I5-780: Grad Al Lecture 19: Graphical models, Monte Carlo methods

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

- Reminder: midterm March 29
- Reminder: project milestone reports due March 3 I

Review: factor graphs

- Undirected, bipartite graph
 - one set of nodes represents variables
 - other set represents factors in probability distribution—tables of nonnegative numbers
 - need to compute normalizer in order to do anything useful
- Can convert back and forth to Bayes nets
- Hard v. soft constraints

Review: factor graphs

- Graphical test for independence
 - different results from Bayes net, even if we are representing the same distribution
- Inference by dynamic programming
 - instantiate evidence, eliminate nuisance nodes, normalize, answer query
 - elimination order matters
 - treewidth
- Relation to logic

Review: HMMs, DBNs

- Inference over time
 - same graphical template repeated once for each time step—conceptually infinite
- Inference: forwardbackward algorithm (special case of belief propagation)

Review: numerical integration

- Integrate a difficult function over a highdimensional volume
 - narrow, tall peaks contribute most of the integral—difficult search problem
- Central problem for approximate inference
 - e.g., computing normalizing constant in a factor graph

Uniform sampling

Importance sampling

Variance

- Our How does this help us control variance?
- Suppose f big ==> Q big
- And Q small ==> f small
- Then h = f/Q never gets too big
- Variance of each sample is lower ==> need fewer samples
- A good Q makes a good IS

Importance sampling, part II

Suppose

$$f(x) = R(x)g(x)$$

$$\int f(x)dx = \int R(x)g(x)dx$$

$$= \mathbb{E}_R[g(x)]$$

Importance sampling, part II

- Use importance sampling w/ proposal Q(X):
 - Pick N samples x_i from Q(X)
 - Average w_i g(x_i), where $w_i = R(x_i)/Q(x_i)$ is importance weight

$$\mathbb{E}_{Q}(Wg(X)) = \int Q(x) \frac{R(x)}{Q(x)} g(x)$$

$$= \int R(x)g(x)dx$$

$$= \int f(x)dx$$

Parallel IS

- Now suppose R(x) is unnormalized (e.g., represented by factor graph)—know only Z R(x)
- Pick N samples x_i from proposal Q(X)
- If we knew $w_i = R(x_i)/Q(x_i)$, could do IS
- o Instead, set

$$\hat{w}_i = ZR(x_i)/Q(x_i)$$

Parallel IS

$$\mathbb{E}(\hat{W}) = \int Q(x) \frac{ZR(x)}{Q(x)} dx$$
$$= \int ZR(x) dx$$
$$= Z$$

$$\circ$$
 So, $ar{w} = rac{1}{N} \sum_i \hat{w}_i$ is an unbiased estimate of Z

Parallel IS

- $^{\circ}$ So, \hat{w}_i/\bar{w} is an estimate of wi, computed without knowing Z
- Final estimate:

$$\int f(x)dx \approx \frac{1}{n} \sum_{i} \frac{\hat{w}_{i}}{\bar{w}} g(x_{i})$$

Parallel IS is biased

E(W) = Z, but $E(1/W) \neq 1/Z$ in general

$$Q: (X, Y) \sim N(1, 1)$$
 $\theta \sim U(-\pi, \pi)$
 $f(x, y, \theta) = Q(x, y, \theta)P(o = 0.8 \mid x, y, \theta)/Z$

Posterior $E(X, Y, \theta) = (0.496, 0.350, 0.084)$

Integration problem

Recall: wanted

$$\int f(x)dx = \int R(x)g(x)dx$$

 And therefore, wanted good importance distribution Q(x) (close to R)

Back to high dimensions

- Picking a good importance distribution is hard in high-D
- Major contributions to integral can be hidden in small areas
 - recall, want (R big ==> Q big)
- \circ Would like to search for areas of high R(x)
- But searching could bias our estimates

Markov-Chain Monte Carlo

- Design a randomized search procedure M over values of x, which tends to increase R(x) if it is small
- Run M for a while, take resulting x as a sample
- Importance distribution Q(x)?

