! = 1/B ⋅ ;DE(!)DF('|!) ./(!, ') ∇/log ,/ '|!
= 1/B ⋅ ∇/;DE(!)DF('|!) ./(!, ')

G !, ' = ,- ! ,/0 ' ! ./0(!, ') / B

(Importance sampling est.)

(Log-derivative trick)

Conventional policy gradient objective

min
<, /

− 2K G − 4;<
1

− ;< !,'
1
6 !, 'log ,/ !, '

./0 !, ' = ;DF0
∑MNO
P QR | !O = !, 'O = '
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● Same as supervised MLE: ! ≔ !($ ; &), ) = 1, , = -

● M-step is to min
1

2
3

● Solve with probability functional descent (PFD) [Chu et al., 2019]
◯ 41 $ can be optimized by minimizing 567 Ψ $ , where Ψ $ is the influence 

function for 2 at 419
◯ Ψ is obtained with convex duality

◯ So the whole optimization is 

Adversarial learning under SE

29

4: $ , 41 $

Ψ $ = argmax? 567 @ $ − 2∗(@)

• For notation simplicity, we use $ to replace ($, C)

min
D, 1

− )ℍ F + ,2
1

− 5D $
1
! $F $ , 41 $

min1 max? 567 @ $ − 2∗(@)

Convex conjugate of 2
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Adversarial learning under SE

● Same as supervised MLE: ! ≔ !($ ; &), ) = 1, , = -

● M-step is to min
1

2
3

● Solve with probability functional descent (PFD) [Chu et al., 2019]
◯ 41 $ can be optimized by minimizing 567 Ψ $ , where Ψ $ is the influence 

function for 2 at 419
◯ Ψ is obtained with convex duality

◯ So the whole optimization is 

30

• For notation simplicity, we use $ to replace ($, :)

4; $ , 41 $

min
<, 1

− )ℍ ? + ,2
1

− 5< $
1
! $? $ , 41 $

Ψ $ = argmaxE 567 F $ − 2∗(F)

min1 maxE 567 F $ − 2∗(F)

Parameterize F with an NN HI. 
E.g., when 2 is JSD and

Plugging into the equation 
recovers vanilla GAN training

FJ($) ≔ 0.5 log 1 − HI − 0.5 log2
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Adversarial learning under SE – alternative interpretation

● Recall in MLE, ! is a fixed function

● Intuitively, see ! as a similarity metric that measures similarity of sample 
" against real data #

● Instead of the above manually fixed metric, can we learn a metric !$?

31

! ≔ !(" ; #) = log -"∗∼# 0"∗ "

min4, 6 − 8ℍ : + <= 1 − -4 "
1! ": " , ?6 "
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Adversarial learning under SE – alternative interpretation

● Augment the standard objective to account for !:

● Set " = 0, & = 1. Under mild conditions, the objective recovers:
◯ Vanilla GAN [Goodfellow et al., 2014], when ( is JS-divergence and )* is a binary 

classifier
◯ )-GAN [Nowozin et al., 2016], when ( is )-divergence
◯ W-GAN [Arjovsky et al., 2017], when ( is Wasserstein distance and )* is a 1-

Lipschitz function

32* Proofs adapted from Farnia & Tse 2018: “A Convex Duality Framework for GANs”

min. max* min1 − "ℍ 4 + &( 1 − 61 7
1 + 689(7)

1)* 74 7 , <. 7 )* 7
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More algorithms recovered by SE
● Data augmentation / re-weighting / RAML
● Unified EM (UEM) / Constraint-driven learning (CoDL)
● Curiosity-driven RL
● Knowledge distillation 

33!"

RL as inference MLE augment

RAML(’16)
re-weighting

active learning curiosity-driven RL(’91)

posterior 
regularization

CoDL(’07)

UEM(’12)

GANs

knowledge 
distillation
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A table of ALL models/paradigms 

34

!

Paradigms not (yet) 
covered by SE:
◯ Meta learning
◯ Lifelong learning
◯ …

Interesting future work to 
study the connections
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Learning with ALL experiences

35

Distinct experiences are used in learning in the same way

! ", $, %
" = ++

Focus on what to use, instead of worrying about how to use

Plug arbitrary available experiences into the learning procedure!

