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The universe of problems ML/AI is trying to solve

= Google Translate = Google Translate

English~ & Korean~ Korean~ < English~
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Data and experiences of all kinds

Type-2 diabetes
1S 90% more
common than

type-1

107

Constraints Rewards Auxiliary agents

And all

combinations of
of that ...

Adversaries

Petuum’




How human beings solve them ALL?

Classifier ) [ Encoder- Decoder
Encoder [ Decoder Embeder j\
[FFNetworkj /[ RNN [Transforme% WordEmbederj [PosmonEmbederj

Recur Attention: Bah, Luo. j Mult| head Attentlon

[Layers Conv, Dense .. Cell: LSTM, GRU ..

Petuum’



The Zoo of ML/AI Models

e Neural networks o Kernel machines
o Convolutional networks o Radial Basis Function Networks
o AlexNet, GoogleNet, ResNet o Gaussian processes
o Recurrent networks, LSTM o Deep kernel learning
o Transformers o Maximum margin
o BERT, GPT2 o SVMs
o Graphical models o Decision trees
o Bayesian networks e PCA, Probabilistic PCA, Kernel
> Markov Random fields PCA, ICA
o Topic models, LDA e Boosting
o HMM, CRF

Petuum’



The Zoo of algorithms and heuristics

maximum likelihood estimation reinforcement learning as inference
data re-weighting inverse RL  policy optimization active learning
data augmentation actor-critic reward-augmented maximum likelihood
label smoothing mitation learning softmax policy gradient
adversarial domain adaptation posterior regularization
GANSs constraint-driven learning
knowledge distillation intrinsic reward

prediction minimization generalized expectation

regularized Bayes |
learning from measurements

energy-based GANs
weak/distant supervision

Petuum’



Really hard to navigate, and to realize

e Depending on individual
expertise and creativity

Bespoke, delicate pieces of art

e Like an airport with different
runways for every ditferent

AR S8 it

Petuum’




Physics in the 1800’s

e Electricity & magnetism:
o Coulomb’s law, Ampere, Faraday, ...

e Theory of light beams: 9,
o Particle theory: Isaac Newton, Laplace, Plank ?
o Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell
. MVAVAVAVV
e Law of gravity \VAVAVAVAVAG

o Aristotle, Galileo, Newton, ...




Maxwell’s equations

Diverse
electro-
magnetic
theories

Petuum’

Maxwell’'s Eqgns:
original form

e+df+dg+dh=0
dc dy dz

(1) Gauss’ Law

_dH_dG
dy dz
_dF dH

Equivalent to Gauss’ Law

(2) for magnetism

(3)

Faraday's Law
(with the Lorentz Force
and Poisson’s Law)

R-#(ﬁﬁ_a‘,dy}_dH_dT

\  di dt dt dz

dy dp

_—_=4 f . df

dy dz ¥ p=p+Z

da dy i

————=4m' - 4 y

& . * g =g (4) Ampére-Maxwell Law
af_da_, . an

Pe-tp Qu-& R=-¢

Ohm’s Law

P=kf Q=kg R=khk

The electric elasticity
equation (E = D/g)

de+dp+dq+dr=0
di dx dy dz

Continuity of charge

Simplified w/
rotational symmetry

V-D=p,

V:-B=0

B
Vx K o

ot

VxH=@+J

ot

Further simplified w/
symmetry of special
relativity

Euvk)\anFk)\ — 0

4
O, F"W = —3
C

© 3



How about a blueprint of ML

e |.OSS

o Optimization solver

e Model architecture

ming L(6)
// /I \\
/ / \
|2 v N
Optimization  Loss Model
solver architecture

Petuum'



How about a blueprint of ML

e LOSS
o Optimization solver

e Model architecture

Experience Divergence Uncertainty

Petuum'



MLE at a close look:

e [he most classical learning algorithm

e Supervised: o min — Eger yy- llOgPe)()’*\x*)]
o Observe dataD = {(x*,y")} 6 o4

o Solve with SGD

e Unsupervisea:
o Observe D = {(x*)}, yislatent variable min — E,«_ llogf pg(x*,y)]
o Posterior pg (y|x) 0 y
o Solve with EM:

E-step imputes latent variable y through expectation on complete likelihood
M-step: supervised MLE

Petuum’ "




MLE as Entropy Maximization

o Duality between Supervised MLE and maximum entropy, when p is
exponential family

