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Abstract act hardware configuration upon installation of the latest malware

signatures. The anti-virus software companies’ servers could then

We study the remote detection of virtual machine monitors (VM mgiodically challeng.e the users’ systems to execute f:ertain instruc-
across the Internet, and devise fuzzy benchmarking as an approadiPh sequences, designed to elicit slow performance in the presence
that can successfully detect the presence or absence of a VMM on® @ VMM on a user's system. If performance is degraded suffi-
remote system. Fuzzy benchmarking works by making timing me&iently, the anti-virus software company suspects the presence of
surements of the execution time of particular code sequences ex8-VM-based rootkit. Due to the nature of VMBRs, out-of-band
cuting on the remote system. The fuzziness comes from heuristiféchanisms may be necessary to inform the user of this detection,
which we employ to learn characteristics of the remote system'@Ut that is outside the scope of this paper. However, several prob-
hardware and VMM configuration. Our techniques are successfuléms arise in this model. The information provided by the user

despite uncertainty about the remote machine’s hardware configu@bout their system might be incomplete or wrong.
ration. We devisefuzzy benchmarkings an approach to detect the

presence of a VMM on a remote system with uncertainty about

the remote system’s exact hardware configuration or specific VMM
. implementation. We are able to successfully detect whether the re-

1. Introduction mote system has an Intel Pentium IV, and whether it is running

The ability to remotely detect a virtual machine monitor (vMM) Vanilla Linux, Xen 3.0.2, or VMware workstation. Further, our
is important in many circumstances: detecting malware that ha&!zzy benchmarksontinue to work against a machine with hard-
been implemented with VMMs (e.g., VM-based rootkits [11, 16, Ware support for virtualization running Xen 3.0.2. While our re-
22]); detecting virtualized environments used for dynamic analysi$Ults do not prove that all VMMs are detectable on all hardware
such as honeypots [10, 19]: preventing data lifetime or freshnesBlatforms, they suggest that a motivated entity with some know!-
attacks that use VMMs [3, 7]; and preventing time-limited trial edge of the remote system in question is likely to be able to con-
software from being reused. These uses for VMM detection spaftruct afuzzy benchmarthat demonstrates performance degrada-
both the white hat and black hat communities. Even in the case ofon When running on a VMM. As such, our work represents a first
malicious uses of VMM detection technology, it is important for St€P towards general VMM detection techniques.
researchers to explore this space to facilitate development of courzontributions.  This work makes the following contributions:
termeasures.

We are interested in remotely detecting the presence of a VMM
on a particular system. Given the exact hardware specifications and e We propose théuzzy benchmarkpproach based on timing
the specific VMM implementation that may be present, detection VMM overhead on machines of uncertain configuration.
using timing attacks is straightforward, as we show in this paper.
However, given all known VMM implementations, and all possi-
ble hardware configurations, detecting the presence of a VMM on

a platform with unknown hardware is an open problem. This prob- 4 e evaluate oufuzzy benchmarkxperiments, which suc-

e \We introduce the problem space relating to VMM detection.

e We design and implement tiiezzy benchmar&pproach for
some commodity architectures and VMMs.

lem spans a spectrum of VMM-detection scenarios, running from cessfully detect the presence of commodity VMMs execut-
specific (easier to detect) to general (harder to detect) along two ing on commodity x86 hardware, including hardware with
axes: VMM implementations and hardware configurations (see Fig- virtualization support.

ure 1). We do not claim that one point in the space is more useful
or more important than another; rather, it is our goal to exploreOutline.  The remainder of our paper is organized as follows.
the space and gain some understanding of the challenges that I&ection 2 provides an overview of the VMM detection problem.
within. Section 3 motivates the design of our detection algorithm based on
Complete knowledge of the remote system is available in soméoth theoretical and practical constraints. The implementation and
scenarios: suppose VM-based rootkits (VMBRs) become a signifexperimental evaluation of our detection algorithm is presented in
icant threat in the wild. Anti-virus software makers are motivated Section 4. We treat related work in Section 5. Finally, Section 6
to detect such threats, and may require that users specify their erffers our conclusions.



2. Problem Space delta

We define the problem 6fMM detectionin which a program,
called afuzzy benchmarkexecutes on a remote host in order to
determine if that remote host is a virtual machine running on vir-
tualized hardware or a real machine running directly on hardware.
We term the benchmarkfazzy benchmarkecause uncertainties
with respect to the hardware and VMM configuration of the re-
mote system preclude the benchmark being designed for a specific
target system. Further, a set of all hardware or VMM configura-
tions is intrinsically vaguely defined, since the space of all possible
configurations is infinite.

We follow Popek and Goldberg [13] in defining a virtual ma-
chine as an efficient, isolated duplicate of the underlying hardware. ~—— more less —»
This definition imposes the three properties that a control program Knowledge of Hardware

must satisfy to be termed a VMM: efficiency, resource control, and ) )
equivalence. Figure 1. VMM detection problem space.

less —»

Knowledge of VMM Implementation

-<+—— more

1. Theefficiency property dictates that a statistically dominant . )
subset of the virtual processor’s instructions be executed di- e envision the VMM detection problem space along two axes

rectly by the real processor, without requiring intervention (S€€ Figure 1): level of knowledge about the remote system’s hard-
by the VMM. ware configuration, and level of knowledge about the remote sys-

tem’s possible VMM implementation. For example, VMware has

2. Theresource control property dictates that the VMM is in  €njoyed a dominant position in the VMM market for years. Thus, it
complete control of system resources. This requires that it bénay be reasonable to assume that a remote system is using VMware.
impossible for an arbitrary program running in a VM on top However, Xen has recently been growing in popularity. Still, guess-
of the VMM to affect system resources, e.g., memory anding that the remote system is executing a specific version of Xen or
peripherals, allocated to a different VM or the VMM itself. VMware is unlikely to succeed if the remote system wants to hide

its VMM.