() ⋅ " + | . (. ⋅ " + | (/ ⋅ " + |+ (0 ⋅ " + |+ …
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min$, & − (ℍ * + ,- 1 − /$ 0
11(0)* 0 , 4& 0

The zoo of optimization solvers

● Like the Standard Equation as a master loss for many paradigms, is there a 
master solver  for optimization of loss?

● No (yet) such a general algorithm
● Alternating GD:
◯ Most widely used
◯ EM, Variational EM (Variational inference), Wake-Sleep, …

36

Optimization of the loss, subject to * ∈ 6789:.
Convex to * when (, , > 0 and - is convex  

Optimization 
solver

Loss Model 
architecture

	min%	ℒ '
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Generalization of the classic 
Variational EM

Generalized E-step
Support all types of experiences
(Teacher)

M-step
(Student)

! " = exp 1
1 / )* log ./(") + 3 " ; .

6

(1) reference in closed form:

(2) matching the model to the reference:

The extended EM as a primal solver
min:, / − 6ℍ ! + *> 1 − ?: "

13(" ; . )! " , ./ "

min/ ?: "
1log ./(")

when 6, * > 0 and > = CE

• Limitations: e.g., not applicable when > is other divergence measures
• The EM as a template has been further enhanced/adapted in different ways in various paradigms
• in RL: TRPO, PPO, MaxEnt inverse RL, …
• in GANs: many extensions to stabilize training



38

Some “advanced” (specialized) techniques

● Alternating GD:
◯ EM, Variational EM (Variational inference), Wake-Sleep, …
◯ SGD, Back-propagation (BP)

● Convex duality, Lagrangian -- Kernel Tricks
● Integer linear programming (ILP)
● Probability functional descent (PFD) [Chu et al., 2019] -- Influence function, 

gives a neat formulation of GAN-like optimization and a few others
38

Optimization of the loss, subject to ! ∈ #$%&'.
Convex to ! when (, * > 0 and - is convex  

min1, 2 − (ℍ ! + *- 1 − 71 8
19(8)! 8 , <2 8

Optimization 
solver

Loss Model 
architecture

	min%	ℒ '
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I: Duality

● Structured MaxEnt Discrimination (SMED) [Zhu and Xing, 2013]:

◯ Solve the (primal) Lagrangian:

◯ Solve Lagrangian multipliers ! from the dual problem (when                                            )

min
%, '()

− +, - − ./%
1

+ 2(4)

6. 8. −/% Δ:; <; > − Δℓ; < ≤ A; ∀C

log G >

max
!(), ∑KLMN

O
;,<P<L

∗
R; < Δℓ;(<) −

1
2
O

;,<P<L
∗
R; < ΔT; <

U

G > = W > 0, Y ; 2 A = ∑A;,

Allows kernel trick for 
nonlinear interactions 
b/w experiences

- > = exp
1

1
/ ](!)

. log G(>) + ∑;,<P<L∗ R;(<)(Δ:; <; > − Δℓ; < )

+
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II: Influence Function and Probability Functional Descent

● Gradient descent in the space of probability measures ! "

● Influence function Ψ$ % :

● With a linear approximation &ℐ ( to ℐ(() around (+:

● Thus, once we obtain the influence function, we can optimize ( by 
decreasing ,-∼$ Ψ$/ %

40

min$∈!(4) ℐ(() ℐ: ! " → ℝ : a probability functional

8ℐ$ 9 = ;
4
Ψ$ % 9 8%

= ,< Ψ$ % − ,$ Ψ$ %
Gateaux differential of ℐ at 
( in the direction 9 = > − (

&ℐ ( = ℐ (+ + 8ℐ$@ ( − (+ = ,-∼$ Ψ$/ % + ABCDE.

