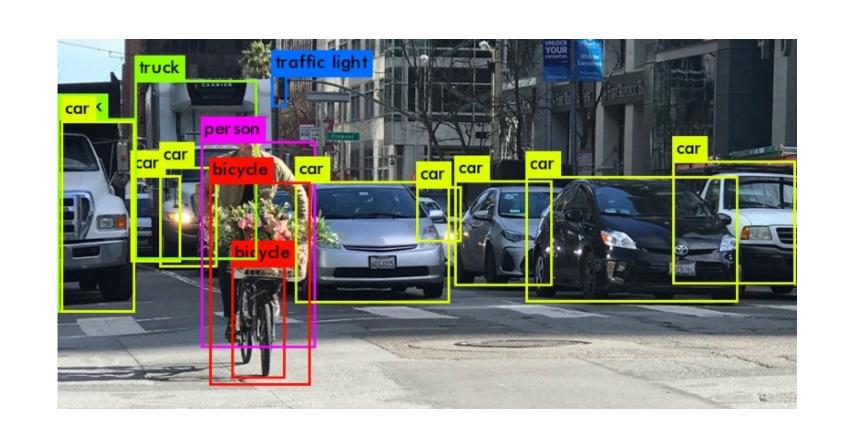
Petuum

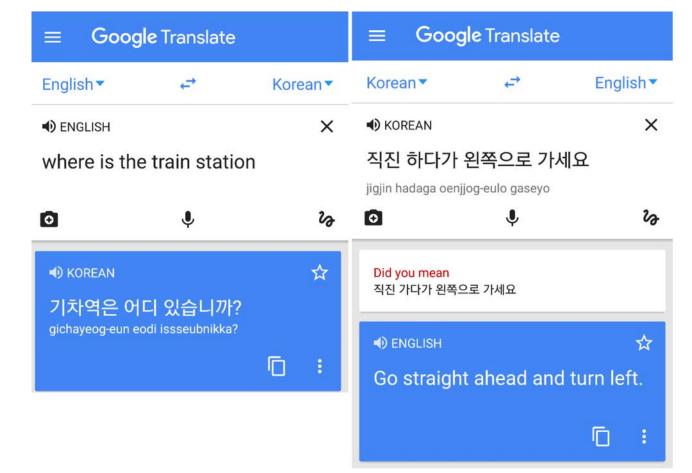
A Blueprint of Standardized and Composable ML

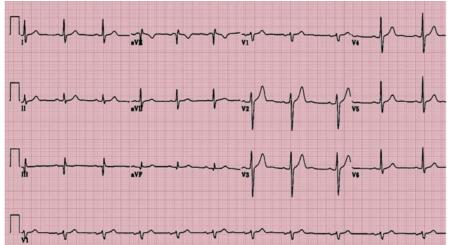
Eric Xing and Zhiting Hu

Petuum & Carnegie Mellon

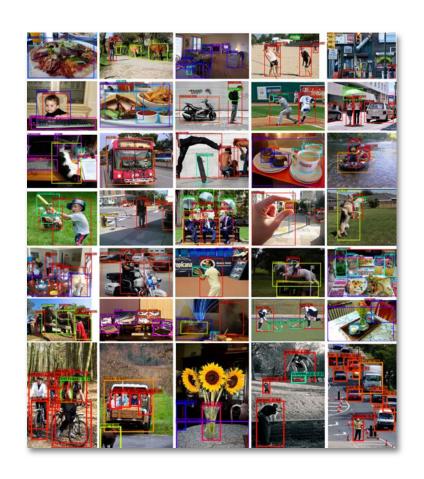
The universe of problems ML/Al is trying to solve







Data and experiences of all kinds

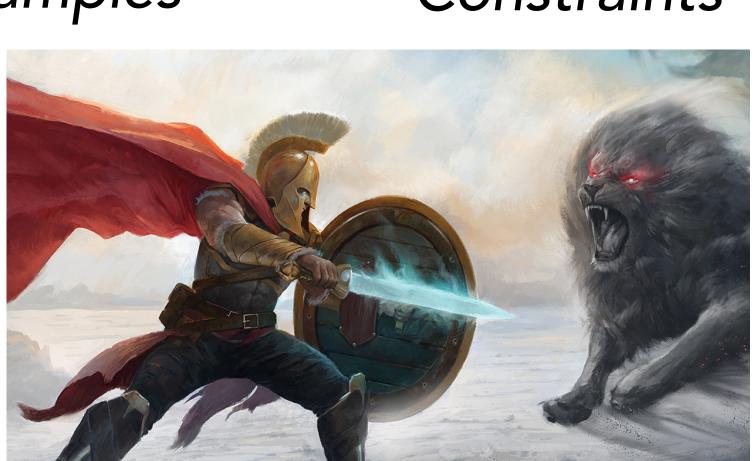


Data examples

Petuum

Type-2 diabetes is 90% more common than type-1

Constraints

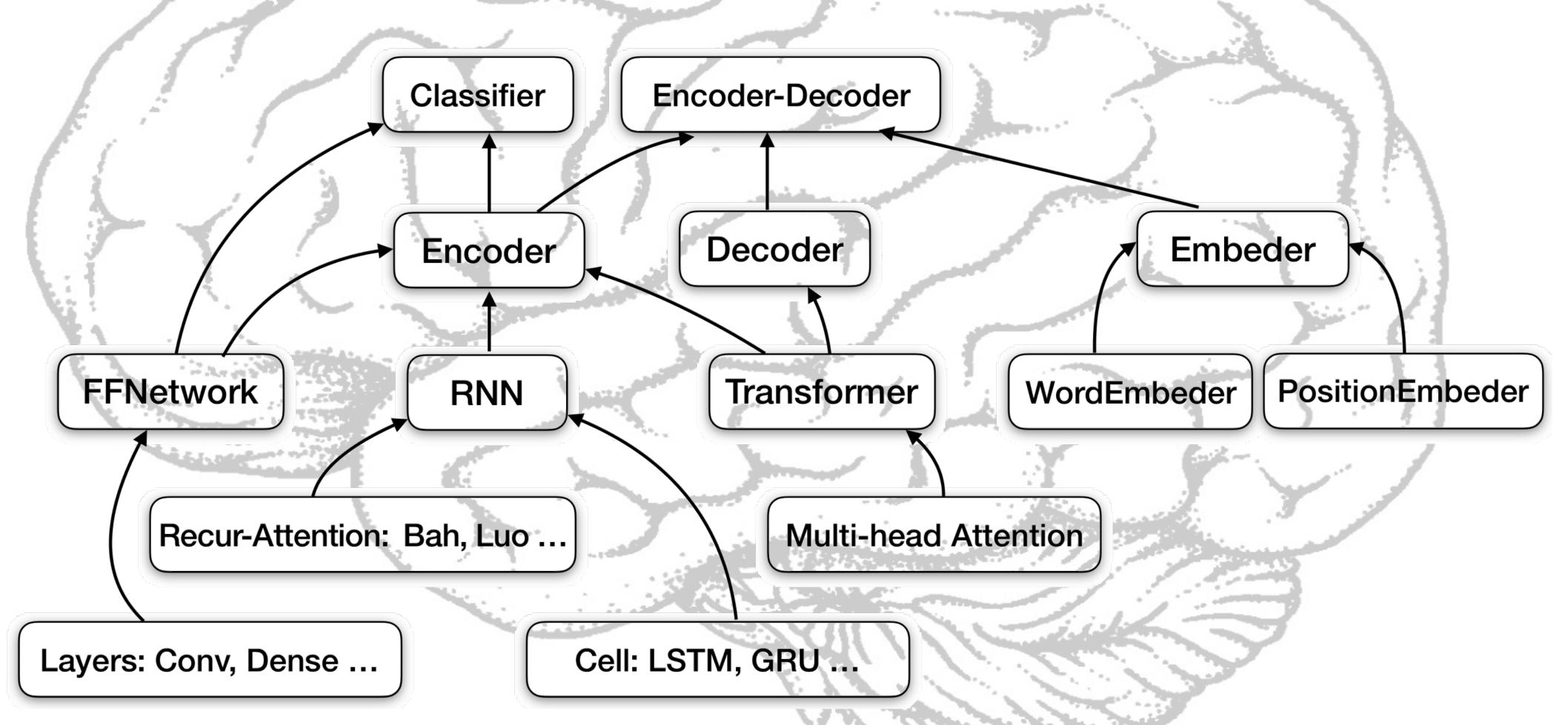


Adversaries

Rewards

Auxiliary agents

How human beings solve them ALL?



The Zoo of ML/Al Models

- Neural networks
 - Convolutional networks
 - AlexNet, GoogleNet, ResNet
 - Recurrent networks, LSTM
 - Transformers
 - BERT, GPT2
- Graphical models
 - Bayesian networks
 - Markov Random fields
 - Topic models, LDA
 - o HMM, CRF

- Kernel machines
 - Radial Basis Function Networks
 - Gaussian processes
 - Deep kernel learning
 - Maximum margin
 - SVMs
- Decision trees
- PCA, Probabilistic PCA, Kernel PCA, ICA
- Boosting

The Zoo of algorithms and heuristics

maximum likelihood estimation reinforcement learning as inference

data re-weighting

inverse RL

policy optimization

active learning

data augmentation

actor-critic

reward-augmented maximum likelihood

label smoothing

imitation learning

softmax policy gradient

adversarial domain adaptation

GANs

posterior regularization

JANS

constraint-driven learning

knowledge distillation

intrinsic reward

prediction minimization

generalized expectation

regularized Bayes

learning from measurements

energy-based GANs

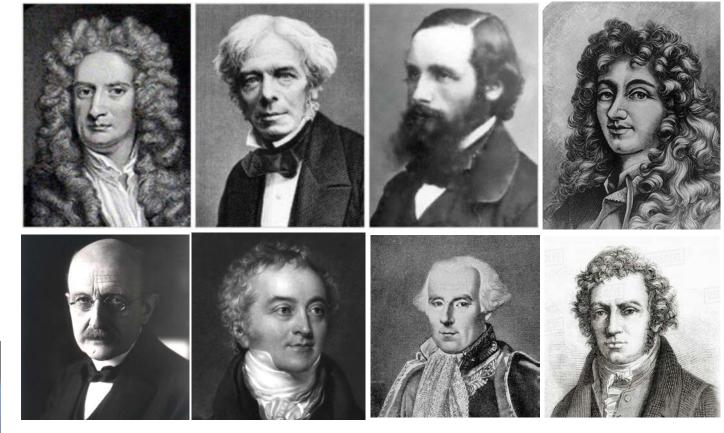
weak/distant supervision

Really hard to navigate, and to realize

- Depending on individual expertise and creativity
- Bespoke, delicate pieces of art
- Like an airport with different runways for every different types of aircrafts

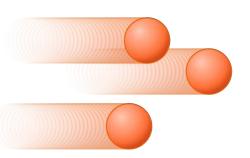
Physics in the 1800's

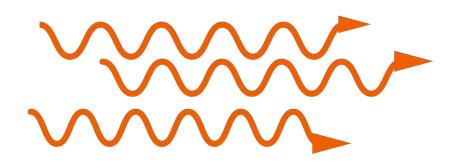
- Electricity & magnetism:
 - Coulomb's law, Ampère, Faraday, ...