3. Theequivalence propertydictates that the VMM provide One potential hurdle for timing-based detection techniques is
an environment for programs which is essentially identicalthe arrival of new hardware with support for virtualization. How-
to that of the original machine. Any prografexecuting  ever, Adams and Agesen show that even with today’s latest hard-
with a VMM resident in memory, with two possible excep- ware support for virtualization, VMMs experience considerable
tions, must perform in a mannerdistinguishablefrom the  performance overhead [1]. Our experimental results confirm these
case when the VMM did not exist arfel had the freedom observations. We cannot predict what capabilities future hardware
of access to privileged instructions that the programmer hadnay have to improve virtualization performance; thus, our results
intended. The two possible exceptions to the equivalenceeflect only the today’s state of the art.
property result from resource availability and timing depen-
dencies. 3. Design of Fuzzy Benchmarks

I ) . In this section, we describe our design of a VMM detection
The resource availability exception to the equivalence Propertyechnology calleduzzy benchmarkingwith applications in each

states that a particular request for a resource may not always hg he four quadrants identified in Figure 1. Though we discuss
satisfied. As a result, a program may be unable to function in thg o me |ocal measurements to aid understanding, our design facili-
same manner as it would if the resource were made available. Thig ies remote detection of a VMM using a detection protocol across
exception exists because the VMM shares the underlying hardwarge |nteret for each quadrant (results in Section 4). We first presen
and hence consumes some resources. our detection scenario and assumptions, then describe the remote

The timin_g dependency exception states that certain instructiofypm detection protocol, followed by the intricaciesfoizzy bench-
sequences in a program may take longer to execute. Hence, asiarksfor each quadrant.

sumptions about the length of time required for the execution of an . .
instruction might lead to incorrect results. This exception results3-1 ~ Scenario and Assumptions
from the requirement that the VMM maintain control over system We have two parties in our VMM detection scenario, an ex-
resources by interposing on control-modifying instruction. ternal verifier and a target host, connected via the Internet. The
In this paper, we exploit the timing dependencies to construcexternal verifier would like to determine whether the target host
fuzzy benchmarkahich demonstrate measurable overhead, everis a virtual machine. To this end, the external verifier installs and
in the presence of uncertainty as to the remote system’s hardwaexecutes some benchmarking code on the target host. The VMM,
and possible VMM configuration. Uncertainties with respect toif present, is assumed to be a full system VMM such as VMware,
the hardware configuration include CPU microarchitecture, cach&en, or Virtual PC running on unmodified commodity x86 hard-
architecture, memory size, and clock speed. Uncertainties with reware (including but not limited to the Intel Pentium family, Intel
spect to the VMM implementation include optimizations such asVT [9], and AMD SVM [5]). The VMM may make use of hard-
the use of binary rewriting or paravirtualization. Hardware sup-ware extensions to support virtualization, if present. We assume
port for virtualization, such as Intel's VT [9] or AMD’s SVM [5] that the external verifier has root access to at least one VM run-
technologies, further complicates VMM detection. ning inside the VMM, which it uses to execute benchmarking code



at the highest privilege level with interrupts turned off. If the tar- 40
get hostis a VM, the VMM may execute at a higher privilege level,
interrupts may only be disabled for this VM, and the VMM may re-
turn invalid information to direct inquiries from VMs about elapsed
time or performance. We do not assume any knowledge concern-
ing which quadrant of Figure 1 the target host is operating in. This
is the source of the fuzziness in our benchmarking; the external
verifier may know only a vaguely defined set of possible hardware
configurations or VMM implementations that describe the target
host.
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3.2 Remote Detection Protocol

The remote verifier attempts VMM detection on the target host
from a remote Internet site. The remote verifier is assumed to have o5 " 00 50 200
an accurate clock which is used to measure the runtime dﬂm Instruction Sequence Length
benchmarkon the target host. Clock synchronization is not re-
quired between the machines because all timing measurements are Figure 2. Example VMM overheads for pro-
made on the remote verifier. gram B. Without a VMM executing, the instruc-
The remote verifier installs and prepares for executiduzay tions in B complete rapidly. With a VMM, there
benchmark Bon the target hosB executes when directed to do so is noticeable overhead.
by the remote verifier, and sends the remote verifier a notification
of completion after execution finishes. Upon receiving the notifi-

cation of completion, the remote verifier records the time elapseq:PU microarchitecture and allow us to infer a portion of the con-

since. requesting the invocation Bf To determine if the detec“?.” figuration of the target host. In the context of Figure 1, this moves
algorithm B was executed on top of a VMM, the remote verifier y,q eve| of knowledge in the external verifier further to the left.

checks whether the executlon_ timemfs greater than a predtyeter- For example, the artifact we explore in Section 4 is the existence
mined threshold value (described below) for the target host's set ¢ o 4406 cache present in all Intel Pentium IV CPUSs. This config-

of suspected hardware plat_forms. _lf the execution time exceeds thg i information then allows for an estimation of the expected
threshold, .the target host Is consldered to be a VM and hence gnime ofB on R, TR, since the external verifier can assume the
VMM was in control of the execution d. target host is a member of the Intel Pentium IV family.