[Chu et al., 2019] 
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Adversarial learning using PFD 

◯ Often no closed-form influence function, e.g., when ! is JSD or W-
distance 

◯ Approximate with convex duality:
§ Convex conjugate  ℐ∗ $ = sup

)

∫
+
$ , - ./ − ℐ -

§ Influence function is obtained via
§ Parameterize $ as below to recover optimization of generator and discriminator

◯ The whole optimization of ℐ(2) is thus

41

ℐ 24 = !
1
26 , , 24 ,

Ψ9: / = argmax@ A,∼9: $ , − ℐ∗($)

min4 max@A9EFGF log JK − A9: log (1 − JK)[Chu et al., 2019] 

$L(,) ≔ 0.5 log 1 − JK − 0.5 log2

ΨRS = argmaxK A9EFGF log JK − A9: log (1 − JK)
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RL using PFD

● E.g., Policy iteration in RL
◯ (Conventional) loss:

◯ Influence function

◯ Thus, optimize !" by minimizing 

42

ℐ !" = −&'((*)&',(-|*)[ 0(*, -) ]

Ψ',4 - = −&'((*)[ 0 *, - ]

&', Ψ',4 - = −&'((*)&',(-|*) 0 *, -

!5 * − state distribution;  !"(-|*) − policy 

[Chu et al., 2019] 
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Model architecture

● Relatively well explored:
◯ Neural network design
◯ Graphical model design
◯ Compositional architectures

43

Optimization 
solver

Loss Model 
architecture

	min%	ℒ '

min$, & − (ℍ * + ,- 1 − /$ 0
11(0)* 0 , 4& 0
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Model architecture

● Relatively well explored:
◯ Neural network design
◯ Graphical model design
◯ Compositional architectures

44

AlexNet
8 layers

VGG 
19 layers

GoogleNet
22 layers

ResNet
152 layers

● Activation functions
◯ Linear and ReLU
◯ Sigmoid and tanh
◯ Etc.

● Layers
◯ Fully connected
◯ Convolutional & pooling
◯ Recurrent
◯ ResNets
◯ Etc.
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Cell: LSTM, GRU …

Recur-Attention:  Bah, Luo …

RNN

Layers: Conv, Dense …

FFNetwork

Classifier

Encoder

Encoder-Decoder

Decoder

Transformer

Multi-head Attention

Embeder

WordEmbeder PositionEmbeder

Model architecture

● Relatively well explored:
◯ Neural network design
◯ Graphical model design
◯ Compositional architectures

45

Neural network components



46

Model architecture

● Relatively well explored:
◯ Neural network design
◯ Graphical model design
◯ Compositional architectures

46[Courtesy: Sutton & McCallum, 2010]
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Model architecture

● Relatively well explored:
◯ Neural network design
◯ Graphical model design
◯ Compositional architectures

47

E D

A

! " E D

Prior

! "# E D

M

! "

C

E D! "#

E D! "

C0/1

E1

E2

E3

D1

D2

D3

"1
"2
"3

!1

!2
!3

! E
D1

D2

C
"1

"2
0/1

(a) (b) (d)(c)

(e) (f) (g)

E refers to encoder, D to decoder, C to Classifier, A to attention, Prior to prior distribution, and M to memory
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Summary: a blueprint of ML

● Loss
◯ Standard equation 

● Algorithm
◯ The extended EM algorithm gives a general primal solution in many 

cases
◯ PFD gives a neat formulation for some cases (e.g., GANs)

● Model architecture: vast library of building blocks à compositionality 

48

min$, & − ($ ),*
1 + -. 1 − /ℍ 12 ) , * 1 ), * , 3& ), *

Next: practical implications of the ML blueprint

Optimization 
solver

Loss Model 
architecture

	min%	ℒ '
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Why this is useful? 

● Learning with ALL experiences

● Complex interaction between experiences

● Multi-agent game theoretic learning using all experiences 
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Learning with ALL experiences:
Empowering algorithms
● Unifying perspective of diverse paradigms (each tailored for a specific type of 

experience) under SE

● Combining or integrating different experiences
● Re-use or repurpose originally specialized algorithms 
◯ Systematic idea transfer and solution exchange
◯ Solving challenges in one paradigm by applying well-known solutions from another
◯ Accelerate innovations across research areas

50
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● Rules in PR ⇔ Reward in RL
● Empower reward learning algo. to learning rules [Hu et al., 2018]

51

Learning with ALL experiences:
Empowering algorithms – Ex.1

"
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● Data in supervised MLE ⇔ Reward in RL
● Empower reward learning algo. to learning data augmentation [Hu et al., 2019]

