Towar ds Simple and Scalable Analysis of Secure Systems

Jason Franklin, Deepak Garg, Dilsun Kaynar, Anupam Datta
Carnegie Mellon University

1 Introduction a system secure against a general class of attackers spec-
ified by their capabilities. One goal &fS? is to enable

Contemporary secure systems are complex and designedtﬂ'(’oe exploration qf definitions of security for a_\wide varie_ty
provide subtle security properties in the face of attack. Ex Of Systems ranging from web browsers to virtual machine
amples of such systems include virtual machine monitorsmonitors and hypervisors.

security kernels, web browsers, and secure co-processor-)) .
based systems such as those utilizing the Trusted Comput- 10 P€ secure, a system must satisfy a security definition
ing Group’s Trusted Platform Module (TPM) [13]. In many " the presence of an adversarirhe inclusion of an ad-
cases, it is unclear what security guarantees are offered B{Frsary into an analysis expands the possible states of the
such systems and against what class of adversaries. Tis¥Stem beyond those of the system alone. As a result, anal-

common practice of enumerating known attacks coupled/SiS Without an adversary or analysis of a system’s resis-
with informal security arguments is clearly unsatisfagtor tance to specific attacks may result in overlooking possible
vulnerable system states. One goall&? is to encour-

In this paper, we provide an overview of a program that ; . .
bap P brog age exploration and standardization of systems advessarie

we have initiated to developimple sound andscalable - . .
techniques for proving the security of networked systemln addition to including a network adversary adopted from
tocol analysisl.S? includes a local attacker modeled as

. - . . pro
designs. We report on our preliminary experiences with?

: : : a malicious local thread. The adversaries are specified by
developing and applying tHeogic of Secure Systems @)S . e i

. A . their capabilities, not the specific attacks they can perfor
and outline our vision for this research program.

As a result, a security proof guarantees a system is secure

Overcoming the complexity of systems remains a ceny,yaingt 4l attacks the adversaries can perform. To support

tral challenge in system modeling and analysis. Despitg jape reasoning and reduce the effort required to prove
substantial progress, the goal of proving deep properfies cHesigns secure, a sound proof system was developed that

system _|mplementat|ons remains a major challenge. As Bllows reasoning about system security without explicitly
alternative, we make the cause for the use of aggress'v(?onsidering the actions of adversaries

abstraction: modeling and analysis of system designs at a
h_igh—Ieng wh(_are in-depth _analysis can identify flawed de- \ye have applied S to analyze trusted computing sys-
signs prior to implementation. tems utilizing both TPMs and next generation hardware-
We designed.S” to simplify the process of abstract- support for the late launch of a security kernel [12, 1, 8].
ing away unnecessary details that complicate modeling angyyr analysis clarifies ambiguous details of the specifica-
analysis and to reveal high-level abstractions of securitytjon, explicitly states the requirements underlying theuse
relevant systems components which we teguurity skele- ity of the system, and discovers previously unknown secu-
tons The security skeleton of a system is a sparse specifiity vulnerabilities in a class of deployed trusted comput-
cation and includes just the code responsible for securitymg systems. After modifying the system specifications to
relevant operationd.S? further reduces modeling effort by fix the vulnerabilities, we prove that the augmented system
natively including common systems primitives as languagesatisfies a natural security property.
constructs such as shared memory, memory protection, ma-
chine resets, cryptographic operations, network communi- We are in the process of extendih§? to further sim-
cation, control flow, and dynamic loading and executing ofplify modeling and analysis and increase expressiveness.
code. We are also adding support for tunable adversaries speci-
To analyze the security of a system, one first needs tdied by the set of interfaces they are allowed to access. Af-
specify the property or properties of interest. Unfortu-ter completing these extensions, we intend to model and
nately, there is a paucity of general definitions of securityanalyze the security of systems including web browsers,
for systems. This is in part due to the diversity of systemshypervisors, and virtual machine monitors, in the process
but also due to the fact that most systems analysis is pedeveloping new adversary models and formal definitions
formed by enumerating specific attacks rather than provingf security.

2 Moddi ng Secure Systems Straightline code and cryptography. Straight line code
execution is modeled using sequences of actions that per-
In LS systems are modeled in a programming Ianguagef.orm standard operations like signing and signature veri-
A secure system is specified as a set of programs in thification, encryption and decryption (both symmetric and
language. Each program consists of a number of action@Symmetric), nonce generation, hashing, value matching,
that are executed in a straight line. For example, a trusteBairing and projection. Each action returns a value, which
computing system contains two programs, one to be exelay be given a name to refer to the value in subsequent
cuted by the untrusted platform and the other by the remotactions. Our model of straightline code execution is thus
verifier. A single executing program is calledhaead The functional This design choice simplifies reasoning signifi-
programming language is designed teespressivenough ~ cantly.
to model practical secure systems while still maintaining aNetwork primitives. Threads can communicate using ac-
sufficiently high level of abstraction to enaldenple rea- tions to send and receive values over the network. Net-
soning work communication is untargeted, i.e., any thread may in-
tercept and read any message (dually, a received message
could have been sent by any thread). Information being
2.1 Language Constructs sent over the network may be protected using cryptogra-