To remotely q§tect VMM overhead, we must develqp & pro- - 1o select control-modifying instructions to induce VMM over-
gram B with sufficient VMM overhead to overcome variance in pqaq e measured the overhead of different control-modifying in-

ne_twork I_atency, inaccuracies in timing, and_gny_ other sources ogtructions on several different VMMs. After selecting particular
noise which may exist. To achieve adaptability in the face of fu'instructions to include in the prograBy we need to further tune

ture changes in the noise level, we deveBwith a configurable the VMM overhead induced b by selecting the number of in-
amount of VMM overhead, at the expense of the overall runtime

f the f bench KTh ind f thi oon di structions. There are at least two factors in addition to network-
of the fuzzy benchmarkThe remainder of this section diSCUSSes j,q,eq noise that affect the VMM overhead®f First, the con-

how fuzzy benchmarkmergte, including obtaining an appropriate figuration of the machine, for instance, Intel Pentium IV 2.0 GHz,
value oft for target hosts in each quadrant of Figure 1. has a direct effect on the execution time. Second, different virtual
3.3 Fuzzy Benchmarking Architecture machine monitor ir.npler.nen‘tation. strategieg result in different over-
. o . heads (e.g., paravirtualization, binary rewriting, or the presence of
We design duzzy benchmark hich includes control-modifying 5 host OS under the VMM). The following analysis explains how
CPU instructions that we empirically determine to cause VMM \ye jncorporate these two factors into our experiments in order to
overhead across several VMM implementations. We choose thgg|act the number of instructions B
particular control-modifying CPU instructions (thereby requiring  First, we look at the optimistic case where we assume full knowl-
intervention by the VMM to maintain the resource control prop- gqqge of the configuration of the target machine, i.e., the bottom left
erty) and then tune their number such that the VMM overhead it quadrant alpha in Figure 1. We then reduce the amount of con-

noticeable across the Internet. The execution tim&ah real g ration information that is known and develop a technique for
machineR, TR, is our threshold for distinguishing between the ex- estimatingrr in the other quadrants.

ecution ofB on a real machine and execution on a virtual machine. . . . .
The accuracy of oufuzzy benchmarks dependent on a correct 3-3.1 Detailed Configuration Information — Quad-

value fortg. One complexity that arises is how one determines rant Alpha
the value oftr for machines of unknown hardware configuration  Given local access to a machine about which we know detailed
(quadrants beta and gamma in Figure 1). configuration information, we can determine the number of instruc-

Since the execution time @& is dependent on the underlying tions to include in duzzy benchmarky estimating the noise on
hardware, we require some knowledge of the hardware configurahe Internet and running a number of experiments to timdihey
tion. We have developed a heuristic that relies on the existencbenchmarlkdirectly on the real hardware and on different VMMs.
of hardware artifacts that “shine through” the VMM. An artifact The results of these experiments can generate a graph similar to
shines through a VMM f it is possible to identify the existence Figure 2.
of the artifact by observing the effects of commands executed in a Figure 2 is a distilled version of Figure 9 from our experimental
VM. The hardware artifacts we discover are unique to a particularesults, and serves to illustrate our point here. The upper three lines



hitect hitect . . . . .
Aler i e SrETRCLYS fange fastest real machine that matches the partial configuration informa-

’ T T ;V S: tion should take longer than executiBglirectly on the slowest real
o = machine matching the partial configuration information.
Execution time of detection attack Our approach is to determine the range of processor speeds
available given our partial configuration information and to use
Figure 3. The required order of execution these values to approximasés execution time under different con-
times of fuzzy benchmark Bor successful VMM figurations. Given the partial configuration information we know,
detection given a set of partial configuration we determine the processor speed of the fastest machine available
information. FR (fastest real), SR (slowest and denote this ds. While this value increases over time, the con-
real), FV (fastest virtual machine), and SV figurable nature of the overhead elicited®{detailed in Section 4)
slowest virtual machine) are machines which makes it possible to compensate for this increase. We denote the
conform to this partial configuration informa- speed of the slowest machine satisfying our partial configuration
tion. information asS. The processor speed of the machine we are us-

ing for local experiments is denotéd. At the time of writing this
paperF = 3.8GHZ andS= 1.3GHZ for the Intel Pentium I\

As in Section 3.3.1, we experimentally determitastestV MMx) =
axandRealMachinéx) = bxby running tests with different VMMs
(including no VMM) on the local machin®l. We then use the
ratio of the speed of the local machine to the speed of the slow-
est possible maching) = % to estimate the runtime dB on
the real hardware a8 This gives us a runtime estimate &mof
8lowestRedk) = p+RealMachinéx). Similarly, we use the ratio
€of the speed of the local machine to the fastest machire}, to

estimate the runtime on the fastest virtual machine. This gives us
FastestVirtualx) = ux* FastestV MMx). To determine the mini-

represent the runtimes & with a fixed set of control-modifying
instructions under several different VMM implementations. The
bottom line is the execution time &on the real hardware. To de-
termine the required number of instructions denoted,bye first
generate equations for all the lines in the graph. We then derive th
minimum number of instructions required to overcome our nois
estimate as follows.

Given a model:

V MMy (X) — ax mum number of instructions required to overcome our noise esti-
V MMy (x) — ax mate, we requir€astestVirtualx) > SlowestRedk) +n or equiv-
VMM3(X = agx a|ent|y,X > F%)

RealMachinéx) = bx Gaining knowledge of the target host's VMM implementation.

