
Remote Detection of Virtual Machine Monitors with Fuzzy Benchmarking

Jason Franklin
Carnegie Mellon University

Mark Luk
Carnegie Mellon University

Jonathan M. McCune
Carnegie Mellon University

Arvind Seshadri
Carnegie Mellon University

Adrian Perrig
Carnegie Mellon University

Leendert van Doorn
Advanced Micro Devices

Abstract

We study the remote detection of virtual machine monitors (VMMs)
across the Internet, and devise fuzzy benchmarking as an approach
that can successfully detect the presence or absence of a VMM on a
remote system. Fuzzy benchmarking works by making timing mea-
surements of the execution time of particular code sequences exe-
cuting on the remote system. The fuzziness comes from heuristics
which we employ to learn characteristics of the remote system’s
hardware and VMM configuration. Our techniques are successful
despite uncertainty about the remote machine’s hardware configu-
ration.

1. Introduction
The ability to remotely detect a virtual machine monitor (VMM)

is important in many circumstances: detecting malware that has
been implemented with VMMs (e.g., VM-based rootkits [11, 16,
22]); detecting virtualized environments used for dynamic analysis
such as honeypots [10, 19]; preventing data lifetime or freshness
attacks that use VMMs [3, 7]; and preventing time-limited trial
software from being reused. These uses for VMM detection span
both the white hat and black hat communities. Even in the case of
malicious uses of VMM detection technology, it is important for
researchers to explore this space to facilitate development of coun-
termeasures.

We are interested in remotely detecting the presence of a VMM
on a particular system. Given the exact hardware specifications and
the specific VMM implementation that may be present, detection
using timing attacks is straightforward, as we show in this paper.
However, given all known VMM implementations, and all possi-
ble hardware configurations, detecting the presence of a VMM on
a platform with unknown hardware is an open problem. This prob-
lem spans a spectrum of VMM-detection scenarios, running from
specific (easier to detect) to general (harder to detect) along two
axes: VMM implementations and hardware configurations (see Fig-
ure 1). We do not claim that one point in the space is more useful
or more important than another; rather, it is our goal to explore
the space and gain some understanding of the challenges that lie
within.

Complete knowledge of the remote system is available in some
scenarios: suppose VM-based rootkits (VMBRs) become a signif-
icant threat in the wild. Anti-virus software makers are motivated
to detect such threats, and may require that users specify their ex-

act hardware configuration upon installation of the latest malware
signatures. The anti-virus software companies’ servers could then
periodically challenge the users’ systems to execute certain instruc-
tion sequences, designed to elicit slow performance in the presence
of a VMM on a user’s system. If performance is degraded suffi-
ciently, the anti-virus software company suspects the presence of
a VM-based rootkit. Due to the nature of VMBRs, out-of-band
mechanisms may be necessary to inform the user of this detection,
but that is outside the scope of this paper. However, several prob-
lems arise in this model. The information provided by the user
about their system might be incomplete or wrong.

We devisefuzzy benchmarkingas an approach to detect the
presence of a VMM on a remote system with uncertainty about
the remote system’s exact hardware configuration or specific VMM
implementation. We are able to successfully detect whether the re-
mote system has an Intel Pentium IV, and whether it is running
vanilla Linux, Xen 3.0.2, or VMware workstation. Further, our
fuzzy benchmarkscontinue to work against a machine with hard-
ware support for virtualization running Xen 3.0.2. While our re-
sults do not prove that all VMMs are detectable on all hardware
platforms, they suggest that a motivated entity with some knowl-
edge of the remote system in question is likely to be able to con-
struct afuzzy benchmarkthat demonstrates performance degrada-
tion when running on a VMM. As such, our work represents a first
step towards general VMM detection techniques.
Contributions. This work makes the following contributions:

• We introduce the problem space relating to VMM detection.

• We propose thefuzzy benchmarkapproach based on timing
VMM overhead on machines of uncertain configuration.

• We design and implement thefuzzy benchmarkapproach for
some commodity architectures and VMMs.

• We evaluate ourfuzzy benchmarkexperiments, which suc-
cessfully detect the presence of commodity VMMs execut-
ing on commodity x86 hardware, including hardware with
virtualization support.

Outline. The remainder of our paper is organized as follows.
Section 2 provides an overview of the VMM detection problem.
Section 3 motivates the design of our detection algorithm based on
both theoretical and practical constraints. The implementation and
experimental evaluation of our detection algorithm is presented in
Section 4. We treat related work in Section 5. Finally, Section 6
offers our conclusions.

1

2. Problem Space
We define the problem ofVMM detection, in which a program,

called afuzzy benchmark, executes on a remote host in order to
determine if that remote host is a virtual machine running on vir-
tualized hardware or a real machine running directly on hardware.
We term the benchmark afuzzy benchmarkbecause uncertainties
with respect to the hardware and VMM configuration of the re-
mote system preclude the benchmark being designed for a specific
target system. Further, a set of all hardware or VMM configura-
tions is intrinsically vaguely defined, since the space of all possible
configurations is infinite.

We follow Popek and Goldberg [13] in defining a virtual ma-
chine as an efficient, isolated duplicate of the underlying hardware.
This definition imposes the three properties that a control program
must satisfy to be termed a VMM: efficiency, resource control, and
equivalence.

1. Theefficiency property dictates that a statistically dominant
subset of the virtual processor’s instructions be executed di-
rectly by the real processor, without requiring intervention
by the VMM.

2. Theresource control property dictates that the VMM is in
complete control of system resources. This requires that it be
impossible for an arbitrary program running in a VM on top
of the VMM to affect system resources, e.g., memory and
peripherals, allocated to a different VM or the VMM itself.

3. Theequivalence propertydictates that the VMM provide
an environment for programs which is essentially identical
to that of the original machine. Any programP executing
with a VMM resident in memory, with two possible excep-
tions, must perform in a mannerindistinguishablefrom the
case when the VMM did not exist andP had the freedom
of access to privileged instructions that the programmer had
intended. The two possible exceptions to the equivalence
property result from resource availability and timing depen-
dencies.

The resource availability exception to the equivalence property
states that a particular request for a resource may not always be
satisfied. As a result, a program may be unable to function in the
same manner as it would if the resource were made available. This
exception exists because the VMM shares the underlying hardware
and hence consumes some resources.