- Theory of light beams:
 - o Particle theory: Isaac Newton, Laplace, Plank
 - Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell

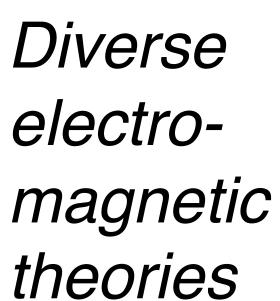
o Aristotle, Galileo, Newton, ...





Maxwell's equations

Maxwell's Eqns: original form

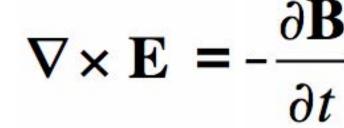


$e + \frac{df}{dx} + \frac{dg}{dy} + \frac{dh}{dz} = 0$	(1)	Gauss' Law
$\mu \alpha = \frac{dH}{dy} - \frac{dG}{dz}$ $\mu \beta = \frac{dF}{dz} - \frac{dH}{dx}$ $\mu \gamma = \frac{dG}{dx} - \frac{dF}{dy}$	(2)	Equivalent to Gauss' Law for magnetism
$P = \mu \left(\gamma \frac{dy}{dt} - \beta \frac{dz}{dt} \right) - \frac{dF}{dt} - \frac{d\Psi}{dz}$ $Q = \mu \left(\alpha \frac{dz}{dt} - \gamma \frac{dx}{dt} \right) - \frac{dG}{dt} - \frac{d\Psi}{dy}$ $R = \mu \left(\beta \frac{dx}{dt} - \alpha \frac{dy}{dt} \right) - \frac{dH}{dt} - \frac{d\Psi}{dz}$	(3)	Faraday's Law (with the Lorentz Force and Poisson's Law)
$\frac{dy}{dy} - \frac{d\beta}{dz} = 4\pi p' \qquad p' = p + \frac{df}{dt}$ $\frac{d\alpha}{dz} - \frac{dy}{dx} = 4\pi q' \qquad q' = q + \frac{dg}{dt}$ $\frac{d\beta}{dx} - \frac{d\alpha}{dy} = 4\pi r' \qquad r' = r + \frac{dh}{dt}$	(4)	Ampère-Maxwell Law
$P = -\xi p$ $Q = -\xi q$ $R = -\xi r$		Ohm's Law
P = kf $Q = kg$ $R = kh$		The electric elasticity equation ($\mathbf{E} = \mathbf{D}/\epsilon$)
$\frac{de}{dr} + \frac{dp}{dr} + \frac{dq}{dr} + \frac{dr}{dr} = 0$		Continuity of charge

Simplified w/ rotational symmetry

$$\nabla \cdot \mathbf{D} = \rho_{v}$$

$$\nabla \cdot \mathbf{B} = 0$$



$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

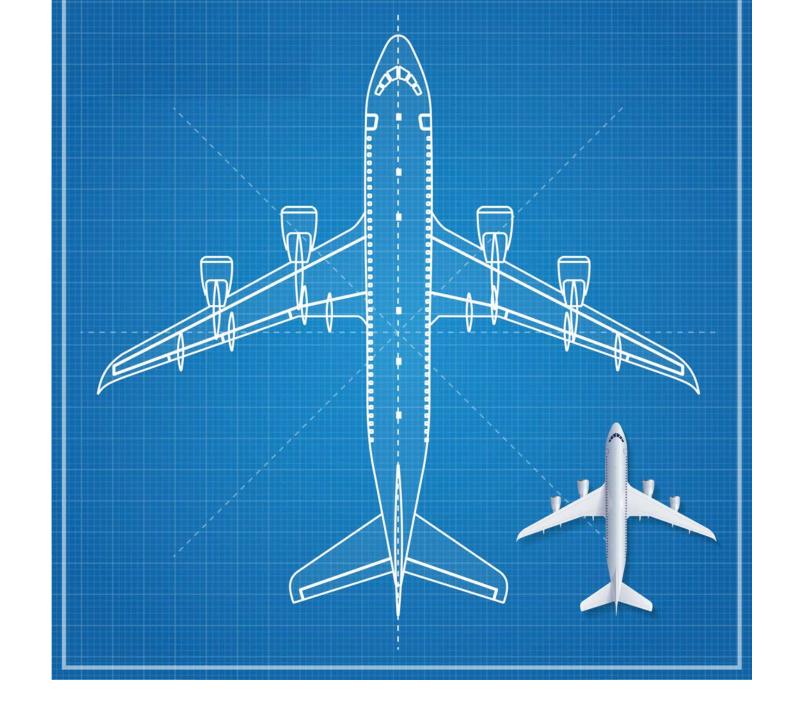
Further simplified w/ symmetry of special relativity

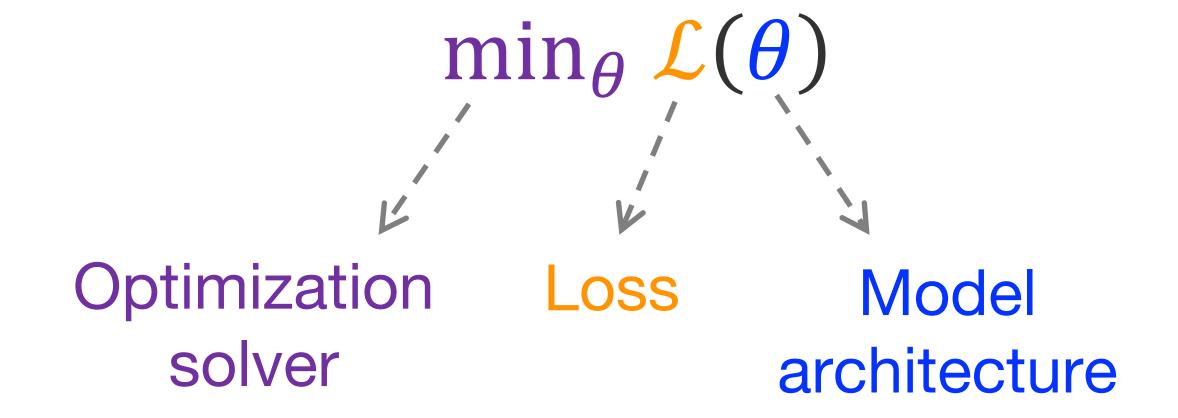
$$\varepsilon^{uvk\lambda}\partial_v F_{k\lambda} = 0$$

$$\partial_v F^{uV} = \frac{4\pi}{c} j^u$$

How about a blueprint of ML

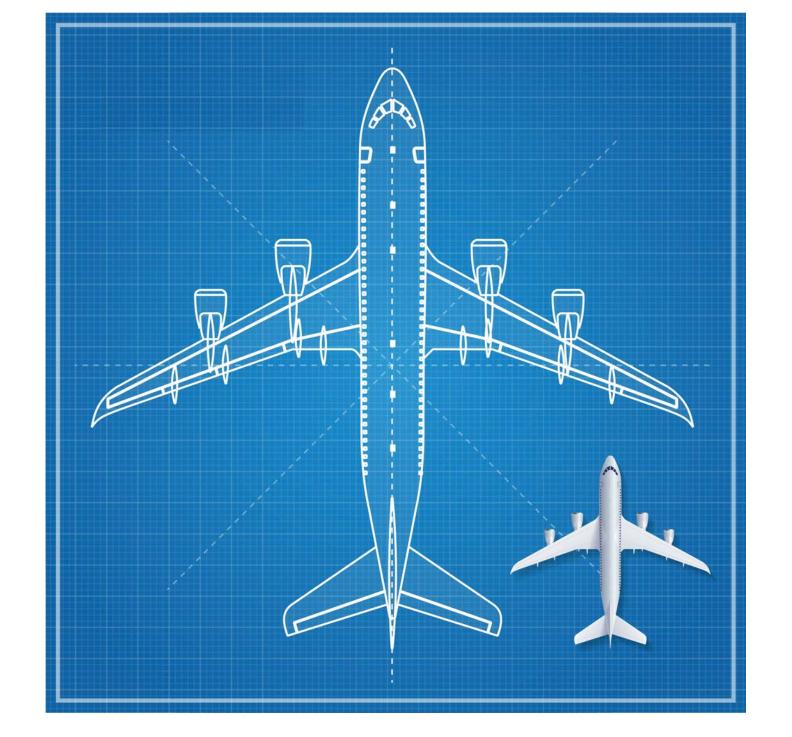
- Loss
- Optimization solver
- Model architecture

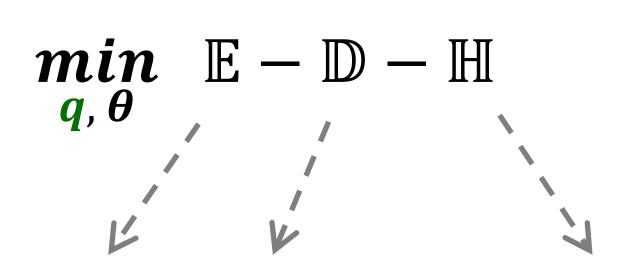




How about a blueprint of ML

- Loss
- Optimization solver
- Model architecture





Experience Divergence Uncertainty

MLE at a close look:

- The most classical learning algorithm
- Supervised:
 - Observe data $\mathcal{D} = \{(x^*, y^*)\}$
 - Solve with SGD

$$\min_{\theta} - \mathbb{E}_{(\boldsymbol{x}^*, \boldsymbol{y}^*) \sim \mathcal{D}} \left[\log p_{\theta}(\boldsymbol{y}^* | \boldsymbol{x}^*) \right]$$

- Unsupervised:
 - Observe $\mathcal{D} = \{(x^*)\}$, y is latent variable

$$\min_{\theta} - \mathbb{E}_{\boldsymbol{x}^* \sim \mathcal{D}} \left[\log \int_{\boldsymbol{v}} p_{\theta}(\boldsymbol{x}^*, \boldsymbol{y}) \right]$$

- Posterior $p_{\theta}(y|x)$
- Solve with EM:
 - ullet E-step imputes latent variable $oldsymbol{y}$ through expectation on complete likelihood
 - M-step: supervised MLE

MLE as Entropy Maximization

• Duality between Supervised MLE and maximum entropy, when p is exponential family

Shannon entropy
$$H$$

$$\min_{p(x,y)} H(p) \qquad \qquad \text{features } T(x,y)$$

$$s.t. \ \mathbb{E}_p[T(x,y)] = \mathbb{E}_{(x^*,y^*)\sim\mathcal{D}}[T(x,y)] \qquad \qquad \text{data as constraints}$$
 Solve w / Lagrangian method ψ

$$p(x, y) = \exp\{\theta \cdot T(x)\} / Z(\theta)^{-1}$$
 Lagrangian multiplier θ

$$\min_{\theta} - \mathbb{E}_{(x^*,y^*)\sim\mathcal{D}}[\theta \cdot T(x,y)] + \log Z(\theta) \rightarrow \text{Negative log-likelihood}$$

MLE as Entropy Maximization

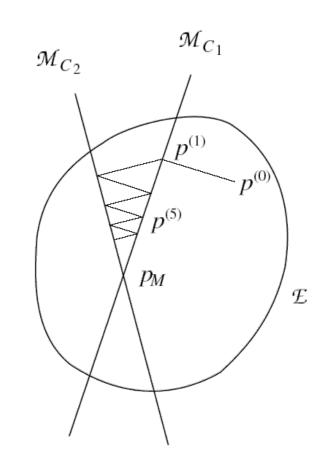
- Unsupervised MLE can be achieved by maximizing the negative free energy:
 - o Introduce auxiliary distribution q(y|x) (and then play with its entropy and cross entropy, etc.)