Markov-Chain Monte Carlo

- Design a randomized search procedure M over values of x, which tends to increase R(x) if it is small
- Run M for a while, take resulting x as a sample
- Importance distribution Q(x)?
 - Q = stationary distribution of M...

Stationary distribution

- Run HMM or DBN for a long time; stop at a random point
- Do this again and again
- Resulting samples are from stationary distribution

Designing a search chain

$$\int f(x)dx = \int R(x)g(x)dx$$

- \circ Would like Q(x) = R(x)
 - makes importance weight = I
- Turns out we can get this exactly, using Metropolis-Hastings

Metropolis-Hastings

- Way of designing chain w/ Q(x) = R(x)
- Basic strategy: start from arbitrary x
- Repeatedly tweak x to get x'
- ∘ If $R(x') \ge R(x)$, move to x'
- \circ If R(x') << R(x), stay at x
- In intermediate cases, randomize

Proposal distribution

- o Left open: what does "tweak" mean?
- Parameter of MH: Q(x' | x)
 - one-step proposal distribution
- Good proposals explore quickly, but remain in regions of high R(x)
- Optimal proposal?

MH algorithm

- \circ Sample x' \sim Q(x' | x)
- With probability min(I,p), set x := x'
- Repeat for T steps; sample is x₁, ..., x_T (will usually contain duplicates)

MH algorithm

note: we don't need

to know Z

$$\circ$$
 Sample x' \sim Q(x' | x)

- With probability min(I,p), set x := x'
- Repeat for T steps; sample is x₁, ..., x_T (will usually contain duplicates)

MH example

Acceptance rate

- Moving to new x' is accepting
- Want acceptance rate (avg p) to be large, so we don't get big runs of the same x
- Want Q(x' | x) to move long distances (to explore quickly)
- Tension between Q and P(accept):

$$\mathbf{p} = \frac{R(x')}{R(x)} \frac{Q(x' \mid x)}{Q(x \mid x')}$$

Mixing rate, mixing time

- If we pick a good proposal, we will move rapidly around domain of R(x)
- After a short time, won't be able to tell where we started
- This is short mixing time = # steps until we can't tell which starting point we used
- Mixing rate = I / (mixing time)

MH estimate

- \circ Once we have our samples $x_1, x_2, ...$
- o Optional: discard initial "burn-in" range
 - allows time to reach stationary dist'n
- Estimated integral:

$$\frac{1}{N} \sum_{i=1}^{N} g(x_i)$$

In example

- \circ g(x) = x^2
- True E(g(X)) = 0.28...
- Proposal: $Q(x' \mid x) = N(x' \mid x, 0.25^2 I)$
- Acceptance rate 55–60%
- After 1000 samples, minus burn-in of 100:

```
final estimate 0.282361 final estimate 0.271167 final estimate 0.322270 final estimate 0.306541 final estimate 0.308716
```

Gibbs sampler

- Special case of MH
- o Divide **X** into blocks of r.v.s B(1), B(2), ...
- Proposal Q:
 - pick a block i uniformly (or round robin, or any other schedule)
 - ▶ sample $\mathbf{X}_{B(i)} \sim P(\mathbf{X}_{B(i)} \mid \mathbf{X}_{\neg B(i)})$

Gibbs example

Gibbs example

Why is Gibbs useful?

$$\circ \text{ For Gibbs, p} = \frac{P(x_i', x_{\neg i}')}{P(x_i, x_{\neg i})} \frac{P(x_i \mid x_{\neg i}')}{P(x_i' \mid x_{\neg i})}$$

Gibbs derivation

$$\frac{P(x_{i}', x_{\neg i}')}{P(x_{i}, x_{\neg i})} \frac{P(x_{i} \mid x_{\neg i}')}{P(x_{i}' \mid x_{\neg i})}$$

$$= \frac{P(x_{i}', x_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i} \mid x_{\neg i})}{P(x_{i}' \mid x_{\neg i})}$$

$$= \frac{P(x_{i}', x_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i}, x_{\neg i})/P(x_{\neg i})}{P(x_{i}', x_{\neg i})/P(x_{\neg i})}$$

$$= 1$$

Gibbs in practice

- Proof of p=1 means Gibbs is often easy to implement
- Often works well
 - if we choose good blocks (but there may be no good blocking!)
- Fancier version: adaptive blocks, based on current x