Shannon entropy H
7

pl&;{/l) H(p) 7l;eaz‘ures T(x,y)

s.t. Ex[T(x,y)] = *(x*,y*)~D[T(x»3’)]

data as constraints
Solve w/ Lagrangian method ||

= Lagrangian multiplier 6
p(x,y) = exp{0 - T(x)} / Z(6)7

min —E e y+)~pl0 - T(x, ¥)| +10g Z(0) -> Negative log-likelihood

Petuum’ 1 g




MLE as Entropy Maximization

e Unsupervised MLE can be achieved by maximizing the negative free energy:

o Introduce auxiliary distribution g(y|x) (and then play with its entropy and cross entropy, etc.)

Po (x*, y)
q(ylx*)

+ KL(q(y|x*) || po (¥|x*))

Ing Po (X", y) = Eqy1x [log
y

> H(q(y|x")) + Eq(yix[10g po (x*, ¥)]

Petuum’



Algorithms for Unsupervised MLE .5

min — Ex-_p [ log | 1o (")
y

1) Solve with EM

p; ((yx‘ x? + KL(g(y]x*) || ps (¥|x*))

> H(q(y\X*)) + Eq(yjxmllog po (x7, ¥

Ing Pe(X",¥) = Eqyxt [log
y

o E-step: Maximize L(q,0) w.r.t g, equivalent to minimizing KL by setting
q(y|x*) = pgoa(y[x)

o M-step: Maximize £(q, 8) w.r.t 8: max E; - [log pg(x*,y)]
i 0
Petuum 15 g




Mo,

Algorithms for Unsupervised MLE (cont’d) =

=/
<7
\/

pcf((yﬁ;*y)) + KL(qlx") || pe (lx")) ‘

> H(q(|x*)) + Eqyjx[log pe (x*, ¥)]

Ing Po (X", y) = Eqyx [log
y

2) When model pg is complex, directly working with the true posterior pg(y|x™)
'S intractable = Variational EM

Consider a sufficiently restricted family Q of g(y|x) so that minimizing the
KL Is tractable

o E.g., parametric distributions, factorized distributions

E-step: Maximize L(g,0) w.r.t g € Q, equivalent to minimizing KL

M-step: Maximize £(q,0) w.r.t 0 : max Eqy|x) [log pg(x*, y)]

Petuum” o




Mo,

Algorithms for Unsupervised MLE (cont’d) =

=7
V
Po (x*w y)

alx) | T KL(q(y1x") || po (¥1x"))

> H(q(|x*)) + Eqyjx[log pe (x*, ¥)]

Ing Po (X", y) = Eqyx [log
y

3) When g is complex, e.g., deep NNs, optimizing g in E-step is difficult (e.qg.,
high variance) = Wake-Sleep algorithm [Hinton et al., 1995

» Sleep-phase (E-step): rr}pin KL(po (¥|x")||qp(y]x*)) Reverse KL
« Wake-phase (M-step): Maximize L(q,0) w.r.t 0 : max Egy|x+) llog pg (x*, y)]

Other tricks. reparameterization in VAE ('2014), control variates in NVIL (2014 )
Petuum’




Quick summary of MLE

e Supervised:

o Duality with MaxEnt
o Solve with SGD, IPF ...

e Unsuperviseaq:
o Lower bounded by negative free energy

o Solve with EM, VEM, Wake-Sleep, ...

e (Close connections to MaxEnt
o With MaxEnt, algorithms (e.g., EM) arises naturally

Petuum’



Posterior Regularization (PR)

e Make use of constraints in Bayesian learning
o An auxiliary posterior distribution q(0)
o Slack variable &, constant weighta = > 0

raigl —aH(q) — S q l lngg(x,}’)l + ¢

s.t. —Egl folx,y) ] <¢ [Ganchev et al., 2010]

o E.Qg., max-margin constraint for linear regression [Jaakkola et al., 1999] and
general models (e.qg., LDA, NNs) [Zhu et al., 2014 — more later

e Solution for g

q(8) =6Xp{ ﬁlnge(x:Z)'l'f(x:)’) } /7

Petuum’



More general learning leveraging PR

e NO need to limit to Bayesian learning

e E.0., Complex rule constraints on general models [Hu et al., 2016], where
o @ can be over arbitrary variables, e.g., g(x, y)
o pg(x,y) is NNs of arbitrary architectures with parameters @