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} \left[\log \frac{p_{\theta}(\mathbf{x}^*, \mathbf{y})}{q(\mathbf{y}|\mathbf{x}^*)} \right] + \text{KL}(q(\mathbf{y}|\mathbf{x}^*) || p_{\theta}(\mathbf{y}|\mathbf{x}^*))$$

$$\geq H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)}[\log p_{\theta}(\mathbf{x}^*,\mathbf{y})]$$

Algorithms for Unsupervised MLE

$$\min_{\theta} - \mathbb{E}_{x^* \sim \mathcal{D}} \left[\log \int_{\mathbf{y}} p_{\theta}(x^*, \mathbf{y}) \right]$$



1) Solve with EM

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} \left[\log \frac{p_{\theta}(\mathbf{x}^*, \mathbf{y})}{q(\mathbf{y}|\mathbf{x}^*)} \right] + \text{KL}(q(\mathbf{y}|\mathbf{x}^*) \mid\mid p_{\theta}(\mathbf{y}|\mathbf{x}^*))$$

$$\geq H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} [\log p_{\theta}(\mathbf{x}^*, \mathbf{y})]$$

E-step: Maximize $\mathcal{L}(q, \theta)$ w.r.t q, equivalent to minimizing KL by setting $q(y|x^*) = p_{\theta^{old}}(y|x^*)$

 $\square \quad \text{M-step: Maximize } \mathcal{L}(q, \boldsymbol{\theta}) \text{ w.r.t } \boldsymbol{\theta} \colon \max_{\boldsymbol{\theta}} \mathbb{E}_{q(\boldsymbol{y}|\boldsymbol{x}^*)}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^*, \boldsymbol{y})]$

Algorithms for Unsupervised MLE (cont'd)

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} \left[\log \frac{p_{\theta}(\mathbf{x}^*, \mathbf{y})}{q(\mathbf{y}|\mathbf{x}^*)} \right] + \text{KL}(q(\mathbf{y}|\mathbf{x}^*) || p_{\theta}(\mathbf{y}|\mathbf{x}^*)) \right]$$

$$\geq H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} [\log p_{\theta}(\mathbf{x}^*, \mathbf{y})]$$

- 2) When model p_{θ} is complex, directly working with the true posterior $p_{\theta}(y|x^*)$ is intractable \Rightarrow Variational EM
 - Consider a sufficiently restricted family Q of q(y|x) so that minimizing the KL is tractable
 - E.g., parametric distributions, factorized distributions
 - E-step: Maximize $\mathcal{L}(q, \boldsymbol{\theta})$ w.r.t $q \in Q$, equivalent to minimizing KL
 - M-step: Maximize $\mathcal{L}(q, \boldsymbol{\theta})$ w.r.t $\boldsymbol{\theta}$: $\max_{\boldsymbol{\theta}} \mathbb{E}_{q(\boldsymbol{y}|\boldsymbol{x}^*)}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^*, \boldsymbol{y})]$

Algorithms for Unsupervised MLE (cont'd)

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} \left[\log \frac{p_{\theta}(\mathbf{x}^*, \mathbf{y})}{q(\mathbf{y}|\mathbf{x}^*)} \right] + \text{KL}(q(\mathbf{y}|\mathbf{x}^*) || p_{\theta}(\mathbf{y}|\mathbf{x}^*)) \right]$$

$$\geq H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} [\log p_{\theta}(\mathbf{x}^*, \mathbf{y})]$$

- 3) When q is complex, e.g., deep NNs, optimizing q in E-step is difficult (e.g., high variance) \Rightarrow Wake-Sleep algorithm [Hinton et al., 1995]
 - Sleep-phase (E-step): $\min_{\phi} \text{KL}(p_{\theta}(\mathbf{y}|\mathbf{x}^*)||q_{\phi}(\mathbf{y}|\mathbf{x}^*)) \longrightarrow Reverse KL$
 - Wake-phase (M-step): Maximize $\mathcal{L}(q, \theta)$ w.r.t θ : $\max_{\theta} \mathbb{E}_{q(y|x^*)}[\log p_{\theta}(x^*, y)]$

Other tricks: reparameterization in VAE ('2014), control variates in NVIL ('2014)

Quick summary of MLE

- Supervised:
 - Duality with MaxEnt
 - Solve with SGD, IPF ...
- Unsupervised:
 - Lower bounded by negative free energy
 - Solve with EM, VEM, Wake-Sleep, ...
- Close connections to MaxEnt
- With MaxEnt, algorithms (e.g., EM) arises naturally

Posterior Regularization (PR)

- Make use of constraints in Bayesian learning
 - An auxiliary posterior distribution $q(\theta)$
 - Slack variable ξ , constant weight $\alpha = \beta > 0$

$$\min_{q, \xi} - \alpha H(q) - \beta \mathbb{E}_{q} \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] + \xi$$

$$s.t. - \mathbb{E}_{q} \left[f_{\theta}(\mathbf{x}, \mathbf{y}) \right] \leq \xi$$
[Gand

[Ganchev et al., 2010]

- E.g., max-margin constraint for linear regression [Jaakkola et al., 1999] and general models (e.g., LDA, NNs) [Zhu et al., 2014] more later
- Solution for q

$$q(\boldsymbol{\theta}) = \exp\left\{ \frac{\beta \log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y}) + f(\boldsymbol{x}, \boldsymbol{y})}{\alpha} \right\} / Z$$

More general learning leveraging PR

- No need to limit to Bayesian learning
- E.g., Complex rule constraints on general models [Hu et al., 2016], where
 - o q can be over arbitrary variables, e.g., q(x, y)
 - $p_{\theta}(x,y)$ is NNs of arbitrary architectures with parameters θ

$$\min_{q, \theta, \xi} - \alpha H(q) - \beta \mathbb{E}_{q} \left[\log p_{\theta}(x, y) \right] + \xi$$

$$s. t. \mathbb{E}_{q(x, y)} \left[1 - r(x, y) \right] \leq \xi$$

E.g., r(x, y) is a 1st-order logical rule: If sentence x contains word ``but'' \Rightarrow its sentiment y is the same as the sentiment after "but"

EM for the general PR

Rewrite without slack variable:

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_{q(\mathbf{x}, \mathbf{y})} \left[f(\mathbf{x}, \mathbf{y}) \right]$$

Solve with EM

• E-step:
$$q(x, y) = \exp\left\{\frac{\beta \log p_{\theta}(x, y) + f(x, y)}{\alpha}\right\} / Z$$

• M-step:
$$\min_{\theta} \mathbb{E}_q \left[\log p_{\theta}(x, y) \right]$$

Reformulating unsupervised MLE with PR

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) \ge H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)}[\log p_{\theta}(\mathbf{x}^*, \mathbf{y})]$$

• Introduce arbitrary q(y|x)

$$\min_{q,\theta,\xi} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] + \xi$$

$$s. t. - \mathbb{E}_q \left[f(\mathbf{x}; \mathcal{D}) \right] < \xi$$

Data as constraint.

Given $x \sim \mathcal{D}$, this constraint doesn't influence the solution of q and θ

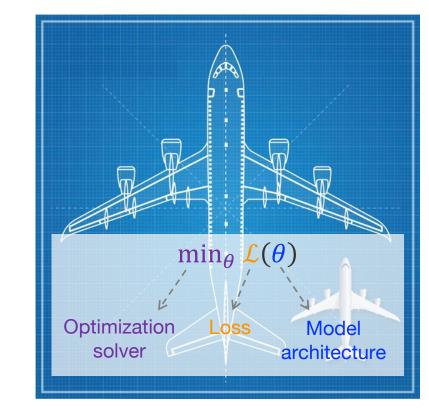
- $\circ f(\mathbf{x}; \mathcal{D}) := \log \mathbb{E}_{x^* \sim \mathcal{D}} [\mathbb{1}_{x^*}(\mathbf{x})]$
 - A constraint saying x must equal to one of the true data points
 - Or alternatively, the (log) expected similarity of x to dataset \mathcal{D} , with $1(\cdot)$ as the similarity measure (we'll come back to this later)

$$\alpha = \beta = 1$$

The standard equation

$$\min_{q,\theta,\xi\geq 0} \alpha \mathbb{D}\left(q(\mathbf{x},\mathbf{y}), p_{\theta}(\mathbf{x},\mathbf{y})\right) - \beta \mathbb{H}(q) + \xi$$

$$s. t. -\mathbb{E}_{q(\mathbf{x},\mathbf{y})}\left[f(\mathbf{x},\mathbf{y})\right] < \xi$$



Equivalently:

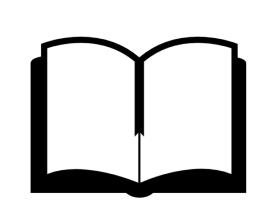
$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \alpha \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \beta \mathbb{H}(q)$$

3 terms:

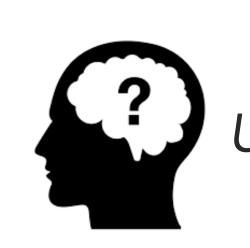
Experiences

(exogenous regularizations) (fitness) (self-regularization) e.g., data examples, rules e.g., Cross Entropy e.g., Shannon entropy

Uncertainty



Divergence



Uncertainty 23

Re-visit unsupervised MLE under SE

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_q \left[f(\mathbf{x}, \mathbf{y}) \right]$$

$$f := f(x; \mathcal{D}) = \log \mathbb{E}_{x^* \sim \mathcal{D}} [\mathbb{1}_{x^*}(x)]$$
 $\alpha = \beta = 1$

$$q = q(y|x)$$

Re-visit supervised MLE under SE

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_{q(\mathbf{x}, \mathbf{y})} \left[f(\mathbf{x}, \mathbf{y}) \right]$$

$$f := f(x, y; \mathcal{D}) = \log \mathbb{E}_{(x^*, y^*) \sim \mathcal{D}} [\mathbb{1}_{(x^*, y^*)}(x, y)] \quad \alpha = 1, \beta = \epsilon$$

Active learning under SE

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_{q(\mathbf{x}, \mathbf{y})} \left[f(\mathbf{x}, \mathbf{y}) \right]$$

$$f \coloneqq f(\mathbf{x}, \mathbf{y}; \mathit{Oracle}) + u(\mathbf{x})$$
 $\alpha = \tau \ (> 0), \beta = \epsilon$

$$f(x, y; Oracle) = \log \mathbb{E}_{x^* \sim \mathcal{D}, y^* \sim Oracle(x^*)} [\mathbb{1}_{(x^*, y^*)}(x, y)]$$
 prediction uncertainty on x , e.g., Shannon entropy $H(p_{\theta}(y|x))$

Equivalent to:

- Draw a data point x^* according to $\exp\{u(x)/\tau\}$
- Get label y* for x* from the oracle
- Maximize log likelihood on (x^*, y^*)

Reinforcement learning (RL) under SE -- I

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_{q(\mathbf{x}, \mathbf{y})} \left[f(\mathbf{x}, \mathbf{y}) \right]$$

- Map to RL $_{\circ}^{\circ}$ $_{p_d(x)}^{\star}$ state distribution language
- \circ x state s, y action a

 - o $Q_{\theta t}(x,y)$ expected future reward of taking action y in state x and continuing the current policy p_{θ^t} $Q_{\theta^t}(x,y) = \mathbb{E}_{p_{\theta^t}}[\sum_{t=0}^{\infty} r_t \mid x_0 = x, y_0 = y]$