Thus far, we have described techniques for increasing the external
We seta = min(a,ap,a3) and denoteérastestV MMx) = ax. verifier's knowledge of the remote hardware (moving to the left in

With a noise estimate of, we seleck such that Figure 1). To obtain high confidence in a VMM detection, knowl-
FastestV MMx) — RealMachinéx) > n edge of the target host's hardware configuration is insufficient; we
or equiva|ent|yx > ﬁ Sincen is less than a second in practice must also gain additional knOWledge about the VMM implementa-

and our VMM overhead is configurable into the tens of secondstion on the target host.
selecting« based on local experiments presents few difficulties. We ~ Suppose preliminary experiments with a target host suggest the
describe the configurability déizzy benchmarkis Section 4 when ~ Presence of a VMM, e.g., induced TLB flushes are unusually ex-
we present somfeizzy benchmarkis detail. pensive (due to the existence of shadow page tables). Consider a
. . . VMM that uses binary rewriting to maintain control. The VMM
3.3.2 Fuzzy Configuration Information — Quad-  rewrites control-modifying instructions which might require a trap
rants Beta, Delta, and Gamma into the VMM instead replacing them with innocuous instructions
We now examine the case where we have fuzzy configuratiothat modify virtualized system state. This use of binary rewrit-
information for the target host. For example, we have configuraing may make some otherwise slow control-modifying instructions
tion information derived from the use of our hardware discoverymore efficient. If the presence of a binary-rewriting VMM is sus-
heuristic. In this case, we determine the correct number of instrucpected, additional timing-based experiments can be performed to
tions to execute based on a number of estimates and experimenexploit the overhead induced by binary rewriting. We successfully
We assume that we have local access to a machine with partial coperform exactly this experiment in Section 4, initially detecting that
figuration information which matches that of the target host, thougha VMM is likely to be present because of TLB flush overheads, and
even the partial configuration information may be hard to obtain inthen refining our knowledge of that VMM by detecting the use of
e.g., quadrant gamma. binary rewriting (VMware Workstation uses binary rewriting; Xen
Gaining knowledge of the target host's hardware configura-  3.0.2 does not).
tion. As an example, imagine that the partial configuration in-
formation we have identifies just the processor microarchitecture], Implementation and Evaluation

(e.g., Intel Pentium IV). Since the target host we are attempting . . . .
oo . . We present implementation details and an evaluation of exper-
to distinguish as virtual or real may run at a different clock speed

. . - iments which allow a remote verifier to learn about the hardware
than the machine we are using for our experiments, we need tQ

bound the runtime oB for different configurations and use these configuration and potential VMM implementation on a target host.

bounds for detection. In addition, since our runtime estimates foPNe first describe our experimental setup, then discuss the actions

B will not be as accurate as in the full configuration information necessary to ensure timing integrity for our experiments. Mech-

case, we must desighsuch that the execution time Bfis ordered  1ht t p: // www. i nt el . cont pr oduct s/ pr ocessor/
as in Figure 3. Essentially, executiBgon the fastest VMM on the  penti und




‘L’Ian'L'Qa \‘,’V“(")ﬁ’:;ion ;Z;a‘s’{gf‘;"zed VM Xen 3.0.2 ately suspends the calling process, disables interrupts, and begins

execution of the benchmarking loop. When the benchmarking loop
finishes, interrupts are re-enabled, the calling process gets woken
up, and its file-open succeeds. Without even reading any data from
the file, measur ed sends a packet back across its TCP connec-
tion, indicating to the verifier that execution of the benchmarking
loop is complete.

In the remainder of the paper, we sometimes refer to a target
host as “VMware” or “Xen”, when in fact we mean the guest OS
running on VMware or Xen. All experiments run against Xen, with
or without SVM support, are run against an unprivileged user do-
main which is the only other domain running besides the privileged
domain 0.

We must address one more issue before delving into our bench-

Remote
Verifier

Local

Router marking loops: the issue of a heavily loaded target host. We com-

pare the case where the target host is not running a VMM with the

Figure 4. Experimental machine and network case whereitis. If there is no VMM, then disabling interrupts in the
setup. benchmarking loop truly disables them. The benchmarking loop

executes to completion without interruption, rendering the load on

the target host irrelevant. If the target system is a guest running on

a VMM, interrupts areat leastdisabled in that guest VM. Thus,
anisms that can detect the hardware architecture of an unknowanly code executing in other guest VMs on the same VMM can
remote system are presented next. Finally, we provide a detaileaffect performance. If another heavily loaded guest exists along-
discussion of the development of code that induces overhead in viside the target guest, the performance of the target guest may be
tual machine monitors, including the ability to distinguish betweendegraded. This performance degradation only applies on systems

different VMM implementations. running VMMSs, and will thugsmproveour chances of successfully
. detecting the VMM. All of our experiments are run without any
4.1 Experimental Setup extra load on the VMMs, hence we perform VMM detection in the

We use six machines in our VMM detection experiments. Fig-worst-case of an idle system.
ure 4 shows these machines and their network connectivity. Threg 2 Timing Integrity
of the machines are identical 2.0 GHz Intel Pentium IV systems.
These systems run vanilla Linux, VMware Workstation, and par-
avirtualized xenolinux on Xen 3.0.2, respectively. The fourth ma-

A VMM has total control over its guest OSes. Thus, we cannot
trust a VMM to return valid answers todt sc “in the wild” [11].