The timing dependency exception states that certain instruction
sequences in a program may take longer to execute. Hence, as-
sumptions about the length of time required for the execution of an
instruction might lead to incorrect results. This exception results
from the requirement that the VMM maintain control over system
resources by interposing on control-modifying instruction.

In this paper, we exploit the timing dependencies to construct
fuzzy benchmarkswhich demonstrate measurable overhead, even
in the presence of uncertainty as to the remote system’s hardware
and possible VMM configuration. Uncertainties with respect to
the hardware configuration include CPU microarchitecture, cache
architecture, memory size, and clock speed. Uncertainties with re-
spect to the VMM implementation include optimizations such as
the use of binary rewriting or paravirtualization. Hardware sup-
port for virtualization, such as Intel’s VT [9] or AMD’s SVM [5]
technologies, further complicates VMM detection.

K
n

o
w

le
d

g
e

 o
f

V
M

M
 I

m
p

le
m

e
n

ta
ti
o

n

Knowledge of Hardware

less
 diffi

cu
lt t

o detect

more
 diffi

cu
lt t

o detect

more less

m
o

re
le

s
s

alpha beta

delta gamma

Figure 1. VMM detection problem space.

We envision the VMM detection problem space along two axes
(see Figure 1): level of knowledge about the remote system’s hard-
ware configuration, and level of knowledge about the remote sys-
tem’s possible VMM implementation. For example, VMware has
enjoyed a dominant position in the VMM market for years. Thus, it
may be reasonable to assume that a remote system is using VMware.
However, Xen has recently been growing in popularity. Still, guess-
ing that the remote system is executing a specific version of Xen or
VMware is unlikely to succeed if the remote system wants to hide
its VMM.

One potential hurdle for timing-based detection techniques is
the arrival of new hardware with support for virtualization. How-
ever, Adams and Agesen show that even with today’s latest hard-
ware support for virtualization, VMMs experience considerable
performance overhead [1]. Our experimental results confirm these
observations. We cannot predict what capabilities future hardware
may have to improve virtualization performance; thus, our results
reflect only the today’s state of the art.

3. Design of Fuzzy Benchmarks
In this section, we describe our design of a VMM detection

technology calledfuzzy benchmarking, with applications in each
of the four quadrants identified in Figure 1. Though we discuss
some local measurements to aid understanding, our design facili-
tates remote detection of a VMM using a detection protocol across
the Internet for each quadrant (results in Section 4). We first present
our detection scenario and assumptions, then describe the remote
VMM detection protocol, followed by the intricacies offuzzy bench-
marksfor each quadrant.

3.1 Scenario and Assumptions
We have two parties in our VMM detection scenario, an ex-

ternal verifier and a target host, connected via the Internet. The
external verifier would like to determine whether the target host
is a virtual machine. To this end, the external verifier installs and
executes some benchmarking code on the target host. The VMM,
if present, is assumed to be a full system VMM such as VMware,
Xen, or Virtual PC running on unmodified commodity x86 hard-
ware (including but not limited to the Intel Pentium family, Intel
VT [9], and AMD SVM [5]). The VMM may make use of hard-
ware extensions to support virtualization, if present. We assume
that the external verifier has root access to at least one VM run-
ning inside the VMM, which it uses to execute benchmarking code

2

at the highest privilege level with interrupts turned off. If the tar-
get host is a VM, the VMM may execute at a higher privilege level,
interrupts may only be disabled for this VM, and the VMM may re-
turn invalid information to direct inquiries from VMs about elapsed
time or performance. We do not assume any knowledge concern-
ing which quadrant of Figure 1 the target host is operating in. This
is the source of the fuzziness in our benchmarking; the external
verifier may know only a vaguely defined set of possible hardware
configurations or VMM implementations that describe the target
host.

3.2 Remote Detection Protocol
The remote verifier attempts VMM detection on the target host

from a remote Internet site. The remote verifier is assumed to have
an accurate clock which is used to measure the runtime of thefuzzy
benchmarkon the target host. Clock synchronization is not re-
quired between the machines because all timing measurements are
made on the remote verifier.

The remote verifier installs and prepares for execution afuzzy
benchmark Bon the target host.B executes when directed to do so
by the remote verifier, and sends the remote verifier a notification
of completion after execution finishes. Upon receiving the notifi-
cation of completion, the remote verifier records the time elapsed
since requesting the invocation ofB. To determine if the detection
algorithmB was executed on top of a VMM, the remote verifier
checks whether the execution time ofB is greater than a predeter-
mined threshold valueτR (described below) for the target host’s set
of suspected hardware platforms. If the execution time exceeds the
threshold, the target host is considered to be a VM and hence a
VMM was in control of the execution ofB.

To remotely detect VMM overhead, we must develop a pro-
gram B with sufficient VMM overhead to overcome variance in
network latency, inaccuracies in timing, and any other sources of
noise which may exist. To achieve adaptability in the face of fu-
ture changes in the noise level, we developB with a configurable
amount of VMM overhead, at the expense of the overall runtime
of the fuzzy benchmark. The remainder of this section discusses
how fuzzy benchmarksoperate, including obtaining an appropriate
value ofτR for target hosts in each quadrant of Figure 1.

3.3 Fuzzy Benchmarking Architecture
We design afuzzy benchmark Bwhich includes control-modifying

CPU instructions that we empirically determine to cause VMM
overhead across several VMM implementations. We choose the
particular control-modifying CPU instructions (thereby requiring
intervention by the VMM to maintain the resource control prop-
erty) and then tune their number such that the VMM overhead is
noticeable across the Internet. The execution time ofB on real
machineR, τR, is our threshold for distinguishing between the ex-
ecution ofB on a real machine and execution on a virtual machine.
The accuracy of ourfuzzy benchmarkis dependent on a correct
value for τR. One complexity that arises is how one determines
the value ofτR for machines of unknown hardware configuration
(quadrants beta and gamma in Figure 1).