 RL-as-inference [Dayan'97; Levine'18, ...]

$$f(\mathbf{x},\mathbf{y}) := Q_{\theta^t}(\mathbf{x},\mathbf{y}) \quad \alpha = \beta = \tau \ (>0)$$

Reinforcement learning (RL) under SE -- II

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_{q(\mathbf{x}, \mathbf{y})} \left[f(\mathbf{x}, \mathbf{y}) \right]$$

- Map to RL $_{\circ}^{\circ}$ $_{p_d(x)}^{\circ}$ state distribution language
- \circ x state s, y action a

 - o $Q_{\theta^t}(x,y)$ expected future reward of taking action y in state x and continuing the current policy $p_{\theta}t$ $Q_{\theta^t}(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}_{\boldsymbol{p}_{\theta^t}}[\sum_{t=0}^{\infty} \boldsymbol{r}_t \mid \boldsymbol{x}_0 = \boldsymbol{x}, \boldsymbol{y}_0 = \boldsymbol{y}]$



Policy gradient

$$f(\mathbf{x}, \mathbf{y}) := \log Q_{\theta^t}(\mathbf{x}, \mathbf{y})$$
 $\alpha = \beta = 1$

- E-step $q(\mathbf{x}, \mathbf{y}) = p_d(\mathbf{x})p_{\theta^t}(\mathbf{y}|\mathbf{x})Q_{\theta^t}(\mathbf{x}, \mathbf{y}) / Z$
- M-step

$$\mathbb{E}_{q(x,y)}[\nabla_{\theta}\log p_{\theta}(y|x)] = 1/Z \cdot \mathbb{E}_{p_{d}(x)p_{\theta}(y|x)}[Q_{\theta}(x,y)\nabla_{\theta}\log p_{\theta}(y|x)] \text{ (Importance sampling est.)}$$

$$= 1/Z \cdot \nabla_{\theta} \mathbb{E}_{p_{d}(x)p_{\theta}(y|x)}[Q_{\theta}(x,y)] \text{ (Log-derivative trick)}$$

Adversarial learning under SE

• For notation simplicity, we use x to replace (x, y)

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(\mathbf{x}), p_{\theta}(\mathbf{x})\right) - \mathbb{E}_{q(\mathbf{x})}\left[f(\mathbf{x})\right]$$

- Same as supervised MLE: $f := f(x; \mathcal{D})$, $\alpha = 1$, $\beta = \epsilon$
- M-step is to $\min_{\theta} \mathbb{D}\left(p_d(x), p_{\theta}(x)\right)$
- Solve with probability functional descent (PFD) [Chu et al., 2019]
 - $p_{ heta}(x)$ can be optimized by minimizing $\mathbb{E}_{p_{ heta}}[\Psi(x)]$, where $\Psi(x)$ is the influence function for \mathbb{D} at $p_{ heta^t}$
 - Ψ is obtained with convex duality

$$\Psi(\mathbf{x}) = \operatorname{argmax}_{\psi} \mathbb{E}_{p_{\theta}}[\psi(\mathbf{x})] - \mathbb{D}^*(\psi)$$

So the whole optimization is

$$\min_{\theta} \max_{\psi} \mathbb{E}_{p_{\theta}}[\psi(\mathbf{x})] - \mathbb{D}^*(\psi)$$

Convex conjugate of D

Adversarial learning under SE

• For notation simplicity, we use x to replace (x, y)

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(\mathbf{x}), p_{\theta}(\mathbf{x})\right) - \mathbb{E}_{q(\mathbf{x})}\left[f(\mathbf{x})\right]$$

- Same as supervised MLE: $f := f(x; \mathcal{D})$, $\alpha = 1$, $\beta = \epsilon$
- M-step is to $\min_{\theta} \mathbb{D}\left(p_d(x), p_{\theta}(x)\right)$
- Solve with probability functional descent (PFD) [Chu et al., 2019]
 - $p_{\theta}(x)$ can be optimized by minimizing $\mathbb{E}_{p_{\theta}}[\Psi(x)]$, where $\Psi(x)$ is the influence function for \mathbb{D} at p_{θ}^t
 - Ψ is obtained with convex duality

$$\Psi(\mathbf{x}) = \operatorname{argmax}_{\psi} \mathbb{E}_{p_{\theta}}[\psi(\mathbf{x})] - \mathbb{D}^{*}(\psi)$$

So the whole optimization is

 $\min_{\theta} \max_{\psi} \mathbb{E}_{p_{\theta}}[\psi(\mathbf{x})] - \mathbb{D}^*(\psi)$

Parameterize ψ with an NN C_{ϕ} . E.g., when $\mathbb D$ is JSD and

$$\psi_{\phi}(\mathbf{x}) \coloneqq 0.5 \log \left(1 - C_{\phi}\right) - 0.5 \log 2$$

Plugging into the equation recovers vanilla GAN training

Adversarial learning under SE – alternative interpretation

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f(x)\right]$$

• Recall in MLE, f is a fixed function

$$f \coloneqq f(\mathbf{x}; \mathcal{D}) = \log \mathbb{E}_{\mathbf{x}^* \sim \mathcal{D}} \left[\mathbb{1}_{\mathbf{x}^*}(\mathbf{x}) \right]$$

- Intuitively, see f as a similarity metric that measures similarity of sample x against real data \mathcal{D}
- Instead of the above manually fixed metric, can we learn a metric f_{ϕ} ?

Adversarial learning under SE – alternative interpretation

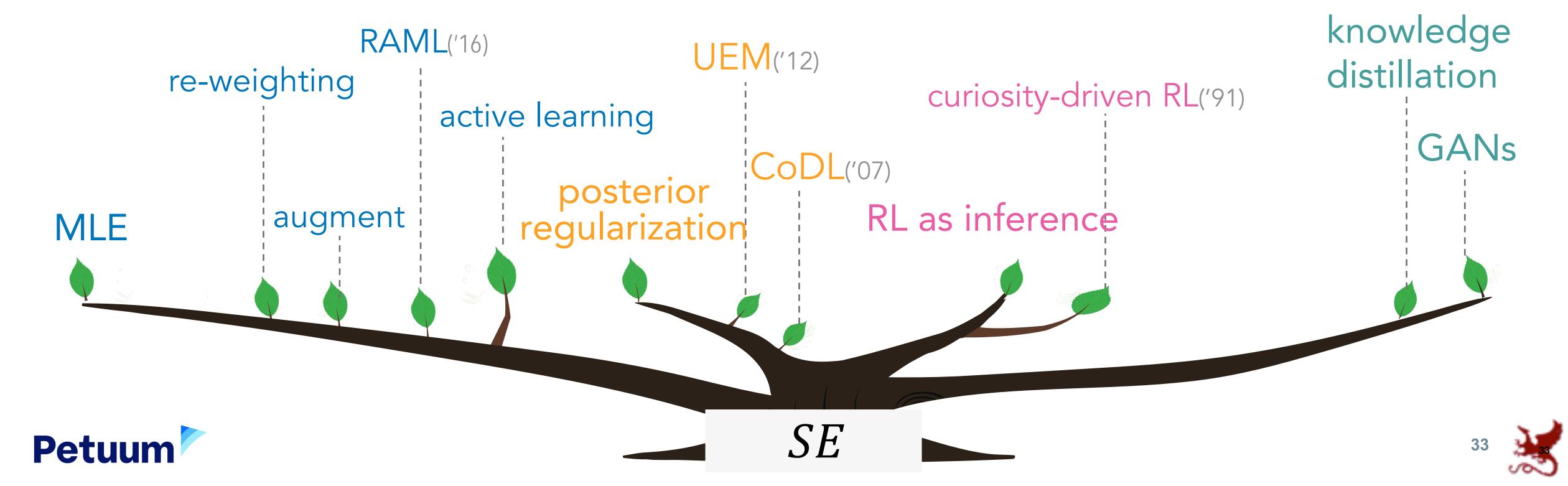
• Augment the standard objective to account for ϕ :

$$\min_{\theta} \max_{q} \min_{q} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f_{\phi}(x)\right] + \mathbb{E}_{p_{d}(x)}\left[f_{\phi}(x)\right]$$

- Set $\alpha = 0$, $\beta = 1$. Under mild conditions, the objective recovers:
 - Vanilla GAN [Goodfellow et al., 2014], when $\mathbb D$ is JS-divergence and f_{ϕ} is a binary classifier
 - f-GAN [Nowozin et al., 2016], when \mathbb{D} is f-divergence
 - W-GAN [Arjovsky et al., 2017], when \mathbb{D} is Wasserstein distance and f_{ϕ} is a 1-Lipschitz function

More algorithms recovered by SE

- Data augmentation / re-weighting / RAML
- Unified EM (UEM) / Constraint-driven learning (CoDL)
- Curiosity-driven RL
- Knowledge distillation



A table of ALL models/paradigms

Algorithm	f	α	β	\mathbb{D}
Unsupervised MLE	$f(oldsymbol{x}; \mathcal{D})$	1	1	CE
Supervised MLE	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})$	1	ϵ	CE
Active Learn.	$f(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}) + u(\boldsymbol{x})$	temp., > 0	ϵ	CE
Reward-augment MLE	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	ϵ	CE
PG for Seq. Gen.	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	1	CE
Posterior Reg.	$f_{rule}(m{x},m{y})$	weight, > 0	α	CE
Unified EM	$f_{rule}(oldsymbol{x},oldsymbol{y})$	weight, $\in \mathbb{R}$	1	CE
Policy Gradient (PG)	$\log Q^{ex}(oldsymbol{x},oldsymbol{y})$	1	1	CE
+ Intrinsic Reward	$\log Q^{ex}(\boldsymbol{x},\boldsymbol{y}) + Q^{in}(\boldsymbol{x},\boldsymbol{y})$	1	1	CE
RL as inference	$Q^{ex}(oldsymbol{x},oldsymbol{y})$	temp., > 0	α	CE
Vanilla GAN	binary classifier	0	1	JSD
f-GAN	discriminator	0	1	f-divg.
WGAN	1-Lipschitz discriminator	0	1	W dist.

Paradigms not (yet) covered by SE:

- Meta learning
- Lifelong learning
- 0 ...

Interesting future work to study the connections

Learning with ALL experiences

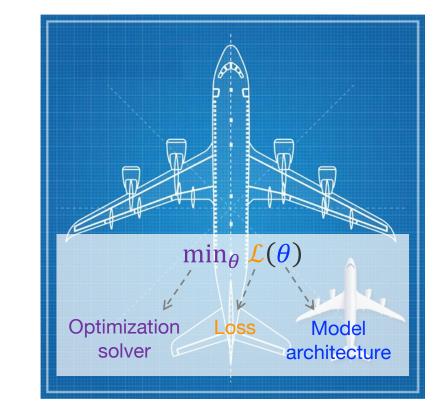
- Distinct experiences are used in learning in the same way
- · Plug arbitrary available experiences into the learning procedure!

$$\mathcal{P}(f,\alpha,\beta)$$

$$f = w_1 \cdot f(x \mid \boxtimes) + w_2 \cdot f(x \mid \boxtimes) + w_3 \cdot f(x \mid \$) + w_4 \cdot f(x \mid \boxtimes) + \cdots$$

Focus on what to use, instead of worrying about how to use

The zoo of optimization solvers



$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f(x)\right]$$

Optimization of the loss, subject to $q \in \mathcal{P}_{prob}$. Convex to q when $\alpha, \beta > 0$ and \mathbb{D} is convex

- Like the Standard Equation as a master loss for many paradigms, is there a
 master solver for optimization of loss?
- No (yet) such a general algorithm
- Alternating GD:
 - Most widely used
 - EM, Variational EM (Variational inference), Wake-Sleep, ...