Following its predecessor, PCL [4], the language includehy, if needed. The treatment of network communication
process calculi and functional constructs for modelingand cryptography follows PCL. The language constructs
cryptographic operations, straightline code, and networkve present next are new to this work.
communication among concurrent processes. We introdudé achines and shared memory. Threads can also share
new constructs for modeling machines and shared mengdata through shared memory. The programming model
ory, a simple form of access control on memory, machinecontains machines explicitly. Each machine contains a
resets, and dynamically loading and executing unknowrmumber of memory cells that are shared by all threads run-
(and potentially untrusted) code. The primitives for read-ning on the machine. These cells may be classified into
ing and writing to memory are inspired by the treatment ofRAM, persistent store (hard disk), or other special purpose
memory cells in impure functional languages like Standard:ells (such as PCRs). Depending on the type of cell, its be-
ML [10]. We model memory protection, a fundamental havior may be slightly different. For example, RAM cells
building block for secure systems [11], by allowing pro- are set to a fixed value when a machine resets, whereas
grams to acquire exclusive-write locks on memory cells.persistent store is not affected by resets. Despite thése di
The treatment of dynamically loading and executing un-ferences, the prominent characteristics of all cells aa¢ th
known and untrusted code is novel to this work. The abil-they can beead andwritten through actions provided in
ity to model the execution of unknown and untrusted codghe programming language, and that theysdraredby all
is integral to faithfully modeling security threats agains threads on the machine. Consequently, any thread (includ-
web browsers including malicious javascript and plugins,ing an adversarial thread) has the potential to read or mod-
program isolation in virtual machines, and code attegtatio ify any cell.
protocols in trusted computing. Access control on memory. Shared memory, by its very
While these constructs are the common denominator fonature, cannot be used in secure programs unless some ac-
many secure systems, they are by no means sufficient toess control mechanism enforces the integrity and confi-
model all systems of interest. The language, however, islentiality of data written to it. Access control varies by
extensiblen a modular fashion, as we have illustrated by type of memory and application (e.g., memory segmenta-
extending the core language with a trusted computing sultion, page table read-only bits, access control lists in file
system. At a high level, each system component can bsystems, etc). Our programming model provides an ab-
viewed as exposing aimterface For example, the inter- stract form of access control througgitks Any running
face for memory includes read, write and reset operationghread may obtain an exclusive write lock on any previ-
Adding a new component to the system involves addingously unlocked memory cell by executing a single action
operations in the programming language corresponding tprovided for this purpose. The semantics of the program-
the interface exposed by it. For example, Platform Config-ming language guarantee that while the lock is held by the
uration Registers (PCRs) in the TPM can be modeled as tnread, no other thread will be able to write the cell. The
special form of memory that can be accessed via read, reseitread may later relinquish the lock it holds by executing
and a new extend operation. Some extensions can haveaamother action. Locking in this manner may be used to en-
more global effect on the language semantics. For examplégrce integrity of contents of memory. In a similar man-
adding the machine reset operation to the language affectser, one may add read locks that provamfidentialityof
both how state of local memory and TPM PCRs may bememory contents. Our abstract locks, although simple, are
updated. We describe below the core language constructsa faithful model of the memory protection that hardware

usually provides. They can be used to build other forms of
access control such as page tables and access control lists OSm)
if needed.

Machine resets. The language allows a machine to be
spontaneously reset. When a machine reset occurs in our | (m) P—read mSLB
model, all running threads on it are killed, all its RAM cells extend m.dpcrk,P;
are set to a fixed value, and a single new thread is created callP

to reboot the machine. This new thread executes a fixed

booting program. We model the reset operation since it has ~ P(m) n’ = read mnonce
significant security implications for secure systems [8]. | extend m.dpcrk,n’;
the context of trusted computing, e.g., the fact thata TPM’s eval f,0;

PCRs are set to a fixed value is critical in reasoning about extend m.dpcrk, EOL
the security properties of attestation protocols. In adidjt

n =receive ;
write m.noncen’;
late_launch

. . " TPM(m) = w=read mdpcrk;

it has been shown that adversaries can launch realistic at- s 1)
. . . i r =sign (dPCRK),w), AIK™*(m);

tacks against trusted computing systems using machine re- send r

sets [5].