E.9., r(x,y) Is a 1st-order logical rule:

min — aH(qg) — FE l 1081’)9(%3’)] + ¢
q,0,¢ 1 f sentence x contains word " but

s.t. Eg(xy) l 1—r(x y)l <¢ = Its sentiment y S ',:,he same as the
sentiment after "out

Petuum’ 4



EM for the general PR

e Rewrite without slack variable:

min — aH(qg) — f
q, 0

o Solve with EM

—-step: g(x,y) = exp{

o llogpe(x,y)] -

Blogpe(x,y) + f(x,y)

g (x,) l f(x,y) l

0

M-step: min b g l log Do (x, }’) l

6

Petuum’

/2




Reformulating unsupervised MLE with PR

log f po(x*,y) = H(q|x") + Eq gy [10g po (2", )]
y

e INntroduce arbitrary g(y|x)

min_— aH(q) — FE, |log pe(x,y) | +¢
q,0,¢ Data as constraint.

Given x ~ D, this constraint doesn't
o | Fs D) | < :

influence the solution of g and @

S.t. —

o f(x;D) :=log Eyx+p| Ly+(x) ]
A constraint saying x must equal to one of the true data points

Or alternatively, the (log) expected similarity of x to dataset D, with
1(-) as the similarity measure (we’ll come back to this later)

o a=p=1
Petuum




The standard equation

aD (9(x,7), po () = FH(Q) +§

Imin
q, 0, =0

s.t. —Eq(xy) lf(x»)’)l <

Equivalently:
3 terms: Experiences Divergence Uncertainty
(exogenous regularizations) (fitness) (selt-reqularization)

e.g., data examples, rules e.qg., Cross Entropy e.g., Shannon entropy

®
Textbook Teacher Q Student @
Petuum’ fox,yl ) qg(x,y) pe(x,¥)

Uncertainty

o M

i1




Re-visit unsupervised MLE under SE

rg,ig —aH(q)—ﬁ*q[lﬂgpe(x,y)]— *q[ flx,y) ]

fi=f(x;D)=log Ex-p| Le(x) ] a=p(=1

q = q(y|x)

Petuum’



Re-visit supervised MLE under SE

min — aH(q) - FE, | log po(x,3) |~ Bycey | fxy) |

fi=f(x,y;D) =108E  yyop| Ly y) | a=1,0=¢

Petuum’



Active learning under SE

min — aH(q) - FE, | log po(x,3) |~ Bycey | fx3) |

f = f(x,y; Oracle) + u(x) a=1(>0),p=¢

prediction uncertainty on x,
f(x,y; Oracle) =10gEy  p, y~oractex| Ly (. ¥) | e.g., Shannon entropy H(pg(y|x))

Equivalent to:

» Draw a data point x* according to exp{u(x)/t}
» Get label y* for x* from the oracle

* Maximize log likelihood on (x*, y*)

Petuum’



Reinforcement learning (RL) under SE -- |

min — aH(q) - FE, | log po(x,3) |~ Bycey | fxy) |

. o X — States, y—actiona
:\/Iap to RL o pg(x) — state distribution |
dnguage Q,:(x,y) — expected future reward of taking action y in state x Kk

and continuing the current policy pge  Qqe(x,¥) = E, ,[XiZo7¢ | X0 = X,¥0 = V]

e RlL-as-inference  f(x,y) :=Qpt(x,y) a =L =1(>0)
[Dayan’97; Levine’18, ...]

Petuum’




Reinforcement learning (RL) under SE -- li

min — aH(q) - FE, | log po(x,3) |~ Bycey | fxy) |

. Map to RL o X — States, y—actiona

| o pg(x) — state distribution
anguage Q,t(x,y) — expected future reward of taking action y in state x

and continuing the current policy pge  Qqe(x,¥) = E, ,[XiZo7¢ | X0 = X,¥0 = V]

SCORE: 107

e Policy gradient f(x,y) :=log Qst(x,y) a=p0=1

o Estep q(x,y) = pa(X)pgc (¥12)Qgt(x,y) / Z

o M-step

Loy L Vologpe(Y|x) | = 1/Z - Ep  xyp . (120 LQe (X, ¥) Vglog pe (y|x) | (Importance sampling est.)
=1/Z -VoE, . opeyix) [Qo(x,y) ] (Log-derivative trick)