Since the execution time ofB is dependent on the underlying
hardware, we require some knowledge of the hardware configura-
tion. We have developed a heuristic that relies on the existence
of hardware artifacts that “shine through” the VMM. An artifact
shines through a VMM if it is possible to identify the existence
of the artifact by observing the effects of commands executed in a
VM. The hardware artifacts we discover are unique to a particular

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200

T
im

e
E

la
p
se

d
 o

n
 V

er
if

ie
r

(s
ec

o
n
d
s)

Instruction Sequence Length

VMM1
VMM2
VMM3

Real Machine

Figure 2. Example VMM overheads for pro-
gram B. Without a VMM executing, the instruc-
tions in B complete rapidly. With a VMM, there
is noticeable overhead.

CPU microarchitecture and allow us to infer a portion of the con-
figuration of the target host. In the context of Figure 1, this moves
the level of knowledge in the external verifier further to the left.
For example, the artifact we explore in Section 4 is the existence
of a trace cache present in all Intel Pentium IV CPUs. This config-
uration information then allows for an estimation of the expected
runtime ofB on R, τR, since the external verifier can assume the
target host is a member of the Intel Pentium IV family.

To select control-modifying instructions to induce VMM over-
head, we measured the overhead of different control-modifying in-
structions on several different VMMs. After selecting particular
instructions to include in the programB, we need to further tune
the VMM overhead induced byB by selecting the number of in-
structions. There are at least two factors in addition to network-
induced noise that affect the VMM overhead ofB. First, the con-
figuration of the machine, for instance, Intel Pentium IV 2.0 GHz,
has a direct effect on the execution time. Second, different virtual
machine monitor implementation strategies result in different over-
heads (e.g., paravirtualization, binary rewriting, or the presence of
a host OS under the VMM). The following analysis explains how
we incorporate these two factors into our experiments in order to
select the number of instructions inB.

First, we look at the optimistic case where we assume full knowl-
edge of the configuration of the target machine, i.e., the bottom left
of quadrant alpha in Figure 1. We then reduce the amount of con-
figuration information that is known and develop a technique for
estimatingτR in the other quadrants.

3.3.1 Detailed Configuration Information – Quad-
rant Alpha

Given local access to a machine about which we know detailed
configuration information, we can determine the number of instruc-
tions to include in afuzzy benchmarkby estimating the noise on
the Internet and running a number of experiments to time thefuzzy
benchmarkdirectly on the real hardware and on different VMMs.
The results of these experiments can generate a graph similar to
Figure 2.

Figure 2 is a distilled version of Figure 9 from our experimental
results, and serves to illustrate our point here. The upper three lines

3

Execution time of detection attack

FR FV SVSR

architecture range architecture range

O

Figure 3. The required order of execution
times of fuzzy benchmark Bfor successful VMM
detection given a set of partial configuration
information. FR (fastest real), SR (slowest
real), FV (fastest virtual machine), and SV
slowest virtual machine) are machines which
conform to this partial configuration informa-
tion.

represent the runtimes ofB with a fixed set of control-modifying
instructions under several different VMM implementations. The
bottom line is the execution time ofB on the real hardware. To de-
termine the required number of instructions denoted byx, we first
generate equations for all the lines in the graph. We then derive the
minimum number of instructions required to overcome our noise
estimate as follows.

Given a model:














VMM1(x) = a1x
VMM2(x) = a2x
VMM3(x) = a3x

RealMachine(x) = bx















We seta = min(a1,a2,a3) and denoteFastestVMM(x) = ax.
With a noise estimate ofn, we selectx such that

FastestVMM(x)−RealMachine(x) ≫ n
or equivalently,x≫ n

a−b . Sincen is less than a second in practice
and our VMM overhead is configurable into the tens of seconds,
selectingx based on local experiments presents few difficulties. We
describe the configurability offuzzy benchmarksin Section 4 when
we present somefuzzy benchmarksin detail.

3.3.2 Fuzzy Configuration Information – Quad-
rants Beta, Delta, and Gamma

We now examine the case where we have fuzzy configuration
information for the target host. For example, we have configura-
tion information derived from the use of our hardware discovery
heuristic. In this case, we determine the correct number of instruc-
tions to execute based on a number of estimates and experiments.
We assume that we have local access to a machine with partial con-
figuration information which matches that of the target host, though
even the partial configuration information may be hard to obtain in,
e.g., quadrant gamma.
Gaining knowledge of the target host’s hardware configura-
tion. As an example, imagine that the partial configuration in-
formation we have identifies just the processor microarchitecture
(e.g., Intel Pentium IV). Since the target host we are attempting
to distinguish as virtual or real may run at a different clock speed
than the machine we are using for our experiments, we need to
bound the runtime ofB for different configurations and use these
bounds for detection. In addition, since our runtime estimates for
B will not be as accurate as in the full configuration information
case, we must designB such that the execution time ofB is ordered
as in Figure 3. Essentially, executingB on the fastest VMM on the

fastest real machine that matches the partial configuration informa-
tion should take longer than executingB directly on the slowest real
machine matching the partial configuration information.

Our approach is to determine the range of processor speeds
available given our partial configuration information and to use
these values to approximateB′sexecution time under different con-
figurations. Given the partial configuration information we know,
we determine the processor speed of the fastest machine available
and denote this asF . While this value increases over time, the con-
figurable nature of the overhead elicited byB (detailed in Section 4)
makes it possible to compensate for this increase. We denote the
speed of the slowest machine satisfying our partial configuration
information asS. The processor speed of the machine we are us-
ing for local experiments is denotedM. At the time of writing this
paper,F = 3.8GHZ andS= 1.3GHZ for the Intel Pentium IV.1

As in Section 3.3.1, we experimentally determineFastestVMM(x)=
axandRealMachine(x) = bxby running tests with different VMMs
(including no VMM) on the local machineM. We then use the
ratio of the speed of the local machine to the speed of the slow-
est possible machine,p = M

S , to estimate the runtime ofB on
the real hardware ofS. This gives us a runtime estimate onS of
SlowestReal(x) = p∗RealMachine(x). Similarly, we use the ratio
of the speed of the local machine to the fastest machine,u = M

F , to
estimate the runtime on the fastest virtual machine. This gives us
FastestVirtual(x) = u∗FastestVMM(x). To determine the mini-
mum number of instructions required to overcome our noise esti-
mate, we requireFastestVirtual(x) > SlowestReal(x)+n or equiv-
alently,x >

n
au−bp.