Untrusted code execution. The last salient feature of our Verifier(m) = n=new;

programming model is an action that dynamically branches send n;

to code. The code branchedto is represented by an arbitrary sig= receive

value, that may reside in memory or on disk, or even be V= verify sig AIK(m);

received over the network. Note that this code could have match v, (dPCRK),

come from an adversary. Execution of untrusted code is seqdinit, P(m),n, EOL))

necessary to model several systems of interest, e.gedrust
computing systems and web browsers. Figure 1:Security Skeleton for Trusted Computing System
Operational semantics. The abstract runtime environ-

ment of the language is calledcanfiguration It contains

all the executing threads, the state of memory on all ma-

chines, and the state of memory locks held by threads. Thé.2 Adversary Model

operational semantics of the language captures how sys-

tems execute to produce traces. It is defined using proce

calculus-styleeduction ruleshat specify how a configura- We formally model adversaries as extra threads executing

: S concurrently with protocol participants. Such an adversar

tion may transition to another. : .

E le Model. Fi 1 sh | " may contain any number of threads, on any machines, and
xampie VIodel. Igure 1 Shows an example Security may execute any program expressible in our programming

skeleton of a trusted computing system that utilizes a TPMnodeI. However, the adversary cannot perform operations

and hardware support fo_r late launch. The protocpl 'Nthat are not permitted by the language semantics. For ex-
cludes four agents executing a number of processes inclu imple, the adversary can neither write to memory locked

ing: (1) QS(m), executed by the machine _it_self (calleg, - by another thread, nor can it break cryptography.
that receives a nonce from the remote verifier, and performs

a late launch. (2).L(m), executed by the hardware plat- Interfaces to system components also provide a useful
form, that acquires exclusive write locks on the PCRs, pereonceptual view of thadversary Since the capabilities of
forms a dynamic reset of PCR.d pcrk, reads the binary the adversary areonistrained by theystem_nterface, we

of the progran® from the secure loader block (SLB), and refer to her as @sI-ADVERSARY. For example, the adver-
measures or in trusted computing parlance, extends, thesary can write to unprotected memory cells, but can only
calls P, (3) P(m) that measures the nonce, evaluates theipdate PCR'’s through the extend operation in its interface.
function f on input O (the functionf and its input may Formally, the adversary may execute any program express-
be replaced by some other function depending on applicable in our programming model, i.e. the adversary can per-
tion), and extends a distinguished strie@Lintom.dpctk form symbolic cryptographic operations, intercept and in-
to signify the end of the late launch session. THM(m), ject messages that it can create into the network, read and
executed by the TPM afn, that signs the dynamic PCR write memory cells that are not explicitly locked by another
m.d pcrk, and sends it to the verifier. (Serifier(m), exe- thread, and reset machines. Because of these capabilities,
cuted by a remote verifier, that generates and sends a nondbe adversary can launch a broad range of attacks on the
receives signed integrity measurements, verifies the signanetwork and the local machines including replay attacks,
ture, and checks that the measurements match the expecteadifying and injecting malicious code on local machines,
sequencédinit, P(m),n,EOL). and exploiting race conditions.

3 Anal ysi S gram logics was able to u&&? to prove security properties
of several core components of TPMs with only a moderate

Despite the complexity inherent in reasoning about secuéeffort after an initial intense phase of learning the formal
rity in the face of adversaries that are generically specisyntax and proof system. We believe that this will be the
fied only by their capabilities, reasoning principlesif? case for other system designers as well. Whereas the diffi-
are fairly easy to use. Technically, this is accomplishedculty with initial learning is inherent in logical syntax @n
through a combination of an intuitive and simpi@of sys- formal proofs, ease of subsequent use is a consequence of
temthat is used to prove security properties, and a systengareful design of the reasoning principles useti$h
independensoundness theorerthat connects the proof ExampleAnalysis. We formally define an integrity prop-
system to execution of programs and, more significantlyerty of the system in Figure 1. We summarize the system
captures the complexity of reasoning about actions of adsecurity property as follows: if the verifier is not the TPM,
versaries. The latter theorem, although non-trivial, haghe TPM does not leak its signing key, and the TPM exe-
been established once and for all. As a consequence of tHaites only the process&®M(m) andT PMsgrm(m)*, then
theorem, proofs of security properties proceed by inductio after executing its code successfully, the remote veriger i
on programs of known system components only, withouguaranteed thal performed a single late launch on ma-
ever having to consider adversarial actions. This simglifie chinem at some time, J calledP(m) only once atc, J
reasoning significantly, and makeS? amenable to use in €valuatedf once attg (and this happened after the veri-
practical systems. fier generated the noncéd)extendedE OL into m.d pcrk at
Formally, security of a system is specified as safety proptimetx, andm.d.pcrk was locked for the threadifrom t,
erties of its components, which are further expressed as irff® tx. We formalize this security property calldgc below.
variants of the programs of the components. These invari- |verifier(m)[?* 3J,tx,te, tn, tL,te,n.
ants are similar to program invariants in Hoare logic [7]. AL <t <tg <tx <te)
A proof of a security property for a component consists of A(tp <tn <tg)
an induction on the program of the component using fixed A (New(V,n) @ty)
rules and axioms (that constitute the proof system). These A (LateLaunch(m,J) @1.)
rules and axioms are designed to be expressive enough to A (-LateLaunch(m) on (tL,tx])
prove most properties of interest, yet simple to understand A (~Reset(m) on (1L, 1x])
For example, a literal English translation of one of the ax- ﬁ ES?;L(II](JF;(S;))({@:CC)))
ioms for reasoning about values stored in memory is the A (Eval(3, f) @tES
following: “If only thread T can write to a memory cell A (Extend(J,m.dperk, EOL) @ tx)
during a time interval and T does not write td duringi, A (~Eval(J, f) on (tc,tg))
thenl must contain the same value throughiduSimilarly, A (=Eval(J, f) on (tg,tx))
an axiom for reasoning about memory protection reads, “If A (IsLocked(m.d perk, J)on(t,, tx])
threadT has an exclusive-write lock on memory celht
the beginning of time intervd| andT does not relinquish ~ The proof of the above property consists of only around
its lock duringi, thenl must hold the lock throughout fifteen steps and is concise enough to fit into five pages of
Like these two axioms, all other axioms and rules 8% text. The proof itself required less than one day of effort
are fairly obvious. The technical difficulty lies in proving © establish. While performing the proof, we determined