Petuum’ & %




Adversarial learning under SE

* For notation simplicity, we use x to replace (x, y)
min — aBi(g) + D (q@), 0o (V) )~ Eqeo | F) |

e Same as supervised MLE: f=f(x; D), a=1, [ =¢€

e M-step isto mgin (pd(x), po (X) )

o Solve with probability functional descent (PFD) [Chu et al., 2019]

o pg(x) can be optimized by minimizing E, [¥(x)], where W(x) is the influence
function for D at py¢
o Wis obtained with convex duality

Y(x) = argmaxy, E,, [ (x)] — D*(¥)
o S0 the whole optimization is

ming max,, E, [y (x)] — D* (@)

Convex conjugate of

Petuum’




Adversarial learning under SE

» For notation simplicity, we use x to replace (x, y)

mi

i — al1(q) + D 400, o () )~ Eqe | £ ]
e Same as supervised MLE: f=f(x; D), a=1, [ =¢€

e M-step isto mgin (pd(x), po (X) )

o Solve with probability functional descent (PFD) [Chu et al., 2019]
o pg(x) can be optimized by minimizing E, [¥(x)], where W(x) is the influence
function for D at py¢
o Wis obtained with convex duality

Parameterize ¥ with an NN Cg.
—.0., when D i1s JSD and

Y(x) = dIrgmaxy, 1Ly, [Y(x)] — D (%) Ye(x) == 0.5log (1- C¢) — 0.5 log2
o S0 the whole optimization is

. o Plugging into the equation
(%) recovers vanilla GAN training m!

ming maxy, E, [P (x)] —

Petuum’



Adversarial learning under SE — alternative interpretation

min — aH(q) + D ( 4, pp (0) )~ By | £ |

q, 06
e Recall in MLE, f is a fixed function

f=f(x; D) =logEy_p | 1(x)]

e Intuitively, see f as a similarity metric that measures similarity of sample
x against real data D

o Instead of the above manually fixed metric, can we learn a metric f"

Petuum’




Adversarial learning under SE - alternative interpretation

e Augment the standard objective to account for ¢:

min max rrzlin —al(qg) + ( g(x), pg (x) ) — Eg ) l fo(x) ] + Ep (x) l fo(x) l

6 ¢

e Seta =0, = 1. Under mild conditions, the objective recovers:
o Vanilla GAN . when D is JS-divergence and f is a binary
classifier
o f-GAN - when D is f-divergence
o W-GAN - when D is Wasserstein distance and f is a 1-

Lipschitz function

Petuum ¥ * Proofs adapted from Farnia & Tse 2018: “A Convex Duality Framework for GANs” 32 g




More algorithms recovered by SE

o Data augmentation / re-weighting / RAML

o Unified EM (UEM) / Constraint-driven learning (CoDL)
o Curiosity-driven RL

e Knowledge distillation

RAML(16) o knowledge
re—we|:ght|ng  active leaming - curiosity-driven RL(91 dIStI|:|atI0n
. . ' . (07) EGA;\NS
MLE augment . RL as inference

Petuum’



A table of ALL models/paradigms

Algorithm  f o B
Unsupervised MLE  f(x; D) 1 1 CE
Supervised MLE  f(x,y; D) 1 e CE
Active Learn.  f(z,y; D) + u(x) temp., >0 € CE
Reward-augment MLE  frewic (2, y; D, 1) 1 e CE
PG for Seq. Gen.  fueuic(®, y; D, 1) 1 1 CE
Posterior Reg.  fruie(@, y) weight, >0 o CE
Unified EM  fruie(@, y) weight, e R 1 CE
Policy Gradient (PG) log Q“*(x,y) 1 1 CE
+ Intrinsic Reward  log Q°*(x,y) + Q" (x,y) 1 1 CE
RL as inference Q°*(x,y) temp., > 0 o CE
Vanilla GAN binary classifier 0 1 JSD
f-GAN  discriminator 0 1  f-divg.
WGAN  1-Lipschitz discriminator 0 1 W dist.

Paradigms not (yet)
covered by SE:
o Meta learning

o Lifelong learning

O

Interesting future work to
study the connections




Learning with ALL experiences

. Distinct experiences are used in learning in the same way

l

. Plug arbitrary available experiences into the learning procedure!