Gaining knowledge of the target host’s VMM implementation.
Thus far, we have described techniques for increasing the external
verifier’s knowledge of the remote hardware (moving to the left in
Figure 1). To obtain high confidence in a VMM detection, knowl-
edge of the target host’s hardware configuration is insufficient; we
must also gain additional knowledge about the VMM implementa-
tion on the target host.

Suppose preliminary experiments with a target host suggest the
presence of a VMM, e.g., induced TLB flushes are unusually ex-
pensive (due to the existence of shadow page tables). Consider a
VMM that uses binary rewriting to maintain control. The VMM
rewrites control-modifying instructions which might require a trap
into the VMM instead replacing them with innocuous instructions
that modify virtualized system state. This use of binary rewrit-
ing may make some otherwise slow control-modifying instructions
more efficient. If the presence of a binary-rewriting VMM is sus-
pected, additional timing-based experiments can be performed to
exploit the overhead induced by binary rewriting. We successfully
perform exactly this experiment in Section 4, initially detecting that
a VMM is likely to be present because of TLB flush overheads, and
then refining our knowledge of that VMM by detecting the use of
binary rewriting (VMware Workstation uses binary rewriting; Xen
3.0.2 does not).

4. Implementation and Evaluation
We present implementation details and an evaluation of exper-

iments which allow a remote verifier to learn about the hardware
configuration and potential VMM implementation on a target host.
We first describe our experimental setup, then discuss the actions
necessary to ensure timing integrity for our experiments. Mech-

1http://www.intel.com/products/processor/
pentium4

4

Vanilla�

Linux

VMWare�

Workstation

Paravirtualized�

Xen 3.0.2 SVM Xen 3.0.2

Local�

Router

Local�

Verifier

Remote�

Verifier

Internet

Figure 4. Experimental machine and network
setup.

anisms that can detect the hardware architecture of an unknown
remote system are presented next. Finally, we provide a detailed
discussion of the development of code that induces overhead in vir-
tual machine monitors, including the ability to distinguish between
different VMM implementations.

4.1 Experimental Setup
We use six machines in our VMM detection experiments. Fig-

ure 4 shows these machines and their network connectivity. Three
of the machines are identical 2.0 GHz Intel Pentium IV systems.
These systems run vanilla Linux, VMware Workstation, and par-
avirtualized xenolinux on Xen 3.0.2, respectively. The fourth ma-
chine has AMD SVM [5] hardware extensions to support virtu-
alization and runs Xen 3.0.2. The last two machines are used as
verifiers in experiments where timing measurements are made re-
motely. One of these is on a separate subnet from our machines
running VMMs, separated by one hop through a router, which we
call thelocal verifier. The other is located remotely at another uni-
versity, which we call theremoteverifier. Average ping times to
the local and remote verifiers are 0.4 ms and 16 ms, respectively.
All CPU-scaling and power-saving features are disabled on the lo-
cal and remote verifiers during experiments to prevent the clock
frequency of the CPU in the verifier from changing.

We detect the presence of a VMM based on performance mea-
surements of specially crafted instruction sequences, which we ex-
ecute in a loop called the benchmarking loop. We iterate the loop
containing the sequence to generate enough overhead for detection.
Unless stated otherwise, our loop iterates 217 times. We selected
this value experimentally.

Our benchmarking loops execute within a Linux kernel module.
Their instructions always execute at the same privilege level as the
kernel itself, which depends on the hardware architecture and the
presence or lack of a VMM. To measure execution time locally, we
use therdtsc (read time-stamp counter) instruction before and
after the benchmarking loop. To obtain measurements using a lo-
cal or remote verifier, a user-level programmeasured runs on the
target system and listens for a TCP connection from the verifier.
When a connection is established,measured immediately tries
to open a file that our kernel module adds to the/proc filesystem.
This results in a call to a function in our module, which immedi-

ately suspends the calling process, disables interrupts, and begins
execution of the benchmarking loop. When the benchmarking loop
finishes, interrupts are re-enabled, the calling process gets woken
up, and its file-open succeeds. Without even reading any data from
the file,measured sends a packet back across its TCP connec-
tion, indicating to the verifier that execution of the benchmarking
loop is complete.

In the remainder of the paper, we sometimes refer to a target
host as “VMware” or “Xen”, when in fact we mean the guest OS
running on VMware or Xen. All experiments run against Xen, with
or without SVM support, are run against an unprivileged user do-
main which is the only other domain running besides the privileged
domain 0.

We must address one more issue before delving into our bench-
marking loops: the issue of a heavily loaded target host. We com-
pare the case where the target host is not running a VMM with the
case where it is. If there is no VMM, then disabling interrupts in the
benchmarking loop truly disables them. The benchmarking loop
executes to completion without interruption, rendering the load on
the target host irrelevant. If the target system is a guest running on
a VMM, interrupts areat leastdisabled in that guest VM. Thus,
only code executing in other guest VMs on the same VMM can
affect performance. If another heavily loaded guest exists along-
side the target guest, the performance of the target guest may be
degraded. This performance degradation only applies on systems
running VMMs, and will thusimproveour chances of successfully
detecting the VMM. All of our experiments are run without any
extra load on the VMMs, hence we perform VMM detection in the
worst-case of an idle system.

4.2 Timing Integrity
A VMM has total control over its guest OSes. Thus, we cannot

trust a VMM to return valid answers tordtsc “in the wild” [11].
Figure 5 compares internal (local) versus external timing measure-
ments for the exact same experiment run on two variants of SVM
Xen. One variant is the standard 3.0.2 release. The variant labeled
as “Low-Integrity” in figures is actually an unstable development
release of Xen with a bug in the code that handlesrdtsc. It is
illustrative here because a party who wishes to thwart local VMM
detection may intentionally modify their VMM to return such in-
valid timing measurements.

Figure 5(a) shows the internal timing measurements for a loop
of a sequence of arithmetic instructions which clears interrupts at
the beginning of each loop iteration. Xen 3.0.2 behaves as ex-
pected, with longer instruction sequences requiring longer to exe-
cute. In contrast, “Low-Integrity” Xen does not show any overhead
whatsoever. In fact, some of the elapsed times are negative. Fig-
ure 5(b) shows a rerun of the same experiment, except that timing
is performed by a local verifier. Localrdtsc calls are now unnec-
essary, and the runtime of the two experiments is nearly identical.