. . . Figure 5 compares internal (local) versus external timing measure-
clhlnet_ has 'AaMD S\;M [‘Z] ggrd\_/rvsrel extt?nsmns tk?. support wrtg- ments for the exact same experiment run on two variants of SVM
alization and runs Aen s.9.. 1he 1ast wo machines areé used ag., one variant is the standard 3.0.2 release. The variant labeled

verifiers in experimentg where timing measurements are madg res “Low-Integrity” in figures is actually an unstable development
motely. One of these is on a separate subnet from our machlner |

7a VMM ted b hop th h t hich Blease of Xen with a bug in the code that handlds sc. Itis
running S, separated by one hop through a router, Which W&ot ative here because a party who wishes to thwart local VMM

call t_it1eloche_1l \r/]ermer. mﬁ othertls Ioc_:fated;emotely a_lt arl_othertunl- detection may intentionally modify their VMM to return such in-
versity, which we call theemoteverifier. Average ping times to .. timing measurements.

the local and remote verifiers are 0.4 ms and 16 ms, respectively. Figure 5(a) shows the internal timing measurements for a loop

All CPU-scaling and power-saving features are disabled on the Iobf a sequence of arithmetic instructions which clears interrupts at

cal and remote verifiers during experiments to prevent the cloclihe beginning of each loop iteration. Xen 3.0.2 behaves as ex-

frewer;c;; Ofttg? CPUin the \;erlf\ﬁ;”f\;o? chcejmglng. ¢ ected, with longer instruction sequences requiring longer to exe-
© detect tne presence of a ased on periormance megs ;o |, contrast, “Low-Integrity” Xen does not show any overhead

surem_ents of specially crafted instruc@ion sequences, which we S{Vhatsoever. In fact, some of the elapsed times are negative. Fig-
ecute_lr_l a loop called the benchmarking loop. We iterate the Ioc_> re 5(b) shows a rerun of the same experiment, except that timing
containing the sequence to generatg eno;égh averhead for deteCtI(?Qpen‘ormed by a local verifier. Localt sc calls are now unnec-
Unless stated otherwise, our loop iterates @mes. We selected essary, and the runtime of the two experiments is nearly identical.

th|sovalll1)e exlg)er|mk§nte:||y. te within a Li K | modul VMware Workstation can be made to demonstrate similar be-
ur benchmarking loops execute within a Linux kernei modu € havior, though we omit experimental results due to lack of space.

Their instructions always execute at the same privilege level as thﬁ1 fact, VMware provides a configuration option for VMs called
kernel itself, which depends on the hardware architecture and thﬁoni t’or control . virtual rdtsc[20]. Whensettd r ue

presence or lack of a VMM. To measure execution time locally, We_ \irtual counter in the VMM is used to provide values for guest

use ther dt sc (read time-stamp counter) instruction before and 0S calls tor dt sc. When set td al se, VMware allows guest

- s calls tor dt sc to access the CPU's true timestamp counter.
cal or remote verifier, a user-level programasur ed runs on the

target system and listens for a TCP connection from the verifier4.3 ldentifying Target Host Hardware Architec-
When a connection is establishetgasur ed immediately tries tures

to open a file that our kernel module adds totlpe oc filesystem. Inducing significant overhead in a VMM can result in long run-
This results in a call to a function in our module, which immedi- times, which we detect by measuring runtime from a separate sys-
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(a) Low timing integrity. Elapsed cycles measured internallgb) High timing integrity. Elapsed time measured via a local ver-
usingr dt sc. The same experiment yields dramatically dififier. The same experiment yields similar results, even though
ferent timing results on two variants of SVM Xen on the samene VMM was returning incorrect responses tit sc instruc-
physical machine. tions.

Figure 5. Timing integrity using internal versus local veri fiers.

; ; ; rdtsc 5 get start time
tem. However, W|th_out some |d(_a§ of _th_e hard\_/vare arch!te_cture of mov $131072, Yedi - 2: 131072
the remote system in question, it is difficult to interpret timing re- loop:
sults correctly. In this section, we describe a technique that is useful xor| Y%ax, Y%eax - begin special
for identifying an unknown remote system as having an Intel Pen- addl %bx, %ebx ;; instr. seq.
tium IV CPU, thereby providing more knowledge in the context movl %ecx, Y%ecx
of Figure 1. If a system is known to be equipped with a Pentium orl %dx, %edx _
IV, we can bound its expected performance and establish a runtime Sub $1. Yedi i'f‘niiK instr.
threshold, above which it is likely that the target system is running inz | obp until n= 0

a VMM. The Netburst Microarchitecture of the Intel Pentium IV rdtsc - getend time

family includes a trace cache with consistent specifications across

all currently-produced Pentium IV CPUs [2]; our hardware discov-

ery heuristics detect the presence of the trace cache. Other relevant Figure 6. Example assembly code used to

characteristics of the Pentium IV microarchitecture include an out- ~ fill trace cache with register-to-register arith-

of-order core and a rapid execution engine. metic instruction sequences (which decode
The trace cache stores instructions in the form of decpded to a single pop) without data hazards on In-

rather than in the form of raw bytes which are stored in more con- tel Pentium IV CPUs.