P(fra, )
f=w @) +w f&IED)+ws fEI®) + wi fx|ED +-

\\\\\

Focus on what to use, instead of worrying about how to use

Petuum’



The zoo of optimization solvers

q, 0

mip |- aHi(q) + BD( 900, Pe () )~ Eqw | f(0) |

\ Optimization of the loss, subject to g € P,
Convex to g when «, f > 0 and D is convex

o Like the Standard Equation as a master /oss tor many paradigms, Is there a
master solver for optimization of loss”

e NoO (yet) such a general algorithm

e Alternating GD:
o Most widely used
M, Variational EM (Variational inference), Wake-Sleep, ...

[ d

Petu&m




The extended EM as a primal solver

min — aB(@) + D( 400, po () ) = Eqeo | F5 )]

q, 0

when o, > 0 and D = CE

(1) reference in closed form: Generalization of the classic
21 (x) + ( N Variational EM
B 0g P (X X; .
q(x) = exp{ o } /2 ~+. Generalized E-step
. Support all types of experiences
(2) matching the model to the reference: (Teacher)
min % g (x) [ log Do (.X') ] e, M-step
0 (Student)

» Limitations: e.g., not applicable when D is other divergence measures

* The EM as a template has been further enhanced/adapted in different ways in various paradigms
 in RL: TRPO, PPO, MaxEnt inverse RL, ...
* in GANSs: many extensions to stabilize training 27 %




Some “advanced” (specialized) techniques

mip |- aHi(q) + BD( 900, Pe () )~ Eqw | f(0) |

q, 0

\ Optimization of the loss, subject to g € P,
Convex to g when «, f > 0 and D is convex

e Alternating GD:
o EM, Variational EM (Variational inference), Wake-Sleep, ...
o SGD, Back-propagation (BP)

e Convex duality, Lagrangian -- Kernel Tricks
e Integer linear programming (ILP)

o Probability functional descent (PFD) [Chu et al., 2019] -- Influence function,

gives a neat formulation of GAN-like optimization and a few others
Petuum’ 38 g




I: Duality
o Structured MaxEnt Discrimination (SMED) [Zhu and Xing, 2013]:

min — at(q) — fE, | logp(6) |+ U

s.t. —E,[AF;(y;0) — AL (y) | <& Vi

o Solve the (primal) Lagrangian:

7(8) = exp { Blogp(8) + X yzy; i () (AFi(y; 0) — Mic,v))} 7
04

o Solve Lagrangian multipliers A from the dual problem (when »(6) = ¥ (610,D); U©) =2 ¢;,)

2 Allows kernel trick for
nonlinear interactions

b/w experiences g

1
max_ > AWML -5|).  AGALD)
LYFYi LYFYi

A=20,YA;=1

Petuum’



lI: Influence Function and Probability Functional Descent

e (Gradient descent in the space of probability measures P(X)

min I(p) 7: P(X) - R : a probability functional

o Influence function ¥, (x):

Gateaux differential of 7 at — dJ,(x) = f W, (x) x (dx)
In the direction y = q —
p TP B [0 - B[00

o With a linear approximation 7(p) to 7(p) around p,:
I(p) = 1(po) + dTp,(p — po) = Ex~p| ¥p, (x) | + const.

e [hus, once we obtain the influence function, we can optimize p by
decreasing | Wy (1) |
Petuum’ [Chu et al., 2019]




Adversarial learning using PFD

1(pg) = D ( Pa(®), ps(®) )

o Often no closed-form influence function, e
distance

o Approximate with convex duality:

.g., when

Convex conjugate 7*(y) = sup [ yY(x)u(dx) —I(w)

Influence function is obtained via Wy, (x) = argmaxy,
Parameterize Y as below to recover optimization of generator and discriminator

Ye(x) = 0.5log (1 — C¢) — 0.5 log?2

Ys = argmaxg
o The whole optimization of 7(p) Is thus

*pdata [lOg CCP] -

> ming maxy, [k log Cp| —
Petuum [Chu et al., 2019 v pd“t“[ qb]

*pe[log (1 - Cqb)]

s JSD or W-

Ex~pe LW (X)] = T ()

*pg[log (1 - Cc/b)]

o M



RL using PFD

e E.g., Policy iteration in RL
> (Conventional) l0ss: 3(pg) = —E, ,x)Ep, [ QX ¥) ]

pys(x) — state distribution; pg(y|x) — policy

o Influence function

qugt (y) = - e Qlx,y) ]

o Thus, optimize pg by minimizing

g [‘Ppgt (J’)] = —Ep,0 Epgyin Q(x,¥) |

Petuum [Chu et al., 2019]