VMware Workstation can be made to demonstrate similar be-
havior, though we omit experimental results due to lack of space.
In fact, VMware provides a configuration option for VMs called
monitor control.virtual rdtsc [20]. When set totrue,
a virtual counter in the VMM is used to provide values for guest
OS calls tordtsc. When set tofalse, VMware allows guest
OS calls tordtsc to access the CPU’s true timestamp counter.

4.3 Identifying Target Host Hardware Architec-
tures

Inducing significant overhead in a VMM can result in long run-
times, which we detect by measuring runtime from a separate sys-

5

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 8192 8704 9216 9728 10240 10752 11264 11776 12288

C
P

U
 C

y
cl

es
 E

la
p
se

d

Instruction Sequence Length

HVM Xen Low-Integrity
HVM Xen 3.0.2

(a) Low timing integrity. Elapsed cycles measured internally
usingrdtsc. The same experiment yields dramatically dif-
ferent timing results on two variants of SVM Xen on the same
physical machine.

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 8192 8704 9216 9728 10240 10752 11264 11776 12288

T
im

e
E

la
p
se

d
 o

n
 V

er
if

ie
r

(s
ec

o
n
d
s)

Instruction Sequence Length

HVM Xen Low-Integrity
HVM Xen 3.0.2

(b) High timing integrity. Elapsed time measured via a local ver-
ifier. The same experiment yields similar results, even though
one VMM was returning incorrect responses tordtsc instruc-
tions.

Figure 5. Timing integrity using internal versus local veri fiers.

tem. However, without some idea of the hardware architecture of
the remote system in question, it is difficult to interpret timing re-
sults correctly. In this section, we describe a technique that is useful
for identifying an unknown remote system as having an Intel Pen-
tium IV CPU, thereby providing more knowledge in the context
of Figure 1. If a system is known to be equipped with a Pentium
IV, we can bound its expected performance and establish a runtime
threshold, above which it is likely that the target system is running
a VMM. The Netburst Microarchitecture of the Intel Pentium IV
family includes a trace cache with consistent specifications across
all currently-produced Pentium IV CPUs [2]; our hardware discov-
ery heuristics detect the presence of the trace cache. Other relevant
characteristics of the Pentium IV microarchitecture include an out-
of-order core and a rapid execution engine.

The trace cache stores instructions in the form of decodedµops
rather than in the form of raw bytes which are stored in more con-
ventional instruction caches [15]. Thesetracesof the dynamic in-
struction stream ensure that instructions that are noncontiguous in
a traditional cache to appear contiguous. A trace is a sequence of
at mostn instructions and at mostm basic blocks (a sequence of
instructions without any branches) starting at any point in the dy-
namic instruction stream. An entry in the trace cache is specified by
a starting address and a sequence of up tom−1 branch outcomes,
which describe the path followed. This facilitates removal of the in-
struction decode logic from the main execution loop, enabling the
out-of-order core to schedule multipleµops to the rapid execution
engine in a single clock cycle. In the case of register-to-register
arithmetic instructions without data hazards, it is possible to retire
threeµops every clock cycle. Register-to-register x86 arithmetic
instructions (e.g.,add, sub, and, or, xor, mov) decode into a
singleµop. Thus, it is possible to attain a Cycles-Per-Instruction
(CPI) rate of13 for certain sequences of instructions.

Intel has published the size of the trace cache in the Pentium IV
CPU family – 12Kµops. However, the parametersmandn, as well
as the number ofµops into which x86 instructions decode, have not
been published. We performed an experiment where we executed
benchmarking loops of 1024 to 16384 arithmetic instructions de-

rdtsc ;; get start time
mov $131072, %edi ;; n = 131072
loop:
xorl %eax, %eax ;; begin special
addl %ebx, %ebx ;; instr. seq.
movl %ecx, %ecx
orl %edx, %edx
... ;; 1K – 16K instr.
sub $1, %edi ;; n = n−1
jnz loop ;; until n = 0
rdtsc ;; get end time

Figure 6. Example assembly code used to
fill trace cache with register-to-register arith-
metic instruction sequences (which decode
to a single µop) without data hazards on In-
tel Pentium IV CPUs.

void of data hazards on Pentium IV systems running vanilla Linux
2.6.16. Figure 6 shows the structure of our benchmarking loop.
Figure 7(a) shows the results of this experiment when run using
therdtsc instruction to measure the elapsed CPU cycles locally.
It is evident on the Pentium IV that the CPI is indeed1

3 until the
number of instructions reaches Intel’s published trace cache capac-
ity of 12K µops. We also ran this experiment locally on a laptop
equipped with a Pentium M CPU; no unusual caching effects are
observed (note that a CPI of less than 1 is obtained for the entire
loop).

At this point we know enough about the trace cache in Pen-
tium IV CPUs to construct a benchmarking loop that has sufficient
overhead to be detected remotely across the Internet, thus allow-
ing the remote verifier to gain knowledge about the target host’s
hardware configuration. As described above, the exact details of
how the trace cache generates its traces are not published. We
performed additional experiments like those of Figure 7(a) locally
and determined that a benchmarking loop composed of a sequence

6

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 2048 4096 6144 8192 10240 12288 14336 16384

C
P

U
 C

y
cl

es
 E

la
p
se

d

Loop Size (instructions)

Pentium 4
Pentium M

(a) When sequences of register-to-register arithmetic in-
structions without data hazards populate the trace cache of
an Intel Pentium IV, a CPI of13 is attainable. Once an in-
struction sequence exceeds the trace cache’s maximum size
of 12KB, the CPI becomes 1. No such effect is visible on a
Pentium M (an architecture without a trace cache). Cycles
measured locally withrdtsc.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120

T
im

e
E

la
p
se

d
 o

n
 V

er
if

ie
r

(s
ec

o
n
d
s)

Loop Multiplier

P4 VMWare 11328
P4 Xen 11328

P4 Vanilla 11328
PM Vanilla 11328
PM Vanilla 11264

P4 VMWare 11264
P4 Xen 11264

P4 Vanilla 11264

(b) Trace cache overhead timed remotely from another uni-
versity. Sequences of either 11264 or 11328 arithmetic in-
structions with no data hazards are executed in a loop. The
number of loop iterations is defined by 217 + 210k, where
k is the Loop Multiplier on the X-axis. With and without
a VMM, the Pentium IV architecture shows a considerable
jump in overhead for a small number of additional instruc-
tions. In contrast, the Intel Pentium M (legend: PM) shows
no such jump.

