15-780: Grad Al Lecture 22: MDPs

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Review: Bayesian learning

- Bayesian learning: $P(\theta \mid \mathbf{D}) = P(\mathbf{D} \mid \theta) P(\theta) / Z$
 - \triangleright P(θ): prior over parametric model class
 - \triangleright P(**D** | θ): likelihood
 - or, $P(\theta \mid \mathbf{X}, \mathbf{Y}) = P(\mathbf{Y} \mid \theta, \mathbf{X}) P(\theta) / Z$ as long as $\mathbf{X} \perp \theta$
- Predictive distribution

Review: Bayesian learning

- Exact Bayes w/ conjugate prior, or numerical integration—this example: logistic regression
- Or, MLE/MAP

Review: MDPs

- Sequential decision problem under uncertainty
- States, actions, costs, transitions, discounting
- Policy, execution trace
- State-value (J) and action-value (Q) function
 - $(I-\gamma)$ × immediate cost + γ × future cost

Review: MDPs

- Tree search
- Receding horizon tree search w/ heuristic
- Dynamic programming (value iteration)
- Pruning (once we realize a branch is bad, or subsampling scenarios)
- Curse of dimensionality

Alternate algorithms for "small" systems—policy evaluation

$$Q^{\pi}(s, a) = (1 - \gamma)C(s, a) + \gamma \mathbb{E}[J^{\pi}(s') \mid s' \sim T(\cdot \mid s, a)]$$
$$J^{\pi}(s) = \mathbb{E}[Q^{\pi}(s, a) \mid a \sim \pi(\cdot \mid s)]$$

- Linear equations: so, Gaussian elimination, biconjugate gradient, Gauss-Seidel iteration, ...
 - VI is essentially the Jacobi iterative method for matrix inversion
- Stochastic-gradient-descent-like
 - TD(λ), Q-learning

Alternate algorithms for "small" systems—policy optimization

- Policy iteration: alternately
 - use any above method to evaluate current π
 - replace π with **greedy** policy: at each state s, $\pi(s) := \arg \max_a Q(s,a)$
- \circ Actor-critic: like policy iteration, but **interleave** solving for J^{π} and updating Π
 - e.g., run biconjugate gradient for a few steps
 - \blacktriangleright warm start: each J^{Π} probably similar to next
- ∘ SARSA = AC w/TD(λ) critic, ϵ -greedy policy

Alternate algorithms for "small" systems—policy optimization

- (Stochastic) policy gradient
 - pick a parameterized policy class $\pi_{\theta}(a \mid s)$
 - compute or estimate $g = \nabla_{\theta} J^{\pi}(s_1)$
 - ▶ $\theta \leftarrow \theta \eta g$, repeat
- More detail:
 - can estimate g quickly by simulating a few trajectories
 - can also use *natural* gradient to get faster convergence

Alternate algorithms for "small" systems—policy optimization

- Linear programming
 - analogy: use an LP to compute min(3, 6, 5)
 - note min v. max

 $\max J$ s.t.

$$J \leq 3$$

$$J \leq 6$$

Linear programming

max $J(s_1)$ s.t.

$$Q(s, a) = (1 - \gamma)C(s, a) + \gamma \mathbb{E}[J(s') \mid s' \sim T(\cdot \mid s, a)]$$
$$J(s) \le Q(s, a) \quad \forall s, a$$

- Variables J(s) and Q(s,a) for all s, a
- Note: dual of this LP is interesting
 - generalizes single-source shortest paths

Model requirements

- What we have to know about the MDP in order to plan?
 - full model
 - simulation model
 - no model: only the real world

Model requirements

- VI and LP require full model
- Pl and actor-critic inherit requirements of policy-evaluation subroutine
- \circ TD(λ), SARSA, policy gradient: OK with simulation model or no model
 - horribly data-inefficient if used directly on real world with no model—don't do this!
 - note: model can be just { all of my data }

A word on performance measurements

- Multiple criteria we might care about:
 - data (from real world)
 - runtime
 - calls to model (under some API)
- Measure convergence rate of:
 - ► J(s) or Q(s, a)
 - ► π(s)
 - actual (expected total discounted) cost

Building a model

- How to handle lack of model without horrible data inefficiency? Build one!
 - hard inference problem; getting it wrong is bad
 - this is why { all of my data } is a popular model
- What do we do with posterior over models?
 - just use MAP model ("certainty equivalent")
 - \blacktriangleright compute posterior over π^* : slow, still wrong
 - even slower: $\max_{\pi} \mathbb{E}(J^{\pi}(s) \mid \text{data, model class})$
 - except policy gradient (Ng's helicopter)

Algorithms for large systems

- Policy gradient: no change
- Any value-based method: can't even write down J(s) or Q(s,a)
- So,

$$J(s) = \sum_{i} w_i \phi_i(s)$$

$$Q(s,a) = \sum_{i} w_i \phi_i(s,a)$$

Algorithms for large systems

- Evaluation: TD(λ), LSTD
- Optimization:
 - policy iteration or actor-critic
 - ▶ e.g., LSTD → LSPI
 - approximate LP
 - value iteration: only special cases, e.g., finiteelement grid

Least-squares temporal differences (LSTD)

$$Q^{\pi}(s,a) = (1-\gamma)C(s,a) + \gamma \mathbb{E}[J^{\pi}(s') \mid s' \sim T(\cdot \mid s,a)]$$
$$J^{\pi}(s) = \mathbb{E}[Q^{\pi}(s,a) \mid a \sim \pi(\cdot \mid s)]$$

- \circ Data: $T = (s_1, a_1, c_1, s_2, a_2, c_2, ...) ~ \pi$
- ∘ Want $Q(s_t, a_t) \approx (I \gamma)c_t + \gamma Q(s_{t+1}, a_{t+1})$

 - Φ = vector of k features, w = weight vector

LSTD

$$\circ \ \mathbf{w}^T \Phi(\mathbf{s}_t, \mathbf{a}_t) \approx (\mathbf{I} - \mathbf{y}) \mathbf{c}_t + \mathbf{y} \mathbf{w}^T \Phi(\mathbf{s}_{t+1}, \mathbf{a}_{t+1})$$

- Vector notation:
 - Fw $\approx (I-\gamma)c_t + \gamma F_1 w$
- Overconstrained: multiply both sides by F

$$F^{\mathsf{T}} F w = (I - \gamma) F^{\mathsf{T}} c_{t} + \gamma F^{\mathsf{T}} F_{I} w$$

LSTD: example

 100 states in a line; move left or right at cost I per state; goals at both ends; discount 0.99

LSTD: example

 100 states in a line; move left or right at cost I per state; goals at both ends; discount 0.99