Model architecture

o Relatively well explored:
o Neural network design

o (@Graphical model desigr
o Compositional architect

Petuum'

min

— aH(q) + f

UIres

( q(x), pe (x) )—

*q(x)[ f(x) l




Model architecture

i AlexNet VGG GoogleNet  ResNet
o Relatively well exploread: 8layers 19 layers 22 layers 152 layers

o N '
e u ra‘ n etWO rk d e S | g n 11x11 conv, 96, /4, pool/2 3%3 conv. 63 :
7 v -
O 5x5 conv, 256, pool/2 = Conv'*m' pool/2 :
* 3x3 conv, 128 | B B B B
O 3x3 conv, 384 v SR
* | 3x3 conv, 128, pool/2 | =
v EREREEE
3x3 conv, 384 L 33 o 256 B R
* 3x3 conv, 256 z :
3x3 conv, 256, pool/2 . 2 5 £ B2 6D 5
| | * 3x3 co;v, 256 B m mm
e Activation functions fc, o 3 cony, 255, ool o 50 5
o  Linear and Rel.U fc, 4096 ot - =
o Sigmoid and tanh - 1*000 oo, 512 S s
. EtC | ) 3x3 co;v, 512 - gm - :la
3x3 conv, 512, pool/2 R D R
e Layers y .
| 3x3 conv, 512 | 1 50 0
© FU”y ConneCted | 3x3 co!v,Slz | WMW@
o  Convolutional & pooling = COEV'SH l m;:*am
O QGC U rrent 3x3 conv,ilz, pool/2 | wﬂ
O ResNets | fc, 4096 | B B Bat) Bl
——
o Etc. - %)96 | =
fc, 1000 | g
r ot
Petuum -
5




Model architecture

o Relatively well explored:

o Neural network design Neural network components
O
O Classmer Encoder Decoder j

\

Encoder Qoder Embeder j\
FFNetworkj /E RNN Transforme% WordEmbederj [PositionEmbederj

Recur Attention: Bah, Luo .. Multl head Attentlon

)

[Layers Cony, Dense .. Cell: LSTM, GRU .

Petuum’




Model architecture

o Relatively well explored:

O

o (@Graphical model design

S 2 T3

S SEQUENCE
Naive Bayes HMMs
CONDITIONAL CONDITIDNAL
.~ > \\/
& ,, > OO0
0/33\0 SEQUENCE é) é) Cg
Logistic Regression Linear-chain CRFs
Petu.u:..

)

GENERAL
GRAPHS

)

GENERAL
GRAPHS

/\_’/\

Cv'
>O\O

Generative directed models

couﬂlm
55

General CRFs
[Courtesy: Sutton & McCallum, 2010] . g




Model architecture

o Relatively well explored:

O

O

o Compositional architectures

/ A \ Prior M

Sy Ty WO WA ny*l_ﬁé'—}ﬂww\ e [0 |-y
(a) (b) (c) (d)

X1—>‘ E, l\/‘ D, ‘—byl c D, ‘_>y1

x2—>‘ E, I I D, |—>y2 x—»‘ E C |—>0/1

x3_>‘ E /\i D, ‘_>y3 x—»‘ E |—>Z—>‘ D ‘—’y
(e)

() (8)

Petuur E refers to encoder, D to decoder, C to Classifier, A to attention, Prior to prior distribution, and M to memory g




Summary: a blueprint of ML

e | OSS

o Standard equation

min — Eq(xy) lf(xJ’)l +a (CI(X» ), pe (X, )’)) — fH(q)

e Algorithm

o The extended EM algorithm gives a general primal solution in many
Cases

o PFD gives a neat formulation for some cases (e.g., GANSs)

e Model architecture: vast library of building blocks = compositionality

_ Next: practical implications of the ML blueprint
Petuum

48%




Why this is useful?

e Learning with ALL experiences
o Complex interaction between experiences

e Multi-agent game theoretic learning using all experiences

Petuum’




Learning with ALL experiences:
Empowering algorithms

o Unitying perspective of diverse paradigms (each tailored for a specific type of

experience) under SE

e Combining or integrating ditferent experiences

o Systematic idea transfer and solution exchange
o Solving challenges in one paradigm by applying well-known solutions from another
o Accelerate innovations across research areas