Gibbs failure example

Sequential sampling

- In an HMM or DBN, to sample $P(\mathbf{X}_T)$, start from \mathbf{X}_1 and sample forward step by step
- $P(X_{1:T}) = P(X_1) P(X_2 | X_1) P(X_3 | X_2) ...$

Particle filter

- Can sample $\mathbf{X}_{t+1} \sim P(\mathbf{X}_{t+1} \mid \mathbf{X}_t)$ using any algorithm from above
- \circ If we use parallel importance sampling to get N samples at once from each $P(\mathbf{X}_t)$, we get a **particle filter**
 - also need one more trick: resampling
- Write $\mathbf{x}_{t,i}$ (i = 1...N) for sample at time t

Particle filter

- Want one sample from each of $P(\mathbf{X}_{t+1} \mid \mathbf{x}_{t,i})$
- \circ Have only $Z P(\mathbf{X}_{t+1} | \mathbf{x}_{t,i})$
- \circ For each i, pick $\mathbf{x}_{t+1,i}$ from proposal Q(x)
- Compute unnormalized importance weight

$$\hat{w}_i = ZP(\mathbf{x}_{t+1,i} \mid \mathbf{x}_{t,i})/Q(\mathbf{x}_{t+1,i})$$

Particle filter

Normalize weights:

$$\bar{w} = \frac{1}{N} \sum_{i} \hat{w}_{i} \qquad w_{i} = \hat{w}_{i} / \bar{w}$$

- Now, $(w_i, \mathbf{x}_{t+1,i})$ is an approximate **weighted** sample from $P(\mathbf{X}_{t+1})$
- To get an unweighted sample, resample

Resampling

- Sample N times (with replacement) from $\mathbf{x}_{t+1,i}$ with probabilities w_i/N
 - ▶ alternately: deterministically take $floor(w_i)$ copies of $\mathbf{x}_{t+1,i}$ and sample only from fractional part $[w_i floor(w_i)]$
- Each $\mathbf{x}_{t+1,i}$ appears w_i times on average, so we're still a sample from $P(\mathbf{X}_{t+1})$

Particle filter example

Learning

Learning

- Basic learning problem: given some experience, find a new or improved model
- Experience: a sample $x_1, ..., x_N$
- Model: want to predict $x_{N+1}, ...$

Example

- Experience = range sensor readings & odometry from robot
- Model = map of the world

Example

- Experience = physical measurements of surveyed specimens & expert judgements of their true species
- Model = factor graph relating species to measurements

Sample data

sepal length	sepal width	petal length	petal width	species
5. I	3.5	1.4	0.2	Iris setosa
5.6	3.0	4.5	1.5	lris versicolor
4.9	3.0	1.4	0.2	Iris setosa
6.4	2.8	5.6	2.1	lris virginica
5.8	2.7	4 . I	1.0	lris versicolor

Factor graph

- One of many possible factor graphs
- Values of Φs not shown, but part of model

Factor graph

Factor graph

In general

- \circ For our purposes, a model M is exactly a distribution $P(X \mid M)$ over possible samples
- When is *M* better than *M*? When $P(X \mid M)$ is more accurate than $P(X \mid M)$.
- Bayes rule encodes this: from prior P(M) and evidence X, compute posterior P(M | X)
 - $P(M \mid X) = P(X \mid M) P(M) / P(X)$
 - better predictions (higher P(X | M)) yield higher posterior

Conditional model

- Split variables into (X, Y)
- Suppose we always observe X
- \circ Two ways P(X, Y) and P'(X, Y) can differ:
 - ▶ $P(X) \neq P'(X)$, and/or
 - $P(Y \mid X) \neq P'(Y \mid X)$
- First way doesn't matter for decisions
- Conditional model: only specifies P(Y | X, M)

Conditional model example

- Experience = samples of (X, Y)
- **X** = features of object
- Y = whether object is a "framling"
- Model = rule for deciding whether a new object is a framling