ventional instruction caches [15]. Thesacesof the dynamic in-

struction stream ensure that instructions that are noncontiguous in

a traditional cache to appear contiguous. A trace is a sequence of

at mostn instructions and at mosh basic blocks (a sequence of yoid of data hazards on Pentium IV systems running vanilla Linux
instructions without any branches) starting at any point in the dy2 6.16. Figure 6 shows the structure of our benchmarking loop.
namic instruction stream. An entry in the trace cache is specified by:igure 7(a) shows the results of this experiment when run using
a starting address and a sequence of uptol branch outcomes, ther dt sc instruction to measure the elapsed CPU cycles locally.
which describe the path followed. This facilitates removal of the in- |t js evident on the Pentium IV that the CPI is indekdintil the
struction decode logic from the main execution loop, enabling thenumber of instructions reaches Intel’'s published trace cache capac-
out-of-order core to schedule multlglﬂps to the rapid execution |ty of 12K pops. We also ran this experiment |Oca||y on a |apt0p
engine in a single clock cycle. In the case of register-to-registegquipped with a Pentium M CPU; no unusual caching effects are
arithmetic instructions without data hazards, it is possible to retireghserved (note that a CPI of less than 1 is obtained for the entire
threepiops every clock cycle. Register-to-register x86 arithmetic|oop).
instructions (e.g.add, sub, and, or, xor, mov) decode into a At this point we know enough about the trace cache in Pen-
singlepop. Thus, it is possible to attain a Cycles-Per-Instructiontjym |V CPUs to construct a benchmarking loop that has sufficient
(CPI) rate off for certain sequences of instructions. overhead to be detected remotely across the Internet, thus allow-
Intel has pUb'lShed the size of the trace cache in the Pentium |Vng the remote verifier to gain know]edge about the targe’[ host’s
CPU family — 12Kpops. However, the parametensandn, as well  hardware configuration. As described above, the exact details of
as the number gfops into which x86 instructions decode, have not how the trace cache generates its traces are not published. We
been published. We performed an experiment where we executgskrformed additional experiments like those of Figure 7(a) locally
benchmarking loops of 1024 to 16384 arithmetic instructions de-and determined that a benchmarking loop composed of a sequence
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(a) When sequences of register-to-register arithmetic ifb) Trace cache overhead timed remotely from another uni-
structions without data hazards populate the trace cachevefsity. Sequences of either 11264 or 11328 arithmetic in-
an Intel Pentium 1V, a CPI 0% is attainable. Once an in- Structions with no data hazards are executed in a loop. The

struction sequence exceeds the trace cache’s maximum glzgber of loop iterations is defined by’2- 21%, where

of 12KB, the CPI becomes 1. No such effect is visible on K is the Loop Multiplier on the X-axis. With and without

Pentium M (an architecture without a trace cache). Cycl@&VYMM, the Pentium IV architecture shows a considerable

measured locally with dt sc. jump in overhead for a small number of additional instruc-
tions. In contrast, the Intel Pentium M (legend: PM) shows
no such jump.

Figure 7. Measurements of trace cache overhead.

of 11264 arithmetic register-to-register instructions fits inside thethe VMM. While we do not have space to exhaustively treat all

trace cache, but that a sequence of 11328 instructions does not fitensitive instructions, we select a few and analyze their overhead

That these figures are less than 12K is expected, as there are aah Xen 3.0.2 and VMware Workstation on an Intel Pentium IV. The

ditional instructions executed to maintain loop counters and jumpnstructions we consider ad i (clear interrupts)nov %r O,

back to the beginning of the loop. Thus, executing these sequencégax (read processor control register v %r 2, % ax (read

multiple times should cause the performance of the larger loop t@rocessor control register 2), amdv %r 3, % ax;nov %eax,

suffer disproportionately with respect to its added length. %r 3 (read and write processor control register 3, which induces a
Since the benchmarking loops contain only innocuous instruc-TLB flush).

tions, VMMs allow them to execute directly. The exaggerated per- We next analyze these selected instructions locally on Xen 3.0.2,

formance difference between the two loops is largely unaffected by Mware Workstation, and vanilla Linux to understand their behav-

the presence of a VMM. Figure 7(b) shows the results of an experior (Section 4.4.1). Armed with this knowledge, we construct a re-

iment designed to demonstrate this effect. The top three lines anmote attack that successfully detects the presence of a VMM across

the execution time for the smaller sequence (11264 instructions pehe Internet (Section 4.4.2). We also present a technique which

loop iteration) on vanilla Linux, paravirtualized Xen, and VMware causes instructions which would normally execute efficiently on

Workstation. The bottom three lines show the same with the largeWMware to perform poorly (Section 4.4.3), thereby allowing us to

sequence (11328 instructions per loop iteration). The middle twalistinguish between Xen and VMware.

lines show the two sequences executed on a Pentium M running 4 1 per-Instruction Overhead

vanilla Linux; this serves to illustrate how minimal the runtime dif- ; -

ference between the loops is when there is no trace cache involved. Ve configured VMware with

The gap between the execution time of loops of the smaller se- MPni tor.control . virtual rdtsc = fal se

quence and loops of the larger sequence is considerable, and W@ that VMware allows guest OSes to have direct access to the
are able to detect this even across the Internet. CPU's timestamp counter. Paravirtualized Xen 3.0.2 allows its