Petuum’ 2



Learning with ALL experiences: ﬁlhl :ﬁlh
Empowering algorithms — Ex. 1

e Rules in PR & Reward in RL
e Empower reward learning algo. to learning rules [Hu et al., 2018]

Algorithm  f o B D
Unsupervised MLE  f(x; D) 1 1 CE
Supervised MLE  f(x,y; D) 1 e CE
Active Learn.  f(x,y;D) + u(x) temp., >0 € CE
Reward-augment MLE  fiewic (@, y; D, 1) 1 e CE
PG for Seq. Gen.  fieuic(®, y; D, 1) 1 1 CE
Posterior Reg.  fruie(@,vy) weight, >0 o CE
Unified EM  frue(x, y) weight, e R 1 CE
Policy Gradient (PG) log Q°“(zx,y) 1 1 CE
+ Intrinsic Reward  log Q°*(x,y) + Q" (z,y) 1 1 CE
RL as inference Q°*(x,y) temp., >0 o CE
Vanilla GAN binary classifier 0 1 JSD
f-GAN  discriminator 0 1  f-divg.
Petuum p WGAN  1-Lipschitz discriminator 0 1 W dist.




Learning with ALL experiences: ﬁlhl :ﬁlh
Empowering algorithms — Ex.2

e Data in supervised MLE & Reward in RL
e Empower reward learning algo. to learning data augmentation [Hu et al., 2019]

Algorithm  f o B D
Unsupervised MLE  f(x; D) 1 1 CE
Supervised MLE  f(x,y; D) 1 e CE
Active Learn.  f(x,y;D) + u(x) temp., >0 € CE
Reward-augment MLE  fiewic (@, y; D, 1) 1 e CE
PG for Seq. Gen.  fieuic(®, y; D, 1) 1 1 CE
Posterior Reg.  fruie(@,vy) weight, >0 o CE
Unified EM  frue(x, y) weight, e R 1 CE
Policy Gradient (PG) log Q°“(zx,y) 1 1 CE
+ Intrinsic Reward  log Q°*(x,y) + Q" (z,y) 1 1 CE
RL as inference Q°*(x,y) temp., >0 o CE
Vanilla GAN binary classifier 0 1 JSD
f-GAN  discriminator 0 1  f-divg.
Petuum p WGAN  1-Lipschitz discriminator 0 1 W dist.




Learning with ALL experiences: ﬁlhl :ﬁlh
Empowering algorithms — Ex.3

e GANs & RL o VI
e Empower RL/VI algo. (e.g., PPO) to stabilize GAN training [Wu et al., 2020]

Algorithm  f o B D
Unsupervised MLE  f(x; D) 1 1 CE
Supervised MLE  f(x,y; D) 1 e CE
Active Learn.  f(x,y;D) + u(x) temp., >0 € CE
Reward-augment MLE  fiewic (@, y; D, 1) 1 e CE
PG for Seq. Gen.  fieuic(®, y; D, 1) 1 1 CE
Posterior Reg.  fruie(@,vy) weight, >0 o CE
Unified EM  frue(x, y) weight, e R 1 CE
Policy Gradient (PG) log Q°“(zx,y) 1 1 CE
+ Intrinsic Reward  log Q°*(x,y) + Q" (z,y) 1 1 CE
RL as inference Q°*(x,y) temp., >0 o CE
Vanilla GAN binary classifier 0 1 JSD
f-GAN  discriminator 0 1  f-divg.
Petuum p WGAN  1-Lipschitz discriminator 0 1 W dist.




Learning with ALL experiences:
Empowering algorithms — Ex.3

Objective

(a) Re-use PPO objective for GAN training:

discourage excessively large updates by perspective: greatly rec
“trapping” the update size around 1T generator and discrimin

Petuum’
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-mpower RL/VI algo. (e.g., PPO) to stabilize GAN training
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(b) Re-use importance weighting in a Vi

uced variance in both
ator losses

mproved performance on a range of problems, including
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Learning with ALL experiences:
Experience compositionality — Ex. 1

e Distinct experiences are all modeled with f(x,y)
e Combine and plug different f functions into SE to drive learning

min — Eq(xy) [f(ai\,y)] +a (q(x, ¥), po (X, y)) — fH(q)

wqp - fdata T W, 'frules T W3 'freward T

e Enable applications for controllable content generation

Controllable text generation Controlling sentiment

f = sentiment classifier Pos  The film is I
+ linguisticrules g
+ language model Neg The film is strictly routine!