52

Learning with ALL experiences:
Empowering algorithms – Ex.2

"
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● GANs ⇔ RL ⇔ VI
● Empower RL/VI algo. (e.g., PPO) to stabilize GAN training [Wu et al., 2020]

53

Learning with ALL experiences:
Empowering algorithms – Ex.3

"
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● GANs ⇔ RL ⇔ VI
● Empower RL/VI algo. (e.g., PPO) to stabilize GAN training [Wu et al., 2020]

54

Learning with ALL experiences:
Empowering algorithms – Ex.3

(a) Re-use PPO objective for GAN training: 
discourage excessively large updates by 
“trapping” the update size around 1

(b) Re-use importance weighting in a VI 
perspective: greatly reduced variance in both 
generator and discriminator losses

Improved performance on a range of problems, including 
image generation, text generation, and text style transfer
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● Distinct experiences are all modeled with ! " , $
● Combine and plug different ! functions into SE to drive learning

● Enable applications for controllable content generation

55

min(, ) − +( ",$
1 + ./ 1 − 0ℍ 2! " , $ 2 ", $ , 3) ", $

45 ⋅ !7898 + 4: ⋅ !;<=>? + 4@ ⋅ !;>A8;7 + ⋯

=

Controlling sentiment

The film is full of imagination!

The film is strictly routine!

Pos

Neg

[Hu et al., 2017; Yang et al., 2018]

Controllable text generation
! = sentiment classifier

+ linguistic rules 
+ language model

Learning with ALL experiences:
Experience compositionality – Ex.1
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● Distinct experiences are all modeled with ! " , $
● Combine and plug different ! functions into SE to drive learning

● Enable applications for controllable content generation

56

Source Generated images under different poses
[Hu et al., 2018]

Learning with ALL experiences:
Experience compositionality – Ex.2

min(, ) − +( ",$
1 + ./ 1 − 0ℍ 2! " , $ 2 ", $ , 3) ", $

45 ⋅ !7898 + 4: ⋅ !;<=>? + 4@ ⋅ !;>A8;7 + ⋯

=

Fashion image generation
! = (small) data

+ human gesture constraints 
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Learning with ALL experiences:
Experience compositionality – Ex.2

source target pose true targetBase model
+ Learned 

knowledge (Ours)
+ Fixed 

knowledge
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Operational compositionality 

● Build ML applications like 
composing music

58

E D

A

! " E D

Prior

! "# E D

M

! "

C

E D! "#

E D! "

C0/1

E1

E2

E3

D1

D2

D3

"1
"2
"3

!1

!2
!3

! E
D1

D2

C
"1

"2
0/1

(a) (b) (d)(c)

(e) (f) (g)
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Texar Stack – Operationalized “View” of 
Composable ML
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Composable ML with Texar

● Highly modularized programming

◯ Data, structure, loss, learning, …

◯ Intuitive conceptual-level APIs

● Easy switch between learning algorithms

◯ Plug in & out modules 

◯ No changes to irrelevant parts
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It is only slightly overstating the case to say 
that physics is the study of symmetry.

-- Phil Anderson (1923-2020), Physicist, Nobel laureate
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Food for thoughts: How far would this take us?

● Physics
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62

Maxwell’s 
equations

General 
relativity

Standard 
model

Theory of 
everything

1861 1910s 1970s

Unified way of thinking
✦ Systematic understanding
✦ Automated solution creation
✦ Improved ML accessibility
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Food for thoughts: How far would this take us?

● Physics

● Machine Learning 
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Toward unified theoretical analysis

● How do we characterize learning with different experiences? 
◯ E.g., data examples, rules, reward, auxiliary models (discriminators), …
◯ Combinations of above experiences

● What’s the appropriate statistical tool to characterize learning with logical 
rules? Can we guarantee performance improvement when using more 
experiences? What if experiences are noisy?

● A possible direction: 
◯ Existing theoretical analyses deal with learning with data examples, online 

learning, reinforcement learning, .. in silos 
◯ With the standard equation, can we re-purpose the analyses to other 

paradigms, e.g., learning with logical rules?
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