Sample data & possible model

tall	pointy	blue	framling
T	Т	F	T
T	F	F	T
F	Τ	F	F
T	Т	T	F
T	F	F	T

 $H = tall \land \neg blue$

Hypothesis space

- Hypothesis space \mathcal{H} = set of models we are willing to consider
 - for philosophical or computational reasons
- E.g., all factor graphs of a given structure
- o Or, all conjunctions of up to two literals
- \circ Prior is a distribution over ${\mathcal H}$

A simple learning algorithm

- Conditional learning: samples (xi, yi)
- \circ Let ${\mathscr H}$ be a set of propositional formulae
 - $\mathcal{H} = \{ H_1, H_2, \dots \}$
- H is consistent if $H(x_i) = y_i$ for all i
- ∘ **Version space** $V = \{$ all consistent $H \} \subseteq \mathcal{H}$
- **Version space algorithm**: predict y = majority vote of $H(\mathbf{x})$ over all $H \in V$

Framlings

tall	pointy	blue	framling
Т	Т	F	Т
Т	F	F	Т
F	Т	F	F
T	Т	Т	F
Т	F	F	Т

• $\mathcal{H} = \{ \text{ conjunctions of up to 2 literals } \} = \{ \text{T, F, tall, pointy, blue, } \neg \text{tall, } \neg \text{pointy, } \neg \text{blue, tall } \land \text{ pointy, } \text{tall } \land \text{ blue, pointy } \land \text{ blue, } \neg \text{tall } \land \text{ pointy, } \dots \}$

Framlings

tall	pointy	blue	framling
Т	Т	F	Т
Т	F	F	Т
F	Т	F	F
Т	Т	Т	F
Т	F	F	Т

Analysis

- Mistake = make wrong prediction
- If some $H \in \mathcal{H}$ is always right, eventually we'll eliminate all competitors, and make no more mistakes
- If no $H \in \mathcal{H}$ is always right, eventually V will become empty
 - e.g., if *label noise* or *feature noise*

Analysis

- Suppose $|\mathcal{H}| = N$
- o How many mistakes could we make?

Analysis

- Suppose $|\mathcal{H}| = N$
- o How many mistakes could we make?
- Since we predict w/ majority of V, after any mistake, we eliminate half (or more) of V
- Can't do that more than log₂(N) times

Discussion

- In example, N = 20, $log_2(N) = 4.32$
- Made only 2 mistakes
- Mistake bound: limits wrong decisions, as desired
- \circ But, required strong assumptions (no noise, true H contained in \mathcal{H})
- Could be very slow!

Bayesian Learning

Recall iris example

- \circ \mathscr{H} = factor graphs of given structure
- Need to specify entries of фs

Factors

 Φ_0

setosa	Þ
versicolor	q
virginica	I-p-q

 φ_1 - φ_4

	lo	m	hi
set.	Þi	q i	I—pi—qi
vers.	r i	Si	I—ri—si
vir.	Ui	Vi	I—u _i —v _i

Continuous factors

 $oldsymbol{\varphi}_1$

	lo	m	hi
set.	Pι	٩-	I-pı-qı
vers.	rı	Sı	I-r _I -s _I
vir.	U।	۷ı	I-u _I -v _I

$$\Phi_1(\ell, s) = \exp(-(\ell - \ell_s)^2 / 2\sigma^2)$$

parameters $\ell_{\rm set}$, $\ell_{\rm vers}$, $\ell_{\rm vir}$; constant σ^2

Discretized petal length

Continuous petal length

Simpler example

Coin toss

Parametric model class

- \mathcal{H} is a **parametric** model class: each H in \mathcal{H} corresponds to a vector of parameters $\theta = (p, q, p_1, q_1, r_1, s_1, ...)$
- \circ H_{θ}: **X** ~ P(**X** | θ) (or,Y ~ P(Y | **X**, θ))
- \circ Contrast to **discrete** \mathcal{H} , as in version space
- Could also have $mixed \mathcal{H}$: discrete choice among parametric (sub)classes