e e e N e e O

Petuum' |1y etal, 2017 Yang et al., 2018]



Learning with ALL experiences:
Experience compositionality — Ex.2

e Distinct experiences are all modeled with f(x, y)
e Combine and plug different f functions into SE to drive learning

min — Eq(xy) [f(ai\,y)] +a (q(x, ¥), po (X, y)) — fH(q)

wqp - fdata T W, 'frules T W3 'freward T

e Enable applications for controllable content generation

Fashion image generation

f = (small) data
+ human gesture constraints

A X b 4L Wy 1
Source Generated images under different poses

56

BA K

Petuum' [Huetal 2018]



Learning with ALL experiences:
Experience compositionality — EX.2

+ Fixed + Learned
knowledge knowledge (Ours)  trye target

f}.
.
i
J

source target pose Base model

.

Petuum’



Operational compositionality

o Build ML applications like

COMPOSING MUSIC

ming L(6)
\
// II \
A
optimization
/ A \ ‘i/r:or D — — E
(a) (b)
mLel e c
TN e

(e)

Model architecture

(f)

D —yx—

— 0/1

Open-source toolkit for
composable ML



Texar Stac
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- Texar stack

Applications

Model templates + Config files

Training Evaluation Prediction

Data Trainer

Architectures Losses MonoText PairedText = Executor Optimizer

Encoder Decoder Embedder Classifier (Seq) MaxLikelihood  Adversarial Dialog Numerical  Seg/Episodic RL Agent

Memory = Connector = Policy QNet ~ Rewards RL-related Regularize Multi-field/type Parallel _ Irdecay /grad clip /...

e
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Composable ML with Texar

. . . 1 # Read data
o HI g Nl Y MO dularized orogramming e
3 batch = Datalterator(dataset).get_next()
4 # Encode
5 embedder = WordEmbedder(dataset.vocab.size, hparams=embedder_hparams)
6 encoder = TransformerEncoder(hparams=encoder_hparams)
7 enc_outputs = encoder(embedder(batch['source text ids']),

o Data, structure, loss, learning, ...

10 decoder = AttentionRNNDecoder(memory=enc_outputs,

11 hparams=decoder_hparams)
12 # Maximum Likelihood Estimation

13 ## Teacher-forcing decoding

. . 14 outputs, length, _ = decoder(decoding_strategy="teacher-forcing’,
O I I l I I I Ve ‘ O I I ‘ e p l I a — eve S 15 inputs=embedder(batch['target_text_ids']),

16 seq_length=batch['target_length']-1)

17 ## Cross-entropy loss

18 loss = sequence_sparse_softmax_cross_entropy(

19 labels=batch['target text ids'][:,1:], logits=outputs.logits, seq_length=length)
20

Cross entropy loss

o« Easy switch between learning algorithms e
o
o Plug In & out modules e
> No changes to irrelevant parts

y*—> Discriminator —> real/fake

—

y
4
/

i
T~

ES
/\l\)<)

<BOS>II \I \'I 6 0
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Food for thoughts: How far would this take us?

e Physics

\

It is only slightly overstating the case to say
that physics is the study of symmetry.

-- Phil Anderson (1923-2020), Physicist, Nobel laureate

Petuum’



Food for thoughts: How far would this take us?

e Physics
Maxwell's General Standaro Theory of
equations relativity model everything
1861 1910s 1970s

e Machine Learning

Unitied way of thinking
+ Systematic understanding
+ Automated solution creation
+ Improved ML accessibility

Petuum’



Toward unified theoretical analysis

e How do we characterize learning with different experiences?

o E.Q., data examples, rules, reward, auxiliary models (discriminators), ...
o Combinations of above experiences

e \What's the appropriate statistical tool to characterize learning with logical
rules” Can we guarantee performance mprovement when using more
experiences”? What it experiences are noisy”?

e A possible direction:

o Existing theoretical analyses deal with learning with data examples, online
earning, reinforcement learning, .. in silos

o With the standard eguation, can we re-purpose the analyses to other
paradigms, e.g., learning with logical rules?

Petuum’
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