The extended EM as a primal solver

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f(x; .)\right]$$

when $\alpha, \beta > 0$ and $\mathbb{D} = CE$

(1) reference in closed form:

$$q(x) = \exp \left\{ \frac{\beta \log p_{\theta}(x) + f(x; .)}{\alpha} \right\} / Z$$

(2) matching the model to the reference:

$$\min_{\theta} \mathbb{E}_{q(x)} \left[\log p_{\theta}(x) \right]$$

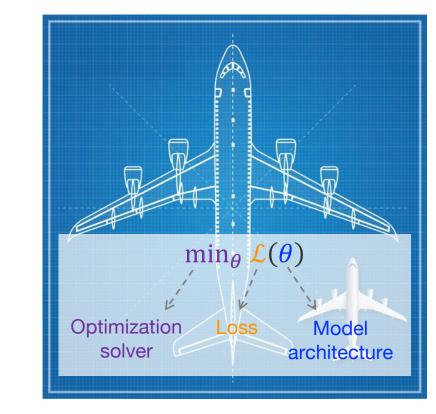
Generalization of the classic Variational EM

- Generalized E-step

 Support all types of experiences

 (Teacher)
- --- *M-step* (Student)
- ullet Limitations: e.g., not applicable when $\mathbb D$ is other divergence measures
- The EM as a template has been further enhanced/adapted in different ways in various paradigms
 - in RL: TRPO, PPO, MaxEnt inverse RL, ...
 - in GANs: many extensions to stabilize training

Some "advanced" (specialized) techniques



$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f(x)\right]$$

Optimization of the loss, subject to $q \in \mathcal{P}_{prob}$. Convex to q when $\alpha, \beta > 0$ and \mathbb{D} is convex

Alternating GD:

Petuum

- EM, Variational EM (Variational inference), Wake-Sleep, ...
- SGD, Back-propagation (BP)
- Convex duality, Lagrangian -- Kernel Tricks
- Integer linear programming (ILP)
- Probability functional descent (PFD) [Chu et al., 2019] -- Influence function, gives a neat formulation of GAN-like optimization and a few others

I: Duality

• Structured MaxEnt Discrimination (SMED) [Zhu and Xing, 2013]:

$$\min_{q, \xi \ge 0} - \alpha H(q) - \beta \mathbb{E}_{q} \left[\log p(\boldsymbol{\theta}) \right] + U(\boldsymbol{\xi})$$

$$s. t. -\mathbb{E}_{q} \left[\Delta F_{i}(\boldsymbol{y}; \boldsymbol{\theta}) - \Delta \ell_{i}(\boldsymbol{y}) \right] \le \xi_{i} \quad \forall i$$

Solve the (primal) Lagrangian:

$$q(\boldsymbol{\theta}) = \exp \left\{ \frac{\beta \log p(\boldsymbol{\theta}) + \sum_{i, y \neq y_i^*} \lambda_i(y) (\Delta F_i(y; \boldsymbol{\theta}) - \Delta \ell_i(y))}{\alpha} \right\} / Z(\lambda)$$

Solve Lagrangian multipliers λ from the dual problem (when $p(\theta) = \mathcal{N}(\theta|0,I)$; $U(\xi) = \sum \xi_i$,)

$$\max_{\lambda \geq 0, \sum \lambda_i = 1} \sum_{i, y \neq y_i^*} \lambda_i(y) \Delta \ell_i(y) - \frac{1}{2} \left| \sum_{i, y \neq y_i^*} \lambda_i(y) \Delta T_i(y) \right|^2 < \infty$$

Allows kernel trick for nonlinear interactions b/w experiences

II: Influence Function and Probability Functional Descent

• Gradient descent in the space of probability measures $\mathcal{P}(X)$

$$\min_{p \in \mathcal{P}(X)} \mathcal{I}(p)$$
 $\mathcal{I}: \mathcal{P}(X) \to \mathbb{R}: \text{a probability functional}$

• Influence function $\Psi_p(x)$:

Gateaux differential of
$$\mathcal{I}$$
 at p in the direction $\chi = q - p$
$$= \mathbb{E}_q \big[\Psi_p(x) \chi(dx) \big] - \mathbb{E}_p \big[\Psi_p(x) \big]$$

• With a linear approximation $\tilde{I}(p)$ to I(p) around p_0 :

$$\tilde{\mathcal{I}}(p) = \mathcal{I}(p_0) + d\mathcal{I}_{p_t}(p - p_0) = \mathbb{E}_{x \sim p} [\Psi_{p_0}(x)] + const.$$

• Thus, once we obtain the influence function, we can optimize p by decreasing $\mathbb{E}_{x\sim p} \big[\Psi_{p_0}(x) \big]$

Adversarial learning using PFD

$$\mathcal{I}(p_{\theta}) = \mathbb{D}\left(p_d(\mathbf{x}), p_{\theta}(\mathbf{x})\right)$$

- Often no closed-form influence function, e.g., when D is JSD or Wdistance
- Approximate with convex duality:
 - Convex conjugate $\mathcal{I}^*(\psi) = \sup_{u} \int_{x} \psi(x)u(dx) \mathcal{I}(u)$ Influence function is obtained via $\Psi_{p_{\theta}}(x) = \operatorname{argmax}_{\psi} \mathbb{E}_{x \sim p_{\theta}}[\psi(x)] \mathcal{I}^*(\psi)$

 - Parameterize ψ as below to recover optimization of generator and discriminator

$$\psi_{\phi}(\mathbf{x}) \coloneqq 0.5 \log \left(1 - C_{\phi}\right) - 0.5 \log 2$$

$$\Psi_{JS} = \operatorname{argmax}_{\phi} \mathbb{E}_{p_{data}} [\log C_{\phi}] - \mathbb{E}_{p_{\theta}} [\log (1 - C_{\phi})]$$

• The whole optimization of $\mathcal{I}(p)$ is thus

$$\min_{\theta} \max_{\psi} \mathbb{E}_{p_{data}} [\log C_{\phi}] - \mathbb{E}_{p_{\theta}} [\log (1 - C_{\phi})]$$
 [Chu et al., 2019]

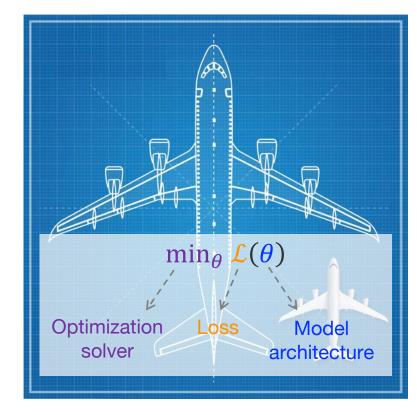
RL using PFD

- E.g., Policy iteration in RL
 - (Conventional) loss: $\mathcal{I}(p_{\theta}) = -\mathbb{E}_{p_d(x)}\mathbb{E}_{p_{\theta}(y|x)}[\ Q(x,y)\]$

$$p_d(x)$$
 – state distribution; $p_{\theta}(y|x)$ – policy

- Influence function $\Psi_{p_{\theta^t}}(y) = -\mathbb{E}_{p_d(x)}[\ Q(x,y)\]$
- \circ Thus, optimize p_{θ} by minimizing

$$\mathbb{E}_{p_{\theta}}\left[\Psi_{p_{\theta}t}\left(\mathbf{y}\right)\right] = -\mathbb{E}_{p_{d}(\mathbf{x})}\mathbb{E}_{p_{\theta}(\mathbf{y}|\mathbf{x})}\left[Q(\mathbf{x},\mathbf{y})\right]$$

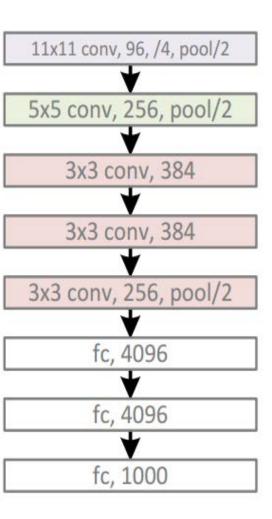


- Relatively well explored:
 - Neural network design
 - Graphical model design
 - Compositional architectures

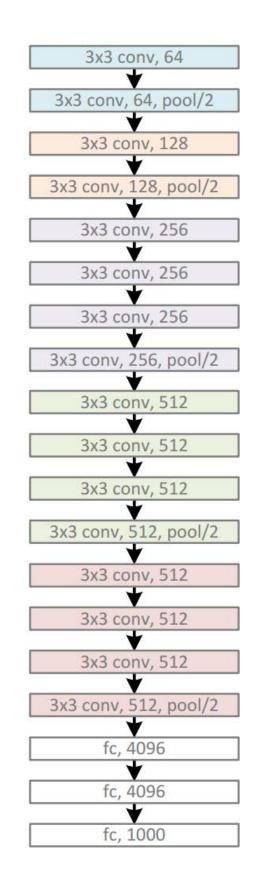
$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f(x)\right]$$

- Relatively well explored:
 - Neural network design
 - Graphical model design
 - Compositional architectures
 - Activation functions
 - Linear and ReLU
 - Sigmoid and tanh
 - o Etc.
 - Layers
 - Fully connected
 - Convolutional & pooling
 - Recurrent
 - ResNets
 - Etc.