. guests to access the time stamp counter by default. Thus, we can
4.4 Inducing Detectable VMM Overhead on the  run local experiments to analyze per-instruction overhead. Our
Target Host analysis is based on experiments where a small number of one
At this point, we have some idea about the remote architecturef the sensitive instructions in question are inserted in between
on which we are trying to detect a VMM. For example, we know sequences of register-to-register arithmetic instructions. For each
the CPU is a member of the Pentium IV family. As described insensitive instruction, we evenly space 1, 2, 4, 8, or 16 instances of
Section 3, we need sufficient overhead to distinguish between ththat instruction among 12,256 arithmetic instructions. We selected
slowest member of the CPU family running a native OS and thel2,256 to ensure that trace cache effects would not add noise to
fastest member of the CPU family running a guest OS on a VMM.our results. We cannot be sure how the trace cache would impact a
Thus, we must induce significant performance overhead in @&maller sequence of instructions because the gxgstructure of
VMM. As described in Section 3, we use control-modifying in- these sensitive instructions is not published.
structions which result in the execution of additional code inside  Figure 8 shows the results of local performance measurements.
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Figure 8. Local execution times for selected sensitive inst ructions.
Figures E_B(a), 8(b), and 8_(c) yield_ very similar results. V_Mwa_re 40— ye
Workstation shows a consistent minor overhead above vanilla Linux. sk ke R

In contrast, Xen'’s performance degrades significantly with each ad-
ditional sensitive instruction. However, for CR3 read/writes (Fig-
ure 8(d) — causing a TLB flush in the VM), VMware Workstation
incurs considerable overhead above both Xen and vanilla Linux.
We now have two techniques which induce overhead differently
on two different VMM implementations — CR3 read/writes and
CRO reads. While CR3 read/writes do not induce the worst over-
head on Xen, the overhead is still significant. In the next section,

25+ + X% ,

20 + x* *

Time Elapsed on Verifier (seconds)
+

we show how we use CR3 read/writes to detect a VMM across the st 1
Internet. O S P P T T T CTT T T

. 0 20 40 60 80 100 120 140 160 180 200
4.4.2 Successful Remote Detection Instuction Sequence Length

We have now determined that an instruction sequence of reads
and writes to CR3 results in overhead when the target system is Figure 9. CR3 read/write overhead timed re-
running a VMM, but reasonable performance when the target sys- motely from another university.
tem is executing natively. We used a loop containing a sequence of
such instructions in our remote detection experiment. Although we
did not include SVM Xen in our analysis of per-instruction over-

heads in the previous section, we include it in this experiment. Fi 10 sh bl de involvi %er 0
Figure 9 shows the results of our experiment, where the remote ' '9Ur€ 19 SNOWS SOme assembly code involvimy  7er U,

verifier is located at another university. We are able to induce ex-/@ax instructions which are dynamically rewritten each loop iter-

tremely high overhead; code which executes in under 2 seconds d}pon. Thesub |n_struct|0_nhlrngmeo?|atgly f(())/llov_vmdg thaop ln.I:trIuc-
a native system takes more than 20 seconds to execute when r N gets overwritten witlnov %r 0, %esi during each loop

ning on either paravirtualized Xen, SVM Xen, or VMware Work- |teraFiop. Although it is noF §hown in the figure, additjonal §elf-
station. This is far above the amount of overhead necessary t610<_j|fy|_ng code_changes th'? Instruction b_a(_:k UD again. T.h'S
overcome network latencies, and we conclude that remote VMM)SCI”atlon stymies VMware'’s ability to efficiently perform binary

detection is feasible. rewriting. _ .
Referring back to Figure 8(b), one would expect a particular

4.4.3 Remotely Distinguishing between Xen and program which containsov %r0, %ax instructions to exe-
VMware cute much more rapidly on VMware than on Xen. However, Fig-

VMware Workstation uses binary rewriting to emulate many ure 11 shows the results of a local experiment and one timed by
sensitive instructions efficiently. This is one reason its performance local verifier where VMware’s performance closely tracks that
is able to closely track that of the native system in Figure 8. How-of Xen. Note that the same number of sensitive instructions are
ever, for correctness, VMware must still be capable of detecting dyexecuted for all data points; the number of arithmetic instructions
namic changes to program executables. For example, self-modifyimgluded in the loop is what varies on the X-axis. In conclusion,
code may appear innocuous when first loaded, but may then morplising self-modifying code gives the remote verifier the ability to
itself into one or more sensitive instructions. distinguish between some different VMM implementations.
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Figure 11. Result of benchmark loop implemented with self-m odifying code.
rdtsc ;; get start time i il ; ;
mov $131072, Y%edi = 131072 processor to determl_ne its sgltabnlty for |mplem_ent|ng aVMM [_14].
call 1f * pushes ebp They found that the instruction set of the Pentium processor is not
1: nop " fully virtualizable since there are some instructions effecting the
pop Y%bp ;; read esp correctness of the VM’s execution that fail silently without trapping
add $5, %bp ;; offset tosub to the VMM. Such instructions have to be simulated by a VMM for
l:sub $1, %cx . » gets overwritten correctness of the VM’s execution thereby leading to a time over-
mov $0x83, 0x0( O/Ebp) i» overwrite head when compared to execution on native hardware.
mov. $0xe9, OxO(%%ebp) i three There are a number of previously deployed detection techniques
nov $0x01, OxO(%bp) ::bytes ETE pre y depioy ques.
xorl %ax, Y%eax - begin arith. R.edplll2 isan examp!e detecthn algorithm used to detect the VMware
;1K — 16K instr. virtual machine monitor. Redpill operates by reading the address of
mov %r0, %si 5 priv.op. the Interrupt Descriptor Table (IDT) with tt#&l DT instruction and
- 5 1K - 16K instr. checking if it has been moved to certain locations known to be used
_Sﬁtz) fg Yedi " Bn:tilnn7—10 by VMware. This algorithm can be easily fooled since it relies on
ert sc o get end time the VMM to return the correct address of the IDT [11]. Similar to
" Redpill, VMware’s BacR is a software-dependent detection attack
Figure 10. Loop including self-modifying which uses the eX|stenc_e ofa §pe0|al 1/0 port, callgd the Vnyare
code. backdoor. This I/O port is specific to the VMware virtual machine

and hence can be used to detect VMware.
Holz and Raynal describe some heuristics for detecting honey-
pots and other suspicious environments from within code executing
5. Related Work in said environment [8]. Dornseif et al. study mechanisms designed
specifically to detect the Sebek high-interaction honeypot [6]. Un-