Continuous prior

E.g., for coin toss, p ~ Beta(a, b):

$$P(p \mid a, b) = \frac{1}{B(a, b)} p^{a-1} (1 - p)^{b-1}$$

 \circ Specifying, e.g., a = 2, b = 2:

$$P(p) = 6p(1-p)$$

Prior for p

Coin toss, cont'd

Joint dist'n of parameter p and data x_i:

$$P(p, \mathbf{x}) = P(p) \prod_{i} P(x_i \mid p)$$

$$= 6p(1-p) \prod_{i} p^{x_i} (1-p)^{1-x_i}$$

Coin flip posterior

$$P(p \mid \mathbf{x}) = P(p) \prod_{i} P(x_{i} \mid p) / P(\mathbf{x})$$

$$= \frac{1}{Z} p(1-p) \prod_{i} p^{x_{i}} (1-p)^{1-x_{i}}$$

$$= \frac{1}{Z} p^{1+\sum_{i} x_{i}} (1-p)^{1+\sum_{i} (1-x_{i})}$$

$$= \text{Beta}(2 + \sum_{i} x_{i}, 2 + \sum_{i} (1-x_{i}))$$

Prior for p

Posterior after 4 H, 7 T

Posterior after 10 H, 19 T

Predictive distribution

- Posterior is nice, but doesn't tell us directly what we need to know
- We care more about $P(x_{N+1} | x_1, ..., x_N)$
- By law of total probability, conditional independence:

$$P(x_{N+1} \mid \mathbf{D}) = \int P(x_{N+1}, \theta \mid \mathbf{D}) d\theta$$
$$= \int P(x_{N+1} \mid \theta) P(\theta \mid \mathbf{D}) d\theta$$

Coin flip example

- After I0 H, I9 T: p ~ Beta(I2, 2I)
- $\circ E(x_{N+1} | p) = p$
- \circ E(x_{N+1} | θ) = E(p | θ) = a/(a+b) = 12/33
- So, predict 36.4% chance of H on next flip

Approximate

Bayes

Approximate Bayes

- Coin flip example was easy
- In general, computing posterior (or predictive distribution) may be hard
- Solution: use the approximate integration techniques we've studied!

Bayes as numerical integration

- \circ Parameters θ , data **D**
- $P(\theta \mid \mathbf{D}) = P(\mathbf{D} \mid \theta) P(\theta) / P(\mathbf{D})$
- \circ Usually, P(θ) is simple; so is Z P($\mathbf{D} \mid \theta$)
- \circ So, P($\theta \mid \mathbf{D}$) \propto Z P($\mathbf{D} \mid \theta$) P(θ)
- Perfect for MH

petal length

$$P(y \mid x) = \sigma(ax + b)$$

$$\sigma(z) = 1/(1 + exp(-z))$$

Posterior

$$P(a, b \mid x_i, y_i) =$$

$$ZP(a, b) \prod_i \sigma(ax_i + b)^{y_i} \sigma(-ax_i - b)^{1-y_i}$$

$$P(a, b) = N(0, I)$$

Sample from posterior

Expanded factor graph

Cheaper approximations

Getting cheaper

- Maximum a posteriori (MAP)
- Maximum likelihood (MLE)
- Conditional MLE / MAP

 Instead of true posterior, just use single most probable hypothesis

MAP

$$\arg\max_{\theta} P(D\mid\theta)P(\theta)$$

Summarize entire posterior density using the maximum

MLE

$$\arg \max_{\theta} P(D \mid \theta)$$

Like MAP, but ignore prior term

Conditional MLE, MAP

$$\arg \max_{\theta} P(\mathbf{y} \mid \mathbf{x}, \theta)$$

$$\arg \max_{\theta} P(\mathbf{y} \mid \mathbf{x}, \theta) P(\theta)$$

- \circ Split D = (\mathbf{x}, \mathbf{y})
- Condition on x, try to explain only y

Iris example: MAP vs. posterior

Irises: MAP vs. posterior

Too certain

- This behavior of MAP (or MLE) is typical: we are too sure of ourselves
- But, often gets better with more data
- Theorem: MAP and MLE are consistent
 estimates of true θ, if "data per parameter" →