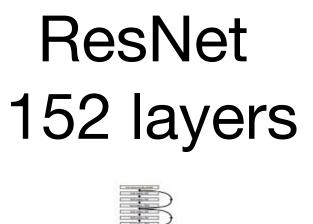
AlexNet 8 layers



VGG 19 layers

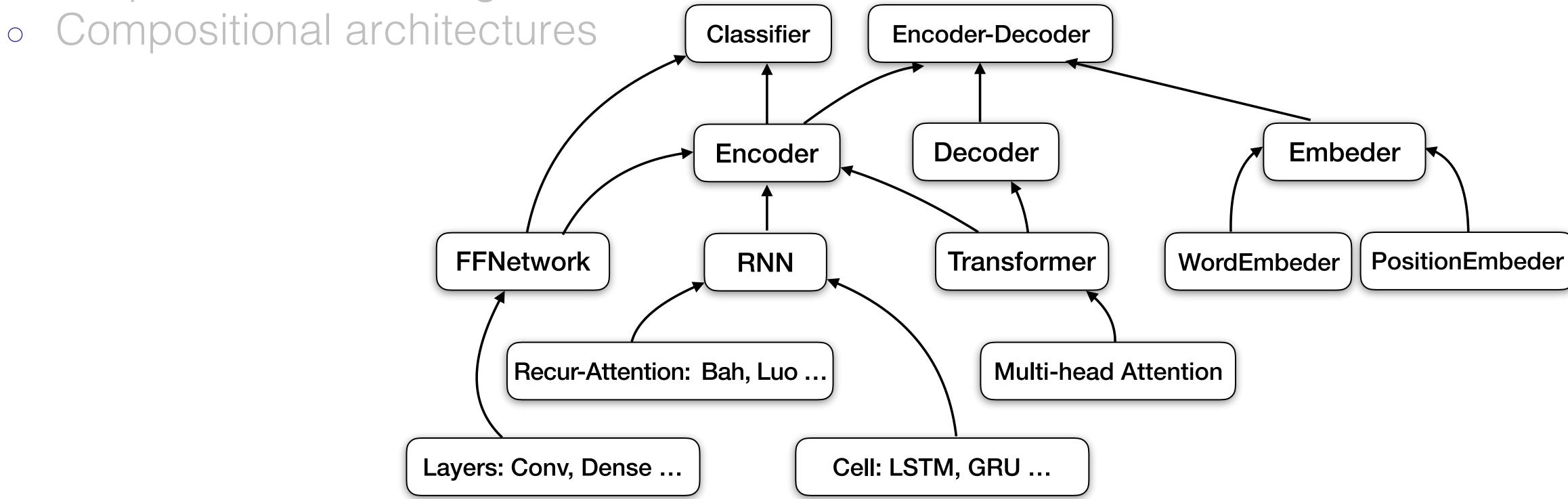


GoogleNet 22 layers

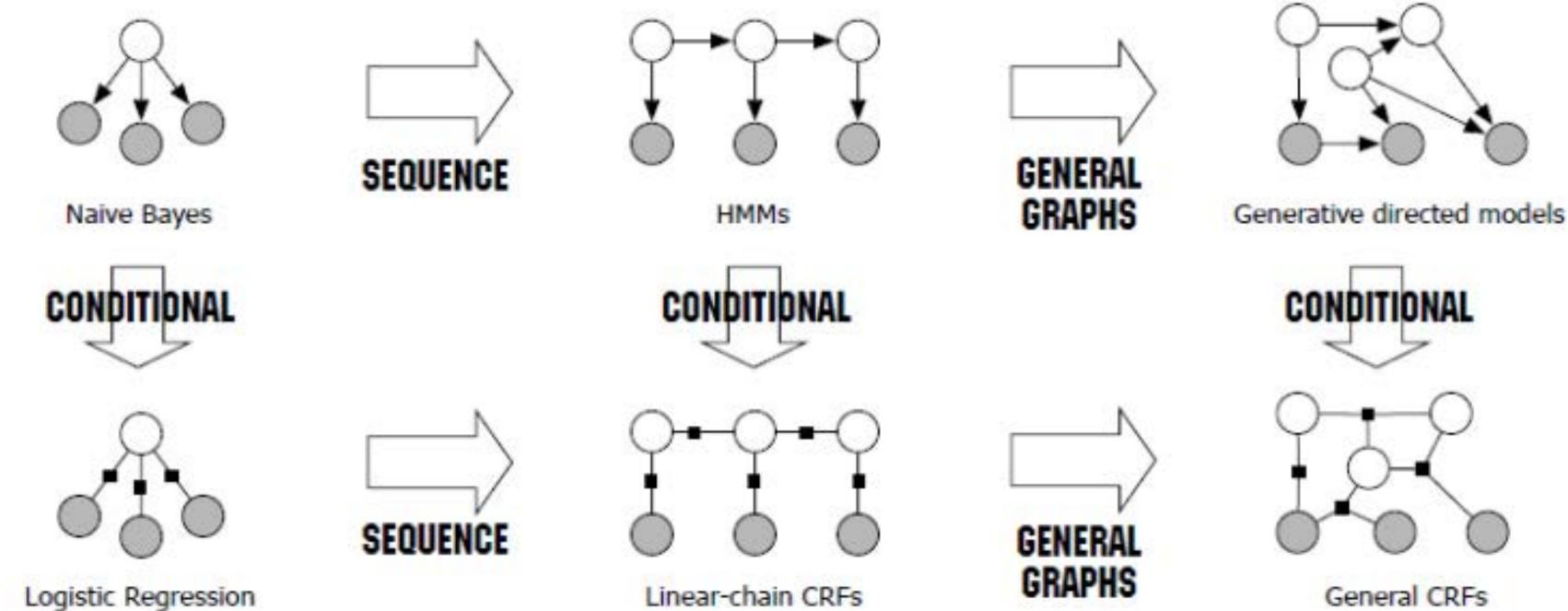


- Relatively well explored:
 - Neural network design
 - Graphical model design

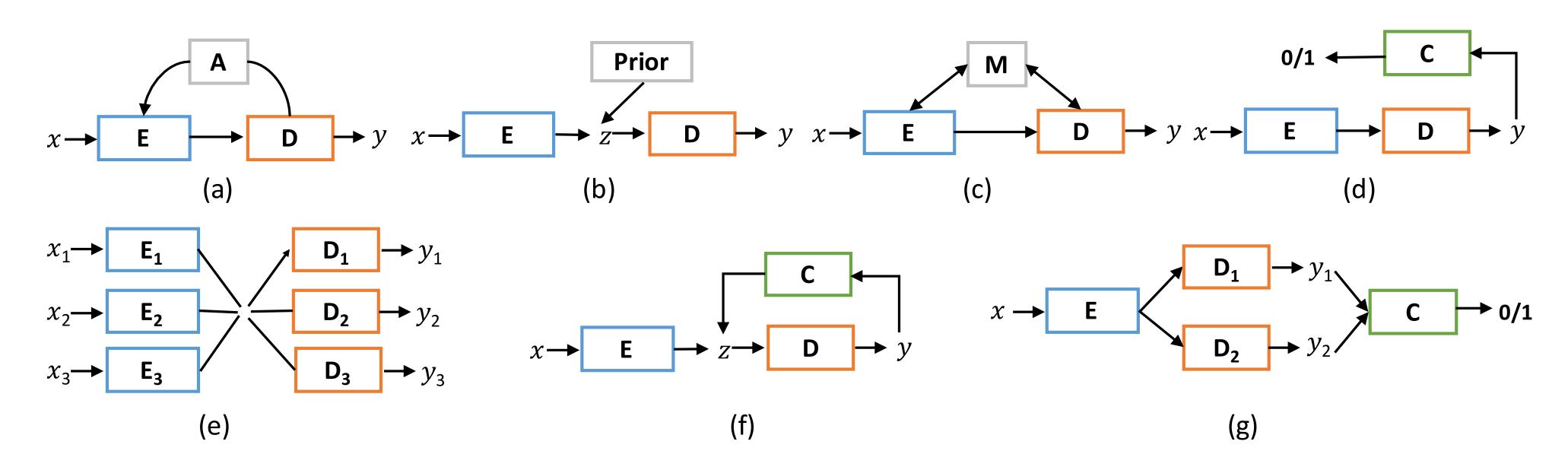
Neural network components



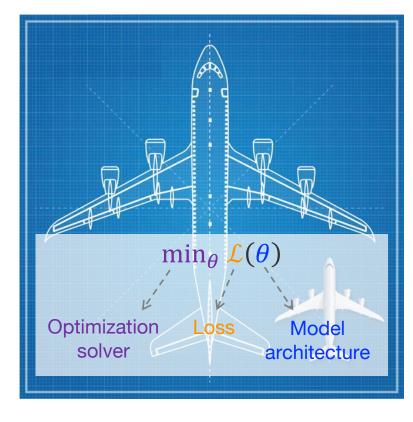
- Relatively well explored:
 - Neural network design
 - Graphical model design
 - Compositional architectures



- Relatively well explored:
 - Neural network design
 - Graphical model design
 - Compositional architectures



Summary: a blueprint of ML



- Loss
 - Standard equation

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \alpha \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \beta \mathbb{H}(q)$$

- Algorithm
 - The extended EM algorithm gives a general primal solution in many cases
 - PFD gives a neat formulation for some cases (e.g., GANs)
- Model architecture: vast library of building blocks → compositionality

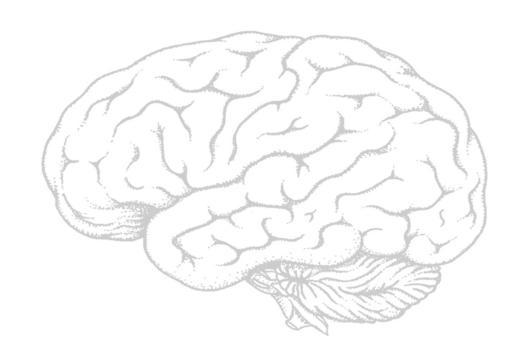
Next: practical implications of the ML blueprint

Why this is useful?

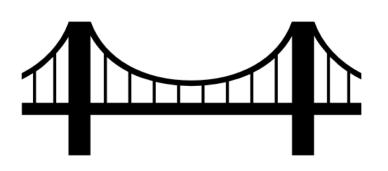
- Learning with ALL experiences
- Complex interaction between experiences
- Multi-agent game theoretic learning using all experiences

Learning with ALL experiences:

Empowering algorithms



 Unifying perspective of diverse paradigms (each tailored for a specific type of experience) under SE



- Combining or integrating different experiences
- Re-use or repurpose originally specialized algorithms
 - Systematic idea transfer and solution exchange
 - Solving challenges in one paradigm by applying well-known solutions from another
 - Accelerate innovations across research areas

Learning with ALL experiences:

Empowering algorithms – Ex.1

- Rules in PR ⇔ Reward in RL
- Empower reward learning algo. to learning rules [Hu et al., 2018]

	Algorithm	f		lpha	β	\mathbb{D}
	Unsupervised MLE	$f(oldsymbol{x}; \mathcal{D})$	1	1	CE	
	Supervised MLE	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})$	1	ϵ	CE	
	Active Learn.	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})+u(oldsymbol{x})$	temp., > 0	ϵ	CE	
	Reward-augment MLE	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	ϵ	CE	
	PG for Seq. Gen.	PG for Seq. Gen. $f_{\text{metric}}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}, r)$				CE
	Posterior Reg.	$f_{rule}(oldsymbol{x},oldsymbol{y})$		weight, > 0	α	CE
	Unified EM	Unified EM $f_{rule}(\boldsymbol{x}, \boldsymbol{y})$		weight, $\in \mathbb{R}$	1	CE
	Policy Gradient (PG)	$\log Q^{ex}(oldsymbol{x},oldsymbol{y})$		1	1	CE
	+ Intrinsic Reward	$\log Q^{ex}(oldsymbol{x},oldsymbol{y}) + Q^{in}(oldsymbol{x},$	1	1	CE	
	RL as inference	$Q^{ex}(oldsymbol{x},oldsymbol{y})$		temp., > 0	α	CE
	Vanilla GAN	binary classifier	0	1	JSD	
	f-GAN	discriminator	0	1	f-divg.	
	WGAN	1-Lipschitz discriminator	0	1	W dist.	

Learning with ALL experiences: Empowering algorithms – Ex.2

- Data in supervised MLE ⇔ Reward in RL
- Empower reward learning algo. to learning data augmentation [Hu et al., 2019]

	Algorithm	f	lpha	β	\mathbb{D}
	Unsupervised MLE	$f(oldsymbol{x}; \mathcal{D})$	1	1	CE
	Supervised MLE	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})$	1	ϵ	CE
	Active Learn.	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})+u(oldsymbol{x})$	temp., > 0	ϵ	CE
	Reward-augment MLE	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	ϵ	CE
	PG for Seq. Gen.	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	1	CE
	Posterior Reg.	$f_{rule}(m{x},m{y})$	weight, > 0	α	CE
	Unified EM	$f_{rule}(m{x},m{y})$	weight, $\in \mathbb{R}$	1	CE
	Policy Gradient (PG)	$\log Q^{ex}(oldsymbol{x},oldsymbol{y})$	1	1	CE
	+ Intrinsic Reward	$\log Q^{ex}(\boldsymbol{x},\boldsymbol{y}) + Q^{in}(\boldsymbol{x},\boldsymbol{y})$	1	1	CE
	RL as inference	$Q^{ex}(oldsymbol{x},oldsymbol{y})$	temp., > 0	α	CE
	Vanilla GAN	binary classifier	0	1	JSD
	$f ext{-}GAN$	discriminator	0	1	f-divg.
	WGAN	1-Lipschitz discriminator	0	1	W dist.