Most related work falls into two categories: techniques Wthhlihe these approaches, thezzy benchmarkse have constructed

detect VMMs based on implementation details and techniques Whigire not based upon specific software implementations details.

malE)eeg TISeL;Tptr'gnzgzgt;ngﬁg ?opgg(t::gt"tlayé existence of a VM Vrable et al. touch briefly on non-trivial mechanisms for de-
by usin timinp aF:waI sis [4]. The proposed scheme requires a ro_ecting execution within a VMM [21]. They allude to the fact that
y g iming analy : prop quires ap although a honeynet maybe be able to perfectly virtualize all hard-
gram to first time its own execution on a VMM-free machine in

- . ware, an attacker may be able to infer that it is executing inside a
a learning phase. Then, when the program infects a suspect ho\s/. M by certain side channels

of known configuration, its execution time is compared against the Pioneer [18] is a primitive which enables verifiable code exe-

results from the learning phase. Because the result of the IearlE'ution on remote machines. As part of the inherent challenge of

'sncghggaesfs'igfgzgfjir: dotnoth(reo?jﬁagat r;i‘;?}';;euiggrgggzlagggs dnditﬂg/%rifiable code execution, Pioneer needs to determine whether or
Y P 9 ' ot it is running inside a VMM. The solution in Pioneer is to time

unclear how praciical itis to deploy such a deteciion algorithm "Nthe runtime of a certain function that also reads in the interrupt en-

practice. able bit in the EFLAGS register. This function is pushed into the

59 ixe\;::rzlolg]uesé&zﬂﬁgg;Ealife\)ngl:]t\(l)v?jseftgfrtnri)rr]c;p%?d;Qszz?;%rnel and is expected to run with interrupts turned off. However,
y P P it was running inside a VMM, the output of the EFLAGS regis-

kernel rootkits by analyzing the number of certain system calls . o .

o ter would be different than expected. Although promising, Pioneer
Although the main !dg acan also_ap_p_ly to dete(_:t_ VMMS’ EPA hasassumes that the external verifier knows the exact hardware config-
a severe drawback: it requires significant modification to the sys-
tem (debug registers, debug exception handler) that could be easily
detected and consequently forged by the underlying VMM. “http://invisiblethings.org/redpill.htn

Robin and Irvine studied the instruction set of the Intel Pentium3ht t p: / / chi t chat . at . i nf oseek. co. j p/ vimar e/




uration of the target host. We eliminate this assumption and rely [4]
on hardware artifacts to discover the target host’s hardware config-
uration. In addition, the minimal timing overhead of the Pioneer
checksum function makes remote usage of Pioneer difficult.
Remote physical device fingerprinting can be used to detect
VMNMs if the external verifier can directly interact with two differ-
ent virtual machines running on the same host [12]. Our approachjg]
only requires the existence of a single VM and hence is useful in
the case of virtual machine based rootkits [11]. Rutkowska [16]

G. Delalleau. Mesure locale des temps d’execution:
application au controle d’integrite et au fingerprinting. In
Proceedings of SST|Q004.

[5] Advanced Micro Devices. AMD64 virtualization: Secure

virtual machine architecture reference manual. AMD
Publication no. 33047 rev. 3.01, May 2005.

M. Dornseif, T. Holz, and C. Klein. Nosebreak - attacking
honeynets. IfProceedings of the 2004 IEEE Information
Assurance Workshogune 2004.

and Zovi [22] proposed the use of hardware virtualization support [7] T. Garfinkel, B. Pfaff, J. Chow, and M. Rosenblum. Data

(AMD Pacifica [5] and Intel VT [9]) to create virtual machine-
based rootkits rootkits.

6. Conclusions

The main contribution of this paper is the development of a
fuzzy benchmarking program whose execution differs from the per-
spective of an external verifier when a target host is a virtual ma- [9]
chine (versus when it is executed directly on the underlying hard-
ware). Our benchmarking program is based on the timing depen-
dency exception property of a VMM. We presented results wheretlo]
a single benchmarking program generates sufficient overhead on
three different VMMs to be remotely detectable across the Internet.
Included in our analysis is a machine with hardware virtualization
support. The success of our detection algorithm against this plat-
form demonstrates that hardware support for virtualization is not
sufficient to prevent VMM detection.

Most related work either detects VMMs based on implemen- 12]
tation details, use techniques which make assumptions that Iim{t
their applicability, or rely on the integrity of values returned from
the VMM. In contrast, our detection algorithm has a higher degreﬁlg)]
of independence with respect to the implementation of the VMM
on the target host, uses a hardware discovery heuristic to identify
the configuration of the target host, and incorporates a remote tim[-14
ing and decision maker to eliminate the need to trust the VMM. ]
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