Figure 7. Measurements of trace cache overhead.

of 11264 arithmetic register-to-register instructions fits inside the
trace cache, but that a sequence of 11328 instructions does not fit.
That these figures are less than 12K is expected, as there are ad-
ditional instructions executed to maintain loop counters and jump
back to the beginning of the loop. Thus, executing these sequences
multiple times should cause the performance of the larger loop to
suffer disproportionately with respect to its added length.

Since the benchmarking loops contain only innocuous instruc-
tions, VMMs allow them to execute directly. The exaggerated per-
formance difference between the two loops is largely unaffected by
the presence of a VMM. Figure 7(b) shows the results of an exper-
iment designed to demonstrate this effect. The top three lines are
the execution time for the smaller sequence (11264 instructions per
loop iteration) on vanilla Linux, paravirtualized Xen, and VMware
Workstation. The bottom three lines show the same with the larger
sequence (11328 instructions per loop iteration). The middle two
lines show the two sequences executed on a Pentium M running
vanilla Linux; this serves to illustrate how minimal the runtime dif-
ference between the loops is when there is no trace cache involved.
The gap between the execution time of loops of the smaller se-
quence and loops of the larger sequence is considerable, and we
are able to detect this even across the Internet.

4.4 Inducing Detectable VMM Overhead on the
Target Host

At this point, we have some idea about the remote architecture
on which we are trying to detect a VMM. For example, we know
the CPU is a member of the Pentium IV family. As described in
Section 3, we need sufficient overhead to distinguish between the
slowest member of the CPU family running a native OS and the
fastest member of the CPU family running a guest OS on a VMM.

Thus, we must induce significant performance overhead in a
VMM. As described in Section 3, we use control-modifying in-
structions which result in the execution of additional code inside

the VMM. While we do not have space to exhaustively treat all
sensitive instructions, we select a few and analyze their overhead
on Xen 3.0.2 and VMware Workstation on an Intel Pentium IV. The
instructions we consider arecli (clear interrupts),mov %cr0,
%eax (read processor control register 0),mov %cr2, %eax (read
processor control register 2), andmov %cr3, %eax; mov %eax,
%cr3 (read and write processor control register 3, which induces a
TLB flush).

We next analyze these selected instructions locally on Xen 3.0.2,
VMware Workstation, and vanilla Linux to understand their behav-
ior (Section 4.4.1). Armed with this knowledge, we construct a re-
mote attack that successfully detects the presence of a VMM across
the Internet (Section 4.4.2). We also present a technique which
causes instructions which would normally execute efficiently on
VMware to perform poorly (Section 4.4.3), thereby allowing us to
distinguish between Xen and VMware.

4.4.1 Per-Instruction Overhead
We configured VMware with
monitor control.virtual rdtsc = false

so that VMware allows guest OSes to have direct access to the
CPU’s timestamp counter. Paravirtualized Xen 3.0.2 allows its
guests to access the time stamp counter by default. Thus, we can
run local experiments to analyze per-instruction overhead. Our
analysis is based on experiments where a small number of one
of the sensitive instructions in question are inserted in between
sequences of register-to-register arithmetic instructions. For each
sensitive instruction, we evenly space 1, 2, 4, 8, or 16 instances of
that instruction among 12,256 arithmetic instructions. We selected
12,256 to ensure that trace cache effects would not add noise to
our results. We cannot be sure how the trace cache would impact a
smaller sequence of instructions because the exactµop structure of
these sensitive instructions is not published.

Figure 8 shows the results of local performance measurements.

7

 0

 10000

 20000

 30000

 40000

 50000

16 CLI8 CLI4 CLI2 CLI1 CLI

C
P

U
 C

yc
le

s
E

la
ps

ed

Instructions

Vanilla
VMWare

Xen

(a) cli (Clear Interrupts)

 0

 10000

 20000

 30000

 40000

 50000

16 CR08 CR04 CR02 CR01 CR0

C
P

U
 C

yc
le

s
E

la
ps

ed

Instructions

Vanilla
VMWare

Xen

(b) mov cr0, %eax (Read Processor Control Regis-
ter 0)

 0

 10000

 20000

 30000

 40000

 50000

16 CR28 CR24 CR22 CR21 CR2

C
P

U
 C

yc
le

s
E

la
ps

ed

Instructions

Vanilla
VMWare

Xen

(c) mov %cr2, %eax (Read Processor Control Reg-
ister 2)

 0

 40000

 80000

 120000

 160000

 200000

16 CR38 CR34 CR32 CR31 CR3

C
P

U
 C

yc
le

s
E

la
ps

ed

Instructions

Vanilla
VMWare

Xen

(d) mov %cr3, %eax; mov %eax, %cr3 (Read
and then write Processor Control Register 3)

Figure 8. Local execution times for selected sensitive inst ructions.

Figures 8(a), 8(b), and 8(c) yield very similar results. VMware
Workstation shows a consistent minor overhead above vanilla Linux.
In contrast, Xen’s performance degrades significantly with each ad-
ditional sensitive instruction. However, for CR3 read/writes (Fig-
ure 8(d) – causing a TLB flush in the VM), VMware Workstation
incurs considerable overhead above both Xen and vanilla Linux.

We now have two techniques which induce overhead differently
on two different VMM implementations – CR3 read/writes and
CR0 reads. While CR3 read/writes do not induce the worst over-
head on Xen, the overhead is still significant. In the next section,
we show how we use CR3 read/writes to detect a VMM across the
Internet.

4.4.2 Successful Remote Detection
We have now determined that an instruction sequence of reads

and writes to CR3 results in overhead when the target system is
running a VMM, but reasonable performance when the target sys-
tem is executing natively. We used a loop containing a sequence of
such instructions in our remote detection experiment. Although we
did not include SVM Xen in our analysis of per-instruction over-
heads in the previous section, we include it in this experiment.