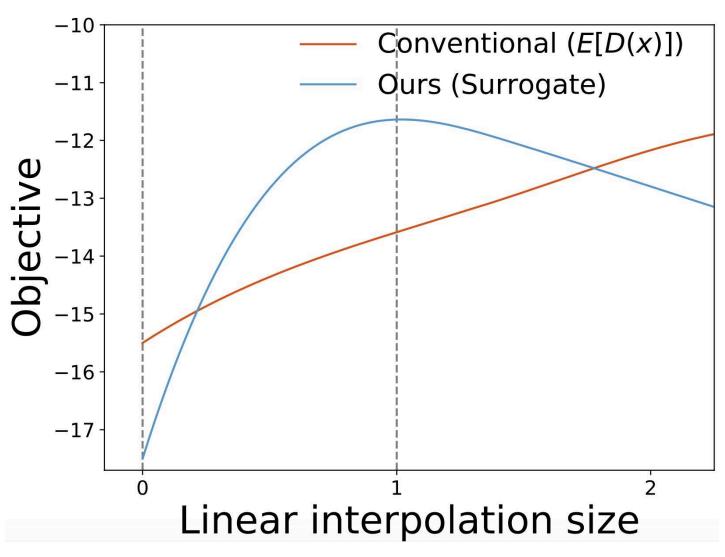
Learning with ALL experiences: Empowering algorithms – Ex.3

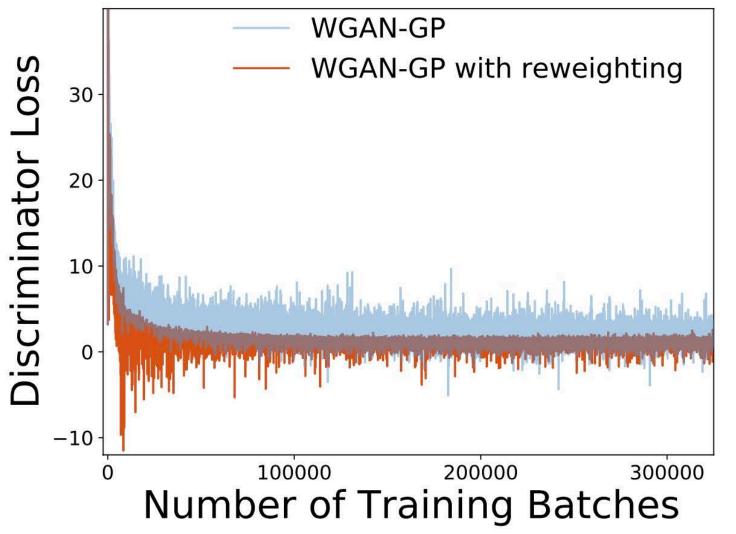
- GANs \Leftrightarrow RL \Leftrightarrow VI
- Empower RL/VI algo. (e.g., PPO) to stabilize GAN training [Wu et al., 2020]

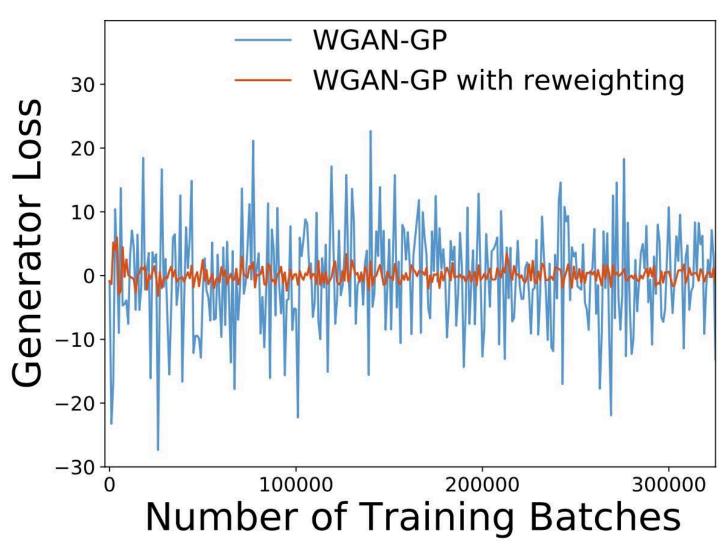
Algorithm	f		α	β	\mathbb{D}
Unsupervised MLE	$f(oldsymbol{x}; \mathcal{D})$		1	1	CE
Supervised MLE	apervised MLE $f(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D})$				CE
Active Learn.	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})+u(oldsymbol{x})$	temp., > 0	ϵ	CE	
Reward-augment MLE	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1 ϵ		CE	
PG for Seq. Gen.	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	1	CE	
Posterior Reg.	$f_{rule}(m{x},m{y})$		weight, > 0	α	CE
Unified EM	$f_{rule}(m{x},m{y})$	weight, $\in \mathbb{R}$	1	CE	
Policy Gradient (PG)	$\log Q^{ex}(oldsymbol{x},oldsymbol{y})$		1	1	CE
+ Intrinsic Reward	$\log Q^{ex}(oldsymbol{x},oldsymbol{y}) + Q^{in}(oldsymbol{x},$	$oldsymbol{y})$	1	1	CE
RL as inference	$Q^{ex}(oldsymbol{x},oldsymbol{y})$		temp., > 0	α	CE
Vanilla GAN	binary classifier		0	1	JSD
f-GAN	discriminator		0	1	f-divg.
WGAN	1-Lipschitz discriminator		0	1	W dist.

Learning with ALL experiences: Empowering algorithms – Ex.3

- GANs ⇔ RL ⇔ VI
- Empower RL/VI algo. (e.g., PPO) to stabilize GAN training [Wu et al., 2020]







(a) Re-use PPO objective for GAN training: discourage excessively large updates by "trapping" the update size around 1

(b) Re-use importance weighting in a VI perspective: greatly reduced variance in both generator and discriminator losses

Improved performance on a range of problems, including image generation, text generation, and text style transfer

Learning with ALL experiences: Experience compositionality – Ex. 1

- Distinct experiences are all modeled with f(x, y)
- Combine and plug different f functions into SE to drive learning

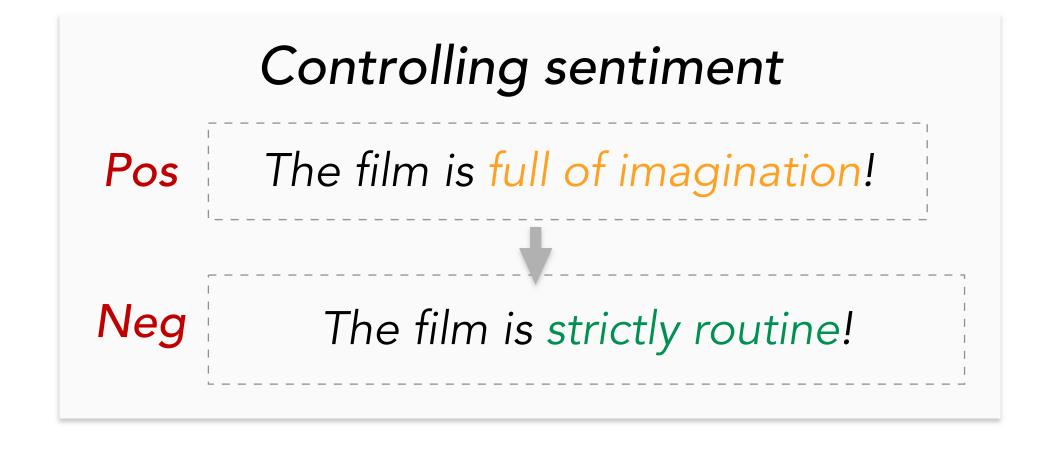
$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \alpha \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \beta \mathbb{H}(q)$$

$$w_1 \cdot f_{data} + w_2 \cdot f_{rules} + w_3 \cdot f_{reward} + \cdots$$

Enable applications for controllable content generation

Controllable text generation

- f = sentiment classifier
 - + linguistic rules
 - + language model



Learning with ALL experiences: Experience compositionality – Ex.2

- Distinct experiences are all modeled with f(x, y)
- Combine and plug different f functions into SE to drive learning

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \alpha \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \beta \mathbb{H}(q)$$

$$w_1 \cdot f_{data} + w_2 \cdot f_{rules} + w_3 \cdot f_{reward} + \cdots$$

Enable applications for controllable content generation

Fashion image generation

f = (small) data+ human gesture constraints

Source

Generated images under different poses

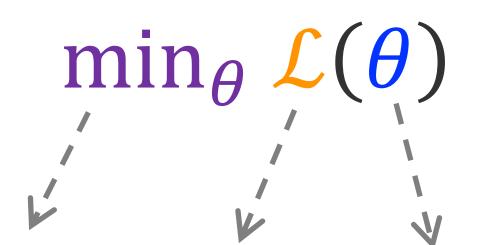
[Hu et al., 2018]

Learning with ALL experiences: Experience compositionality – Ex.2

+ Learned + Fixed knowledge (Ours) knowledge Base model true target target pose source

