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Review: Bayesian learning

Bayesian learning:  P(θ | D) = P(D | θ) P(θ) / Z

‣ P(θ): prior over parametric model class

‣ P(D | θ): likelihood

‣ or, P(θ | X, Y) = P(Y | θ, X) P(θ) / Z as long 
as X ⊥ θ

Predictive distribution



Review: Bayesian learning

Exact Bayes w/ conjugate prior, or numerical 
integration—this example: logistic regression

Or, MLE/MAP
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Review: MDPs

Sequential decision problem under uncertainty

States, actions, costs, transitions, discounting

Policy, execution trace

State-value (J) and action-value (Q) function

‣ (1–γ) × immediate cost + γ × future cost



Review: MDPs

Tree search

Receding horizon tree search w/ heuristic

Dynamic programming (value iteration)

Pruning (once we realize a branch is bad, or 
subsampling scenarios)

Curse of dimensionality



Alternate algorithms for “small” 
systems—policy evaluation

Linear equations: so, Gaussian elimination, 
biconjugate gradient, Gauss-Seidel iteration, …

‣ VI is essentially the Jacobi iterative method 
for matrix inversion

Stochastic-gradient-descent-like

‣ TD(λ), Q-learning

Qπ(s, a) = (1− γ)C(s, a) + γE[Jπ(s�) | s� ∼ T (· | s, a)]

Jπ(s) = E[Qπ(s, a) | a ∼ π(· | s)]



Alternate algorithms for “small” 
systems—policy optimization

Policy iteration: alternately

‣ use any above method to evaluate current π

‣ replace π with greedy policy: at each state 
s, π(s) := arg maxa Q(s,a)

Actor-critic: like policy iteration, but 
interleave solving for Jπ and updating π

‣ e.g., run biconjugate gradient for a few steps

‣ warm start: each Jπ probably similar to next

SARSA = AC w/ TD(λ) critic, ϵ-greedy policy



(Stochastic) policy gradient

‣ pick a parameterized policy class πθ(a | s)

‣ compute or estimate g = ∇θ Jπ(s1)

‣ θ ← θ – ƞg, repeat

More detail:

‣ can estimate g quickly by simulating a few 
trajectories

‣ can also use natural gradient to get faster 
convergence

Alternate algorithms for “small” 
systems—policy optimization



Linear programming

‣ analogy: use an LP to 
compute min(3, 6, 5)

‣ note min v. max

max J s.t.
J ≤ 3
J ≤ 6
J ≤ 5

Alternate algorithms for “small” 
systems—policy optimization



Linear programming

Variables J(s) and Q(s,a) for all s, a

Note: dual of this LP is interesting

‣ generalizes single-source shortest paths

max J(s1) s.t.

Q(s, a) = (1− γ)C(s, a) + γE[J(s�) | s� ∼ T (· | s, a)]

J(s) ≤ Q(s, a) ∀s, a



Model requirements

What we have to know about the MDP in 
order to plan? 

‣ full model

‣ simulation model

‣ no model: only the real world



Model requirements

VI and LP require full model

PI and actor-critic inherit requirements of 
policy-evaluation subroutine

TD(λ), SARSA, policy gradient: OK with 
simulation model or no model

‣ horribly data-inefficient if used directly on 
real world with no model—don’t do this!

‣ note: model can be just { all of my data }



A word on performance 
measurements

Multiple criteria we might care about: 

‣ data (from real world)

‣ runtime

‣ calls to model (under some API)

Measure convergence rate of:

‣ J(s) or Q(s, a)

‣ π(s)
‣ actual (expected total discounted) cost



Building a model
How to handle lack of model without horrible 
data inefficiency?  Build one!

‣ hard inference problem; getting it wrong is bad

‣ this is why { all of my data } is a popular model

What do we do with posterior over models?

‣ just use MAP model (“certainty equivalent”)

‣ compute posterior over π*: slow, still wrong

‣ even slower:

‣ except policy gradient (Ng’s helicopter)

max
π

E(Jπ(s) | data, model class)
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Algorithms for large systems

Policy gradient: no 
change

Any value-based 
method: can’t even 
write down J(s) or 
Q(s,a)

So,

J(s) =
�

i

wiφi(s)

Q(s, a) =
�

i

wiφi(s, a)



Algorithms for large systems

Evaluation: TD(λ), LSTD

Optimization:

‣ policy iteration or actor-critic

‣ e.g., LSTD → LSPI

‣ approximate LP

‣ value iteration: only special cases, e.g., finite-
element grid



Least-squares temporal differences
(LSTD)

Data: τ = (s1, a1, c1, s2, a2, c2, …) ~ π

Want Q(st, at) ≈ (1–γ)ct + γQ(st+1, at+1)

‣ wTΦ(st, at) ≈ (1–γ)ct + γwTΦ(st+1, at+1)

‣ Φ = vector of k features, w = weight vector

Qπ(s, a) = (1− γ)C(s, a) + γE[Jπ(s�) | s� ∼ T (· | s, a)]

Jπ(s) = E[Qπ(s, a) | a ∼ π(· | s)]



LSTD

wTΦ(st, at) ≈ (1–γ)ct + γwTΦ(st+1, at+1)

Vector notation:

‣ Fw ≈ (1–γ)ct + γF1w

Overconstrained: multiply both sides by F

‣ FTFw = (1–γ)FTct + γFTF1w
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LSTD: example

100 states in 
a line; move 
left or right at 
cost 1 per 
state; goals at 
both ends; 
discount 0.99
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100 states in 
a line; move 
left or right at 
cost 1 per 
state; goals at 
both ends; 
discount 0.99



LSPI
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LSPI
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LSPI
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LSPI
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LSPI
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LSPI
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LSPI
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