Figure 9 shows the results of our experiment, where the remote
verifier is located at another university. We are able to induce ex-
tremely high overhead; code which executes in under 2 seconds on
a native system takes more than 20 seconds to execute when run-
ning on either paravirtualized Xen, SVM Xen, or VMware Work-
station. This is far above the amount of overhead necessary to
overcome network latencies, and we conclude that remote VMM
detection is feasible.

4.4.3 Remotely Distinguishing between Xen and
VMware

VMware Workstation uses binary rewriting to emulate many
sensitive instructions efficiently. This is one reason its performance
is able to closely track that of the native system in Figure 8. How-
ever, for correctness, VMware must still be capable of detecting dy-
namic changes to program executables. For example, self-modifying
code may appear innocuous when first loaded, but may then morph
itself into one or more sensitive instructions.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
E

la
p
se

d
 o

n
 V

er
if

ie
r

(s
ec

o
n
d
s)

Instruction Sequence Length

P4 VMWare
HVM Xen

P4 Xen
P4 Vanilla

HVM Vanilla

Figure 9. CR3 read/write overhead timed re-
motely from another university.

Figure 10 shows some assembly code involvingmov %cr0,
%eax instructions which are dynamically rewritten each loop iter-
ation. Thesub instruction immediately following thenop instruc-
tion gets overwritten withmov %cr0, %esi during each loop
iteration. Although it is not shown in the figure, additional self-
modifying code changes this instruction back to asub again. This
oscillation stymies VMware’s ability to efficiently perform binary
rewriting.

Referring back to Figure 8(b), one would expect a particular
program which containsmov %cr0, %eax instructions to exe-
cute much more rapidly on VMware than on Xen. However, Fig-
ure 11 shows the results of a local experiment and one timed by
a local verifier where VMware’s performance closely tracks that
of Xen. Note that the same number of sensitive instructions are
executed for all data points; the number of arithmetic instructions
included in the loop is what varies on the X-axis. In conclusion,
using self-modifying code gives the remote verifier the ability to
distinguish between some different VMM implementations.

8

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 34000

 36000

 38000

 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000

C
P

U
 C

y
cl

es
 E

la
p
se

d

Loop Size (instructions)

Vanilla
VMWare

Xen

(a) Timed locally usingrdtsc.

 5

 6

 7

 8

 9

 10

 11

 12

 13

 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000

T
im

e
E

la
p
se

d
 o

n
 V

er
if

ie
r

(s
ec

o
n
d
s)

Loop Size (instructions)

Vanilla
VMWare

Xen

(b) Timed by a local verifier.

Figure 11. Result of benchmark loop implemented with self-m odifying code.

rdtsc ;; get start time
mov $131072, %edi ;; n = 131072
call 1f ;; pushes ebp
1: nop
pop %ebp ;; read esp
add $5, %ebp ;; offset tosub
1: sub $1, %ecx ;; gets overwritten
mov $0x83, 0x0(%ebp) ;; overwrite
mov $0xe9, 0x0(%ebp) ;; three
mov $0x01, 0x0(%ebp) ;; bytes
xorl %eax, %eax ;; begin arith.
... ;; 1K – 16K instr.
mov %cr0, %esi ;; priv. op.
... ;; 1K – 16K instr.
sub $1, %edi ;; n = n−1
jnz 1b ;; until n = 0
rdtsc ;; get end time

Figure 10. Loop including self-modifying
code.

5. Related Work
Most related work falls into two categories: techniques which

detect VMMs based on implementation details and techniques which
make assumptions that limit their applicability.

Delalleau proposed a scheme to detect the existence of a VMM
by using timing analysis [4]. The proposed scheme requires a pro-
gram to first time its own execution on a VMM-free machine in
a learning phase. Then, when the program infects a suspect host
of known configuration, its execution time is compared against the
results from the learning phase. Because the result of the learn-
ing phase is dependent on the exact machine configuration and the
scheme is not designed to produce a configurable overhead, it is
unclear how practical it is to deploy such a detection algorithm in
practice.

Execution path analysis (EPA) [17] was first proposed in Phrack
59 by Jan Rutkowski as an attempt to determine the presence of
kernel rootkits by analyzing the number of certain system calls.
Although the main idea can also apply to detect VMMs, EPA has
a severe drawback: it requires significant modification to the sys-
tem (debug registers, debug exception handler) that could be easily
detected and consequently forged by the underlying VMM.

Robin and Irvine studied the instruction set of the Intel Pentium

processor to determine its suitability for implementing a VMM [14].
They found that the instruction set of the Pentium processor is not
fully virtualizable since there are some instructions effecting the
correctness of the VM’s execution that fail silently without trapping
to the VMM. Such instructions have to be simulated by a VMM for
correctness of the VM’s execution thereby leading to a time over-
head when compared to execution on native hardware.

There are a number of previously deployed detection techniques.
Redpill2 is an example detection algorithm used to detect the VMware
virtual machine monitor. Redpill operates by reading the address of
the Interrupt Descriptor Table (IDT) with theSIDT instruction and
checking if it has been moved to certain locations known to be used
by VMware. This algorithm can be easily fooled since it relies on
the VMM to return the correct address of the IDT [11]. Similar to
Redpill, VMware’s Back3 is a software-dependent detection attack
which uses the existence of a special I/O port, called the VMware
backdoor. This I/O port is specific to the VMware virtual machine
and hence can be used to detect VMware.

Holz and Raynal describe some heuristics for detecting honey-
pots and other suspicious environments from within code executing
in said environment [8]. Dornseif et al. study mechanisms designed
specifically to detect the Sebek high-interaction honeypot [6]. Un-
like these approaches, thefuzzy benchmarkswe have constructed
are not based upon specific software implementations details.

Vrable et al. touch briefly on non-trivial mechanisms for de-
tecting execution within a VMM [21]. They allude to the fact that
although a honeynet maybe be able to perfectly virtualize all hard-
ware, an attacker may be able to infer that it is executing inside a
VMM by certain side channels.