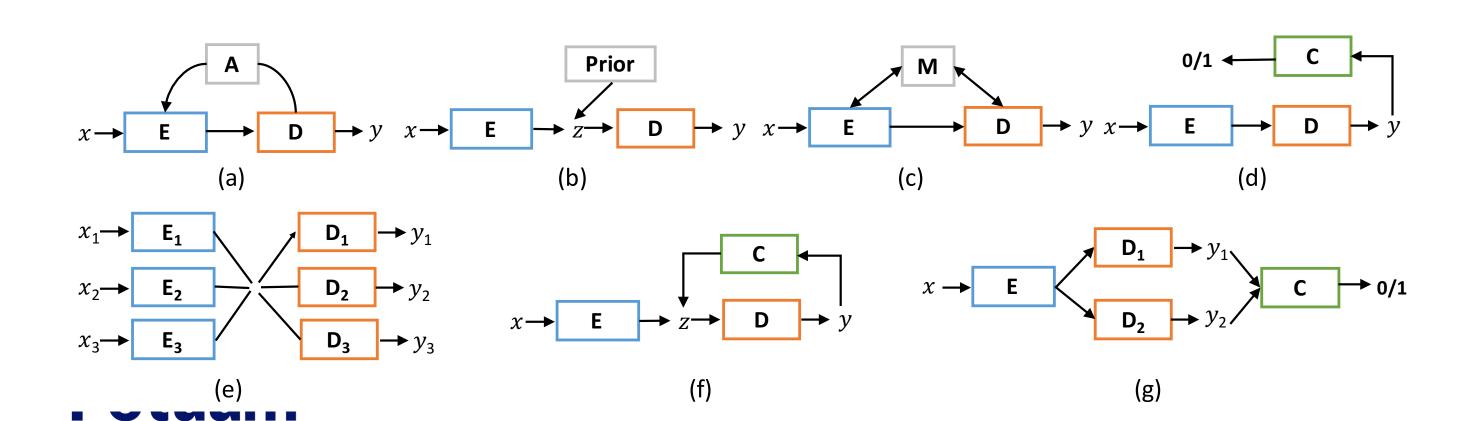
Operational compositionality

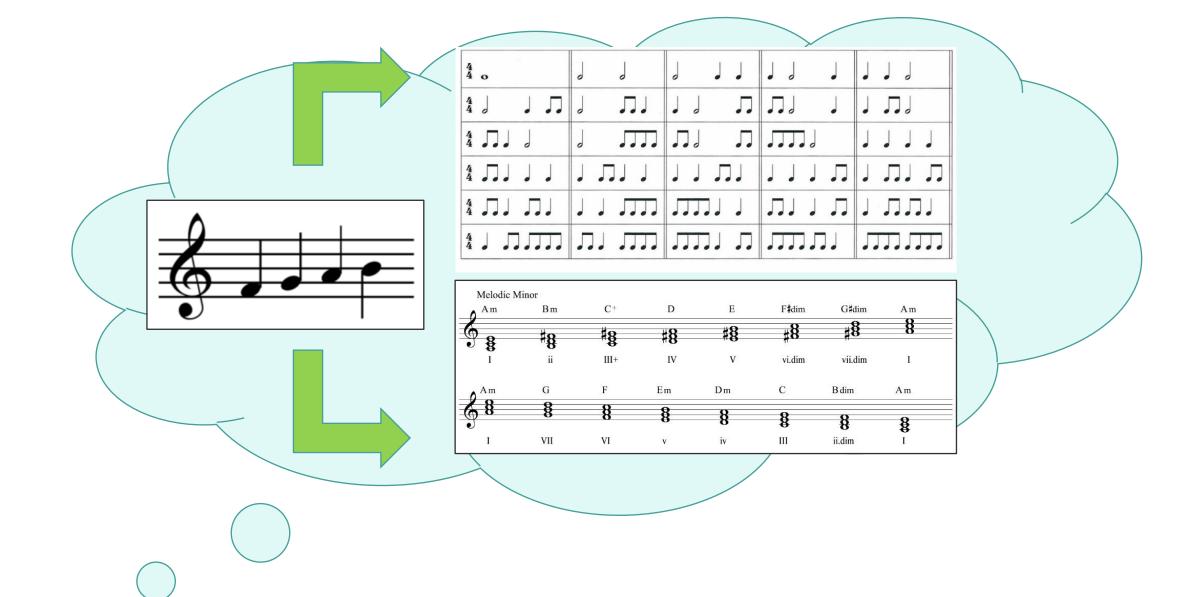
Build ML applications like composing music



optimization Loss

Model architecture





Open-source toolkit for composable ML

Texar Stack— Operationalized (View) of Composable ML

Texar stack											
Applications											
Library APIs					Model	del templates + Config files					
Training					Eval	uation		Р	rediction	Trainer Executor Optimizer eq/Episodic RL Agent	
Models					Da	ata	Trainer				
Architectures				Losses		MonoText	PairedText	Executor	Optimizer		
Encoder	Decoder	Embedder	Classifier	(Seq) MaxLikelihood Adver		Adversarial	Dialog	Numerical	Seq/Episodic RL Agent		
Memory	Connector	Policy	QNet	Rewards	RL-related	d Regularize	Multi-field/type Parallel		Ir decay / grad clip /		
	010	0101							//.		

Composable ML with Texar

- Highly modularized programming
 - Data, structure, loss, learning, ...
 - Intuitive conceptual-level APIs

- Easy switch between learning algorithms
 - Plug in & out modules
 - No changes to irrelevant parts


```
# Read data

dataset = PairedTextData(data_hparams)

batch = DataIterator(dataset).get_next()

# Encode

embedder = WordEmbedder(dataset.vocab.size, hparams=embedder_hparams)

encoder = TransformerEncoder(hparams=encoder_hparams)

enc_outputs = encoder(embedder(batch['source_text_ids']),

batch['source_length'])

# Build decoder

decoder = AttentionRNNDecoder(memory=enc_outputs,

hparams=decoder_hparams)

# Maximum Likelihood Estimation

## Teacher-forcing decoding

outputs, length, _ = decoder(decoding_strategy='teacher-forcing',

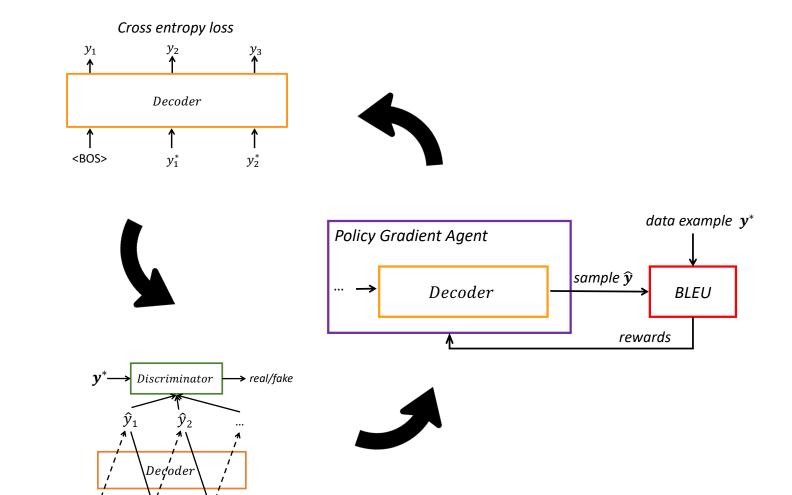
inputs=embedder(batch['target_text_ids']),

seq_length=batch['target_length']-1)

## Cross-entropy loss

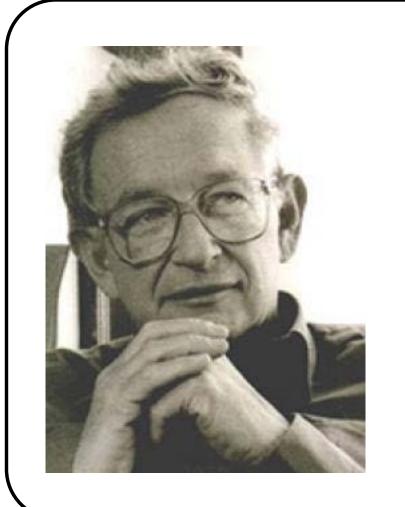
loss = sequence_sparse_softmax_cross_entropy(

labels=batch['target_text_ids'][:,1:], logits=outputs.logits, seq_length=length)
```



Food for thoughts: How far would this take us?

Physics

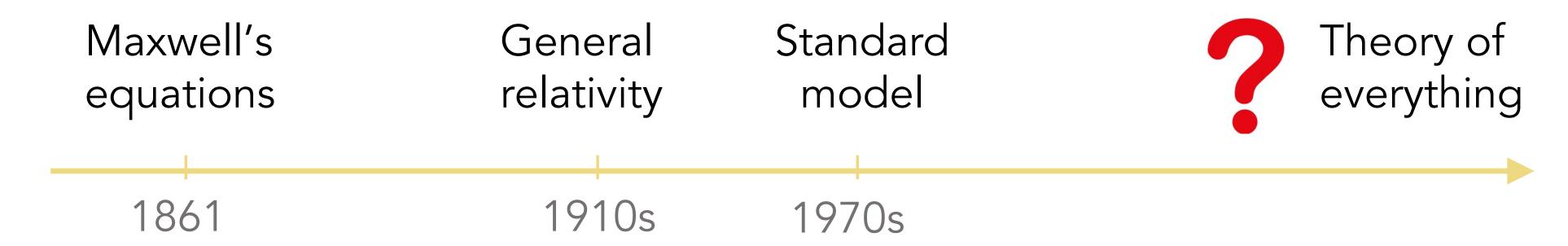


It is only slightly overstating the case to say that **physics is the study of symmetry**.

-- Phil Anderson (1923-2020), Physicist, Nobel laureate

Food for thoughts: How far would this take us?

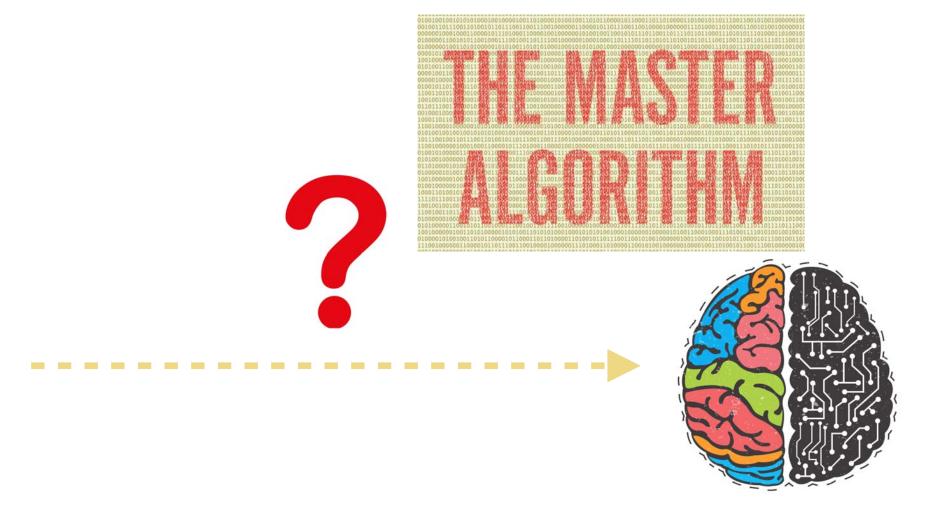
Physics



Machine Learning

Unified way of thinking

- ◆ Systematic understanding
- Automated solution creation
- Improved ML accessibility



Toward unified theoretical analysis

- How do we characterize learning with different experiences?
 - E.g., data examples, rules, reward, auxiliary models (discriminators), ...
 - Combinations of above experiences
- What's the appropriate statistical tool to characterize learning with logical rules? Can we guarantee performance improvement when using more experiences? What if experiences are noisy?
- A possible direction:
 - Existing theoretical analyses deal with learning with data examples, online learning, reinforcement learning, .. in silos
 - With the standard equation, can we re-purpose the analyses to other paradigms, e.g., learning with logical rules?

References

- [1] Jun Zhu, Ning Chen, and Eric P Xing. 2014. Bayesian inference with posterior regularization and applications to infinite latent SVMs. JMLR(2014).
- [2] Jun Zhu and Eric P Xing. 2009. Maximum Entropy Discrimination Markov Networks. JMLR(2009).
- [3] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. 2016. Harnessing deep neural networks with logic rules. In ACL.
- [4] Zhiting Hu, Haoran Shi, Bowen Tan, Wentao Wang, Zichao Yang, Tiancheng Zhao, Junxian He, Lianhui Qin, Di Wang, Xuezhe Ma, et al. 2019. Texar: A modularized, versatile, and extensible toolkit for text generation. ACL(2019).
- [5] Zhiting Hu, Bowen Tan, Russ R Salakhutdinov, Tom M Mitchell, and Eric P Xing. 2019. Learning data manipulation for augmentation and weighting. In NeurIPS.
- [6] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. 2017. Toward controlled generation of text. In ICML.
- [7] Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, and Eric P Xing. 2018. On Unifying Deep Generative Models. In ICLR.
- [8] Zhiting Hu, Zichao Yang, Russ R Salakhutdinov, Lianhui Qin, Xiaodan Liang, Haoye Dong, and Eric P Xing. 2018. Deep generative models with learnable knowledge constraints. In NeurIPS.

Thanks!