Pioneer [18] is a primitive which enables verifiable code exe-
cution on remote machines. As part of the inherent challenge of
verifiable code execution, Pioneer needs to determine whether or
not it is running inside a VMM. The solution in Pioneer is to time
the runtime of a certain function that also reads in the interrupt en-
able bit in the EFLAGS register. This function is pushed into the
kernel and is expected to run with interrupts turned off. However,
if it was running inside a VMM, the output of the EFLAGS regis-
ter would be different than expected. Although promising, Pioneer
assumes that the external verifier knows the exact hardware config-

2http://invisiblethings.org/redpill.html
3http://chitchat.at.infoseek.co.jp/vmware/

9

uration of the target host. We eliminate this assumption and rely
on hardware artifacts to discover the target host’s hardware config-
uration. In addition, the minimal timing overhead of the Pioneer
checksum function makes remote usage of Pioneer difficult.

Remote physical device fingerprinting can be used to detect
VMMs if the external verifier can directly interact with two differ-
ent virtual machines running on the same host [12]. Our approach
only requires the existence of a single VM and hence is useful in
the case of virtual machine based rootkits [11]. Rutkowska [16]
and Zovi [22] proposed the use of hardware virtualization support
(AMD Pacifica [5] and Intel VT [9]) to create virtual machine-
based rootkits rootkits.

6. Conclusions
The main contribution of this paper is the development of a

fuzzy benchmarking program whose execution differs from the per-
spective of an external verifier when a target host is a virtual ma-
chine (versus when it is executed directly on the underlying hard-
ware). Our benchmarking program is based on the timing depen-
dency exception property of a VMM. We presented results where
a single benchmarking program generates sufficient overhead on
three different VMMs to be remotely detectable across the Internet.
Included in our analysis is a machine with hardware virtualization
support. The success of our detection algorithm against this plat-
form demonstrates that hardware support for virtualization is not
sufficient to prevent VMM detection.

Most related work either detects VMMs based on implemen-
tation details, use techniques which make assumptions that limit
their applicability, or rely on the integrity of values returned from
the VMM. In contrast, our detection algorithm has a higher degree
of independence with respect to the implementation of the VMM
on the target host, uses a hardware discovery heuristic to identify
the configuration of the target host, and incorporates a remote tim-
ing and decision maker to eliminate the need to trust the VMM.

7. Acknowledgments
We thank Garth Gibson and Adam Pennington for their instruc-

tion and guidance in the early stages of this project. We thank
Michael Kozuch for his insightful comments and useful discus-
sions. Finally, we thank Ahren Studer for his assistance preparing
a preliminary version of this article. Jason Franklin performed this
research while on appointment as a U.S. Department of Homeland
Security (DHS) Fellow. The views and conclusions contained here
are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either express or
implied, of CMU, DHS, DOE, ORISE or the U.S. Government or
any of its agencies.

8. References
[1] K. Adams and O. Agesen. A comparison of software and

hardware techniques for x86 virtualization. InProceedings
of ASPLOS, October 2006.

[2] D. Boggs, A. Baktha, J. Hawkins, D.T. Marr, J. A. Miller,
P. Roussel, Singhal R, B. Toll, and K. S. Venkatraman. The
microarchitecture of the Intel Pentium 4 processor on 90nm
technology.Intel Technology Journal, 8(1), February 2004.

[3] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. InProceedings of the USENIX Security
Symposium, August 2004.

[4] G. Delalleau. Mesure locale des temps d’execution:
application au controle d’integrite et au fingerprinting. In
Proceedings of SSTIC, 2004.

[5] Advanced Micro Devices. AMD64 virtualization: Secure
virtual machine architecture reference manual. AMD
Publication no. 33047 rev. 3.01, May 2005.

[6] M. Dornseif, T. Holz, and C. Klein. Nosebreak - attacking
honeynets. InProceedings of the 2004 IEEE Information
Assurance Workshop, June 2004.

[7] T. Garfinkel, B. Pfaff, J. Chow, and M. Rosenblum. Data
lifetime is a systems problem. InProceedings of the ACM
SIGOPS European Workshop, September 2004.

[8] T. Holz and F. Raynal. Detecting honeypots and other
suspicious environments. InProceedings of the IEEE
Workshop on Information Assurance and Security, June
2005.

[9] Intel Corporation. Intel virtualization technology. Available
at: http://www.intel.com/technology/
computing/vptech/, October 2005.

[10] X. Jiang, D. Xu, Helen J. Wang, and E. H. Spafford. Virtual
playgrounds for worm behavior investigation. In
Proceedings of RAID, 2005.

[11] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J.
Wang, and J. R. Lorch. SubVirt: Implementing malware
with virtual machines. InProceedings of the IEEE
Symposium on Security and Privacy, May 2006.

[12] T. Kohno, A. Broido, and K. Claffy. Remote physical device
fingerprinting. InIEEE Symposium on Security and Privacy,
May 2005.

[13] Gerald J. Popek and Robert P. Goldberg. Formal
requirements for virtualizable third generation architectures.
Communications of the ACM, 17, July 1974.

[14] J. S. Robin and C. E. Irvine. Analysis of the intel pentium’s
ability to support a secure virtual machine monitor. In
Proceedings of the USENIX Security Symposium, 2000.

[15] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: A
low latency approach to high bandwidth instruction fetching.
In Proceedings of the 29th Annual International Symposium
on Microarchitecture, November 1996.

[16] J. Rutkowska. Subverting Vista kernel for fun and profit.
Presented at Black Hat USA, 2006.

[17] J. Rutkowski. Execution path analysis: finding kernel
rootkits.Phrack, 11(59), July 2002.

[18] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and
P. Khosla. Pioneer: Verifying integrity and guaranteeing
execution of code on legacy platforms. InProceedings of
SOSP, 2005.

[19] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the
internet in your spare time. InProceedings of the 11th
USENIX Security Symposium (Security ’02), 2002.

[20] VMWare. Timekeeping in VMWare virtual machines.
Technical Report NP-ENG-Q305-127, VMWare, Inc., July
2005.

[21] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C.
Snoeren, G. M. Voelker, and S. Savage. Scalability, fidelity
and containment in the potemkin virtual honeyfarm. In
Proceedings of SOSP, 2005.

[22] D. D. Zovi. Hardware virtualization-based rootkits.
Presented at Black Hat USA, August 2006.

10