that these axioms are sound, i.e, that the properties thefpat recently introduced hardware support for late launch
state actually hold when programs execute. For example, ifctually adversely affects the security of previous genera
the case of the first axiom above, this amounts to showind©n trusted computing systems! In particular, an attack is

that no matter what the adversary and other concurrentl ossible that utilizes late launch hardware to exploit foad
executing programs try to do, the value in delkill not ime attestation protocols that measure software staating

change during. This requires an exhaustive induction on SyStem boot. By performing a late launch after the oper-
the possible programs of the adversary, which is both te@ting system has been measured into a PCR, a malicious

dious and non-trivial. However, as mentioned earlier, thigProgram can modify the suspended OS binary without de-

complexity is dealt with once in the soundness theorem'gection. The attack enables an adversary to report false sys

proofs of security of systems simplysethe axioms and tem integrity measurements that are not tied to the actual

rules without paying any heed to their correctness and arestate of the platform. This vulnerability (_:oul_d be countere
therefore, straightforward. if the suspended OS were able to maintain memory pro-

Based on our experience witt€?, we believe that its tections over the state previously measured into the static
use requires an initial learning phase, but little subsatjue PCRs, unfortunately current generation hardware does not

effort for application to new systems. As an example, Onéarowde this option.
member of our group who had no prior familiarity with pro- ~ *TPMggrwmis not shown.

4 Reated Work cess control lists or more sophisticated methods of enforc-
ing access control.

LS? shares a number of features with PCL [4] and thereford solation. Third, we want to develop techniques for rea-
with other logics of programs [7, 6, 2]. One central differ- Soning about isolated process execution, which is quite
ence from PCL is thatS? considers shared memory sys- commonin systems. For example, when a machine is reset,
tems in addition to network communication. Although con-rebooting is a purely sequential process until the opegatin
current separation logic [2] also focuses on shared-memor§ystem enables time sharing. Currently, isolated process
programs with mutable state, a key difference is that it doe§xecution has to be modeled by explicitly giving exclusive-
not consider network communication. Furthermore, conWrite locks on all cells to the executing process, so that
current Separa’[ion |Ogic and other approaches for Vegfyin other concurrent processes have no effect on it. AlthOUgh
concurrent Systems [9] typ|ca||y do not consider an adver.teChnica”y SOUnd, thisis artiﬁCial, and we would like tadad
sary model. An adversary could be encoded as a regul@xioms and rules to directly reason in these cases. In a re-
program in these approaches, but then proving invarianti@ted area, we want to enrich the programming model with
would involve an induction over the steps of the honest pardynamic creation of processes (a “fork” primitive), which
ties programs and the attacker. On the other hantiSfn s not possible hitherto.

(as in PCL), invariants are established only by inductionComposition. Finally, in line with our focus on keeping
over the steps of honest parties programs, thereby consiéeéasoning as simple as possible, we are developing tech-

erably simplifying the analysis. nigues to compose proofs modularly. We want to able to
answer questions like the following: if system A provides
5 Ongoing Work propertyPs and system B provides propei, then what

meaningful property (if any) is obtained by allowing A and

B to execute simultaneously? Suitable answers to this and
similar questions would enable modular reasoning about
system components, and reuse of existing proofs.

Although we are satisfied with the overall approach &,
we have noticed a number of limitations of its program-
ming model that we are in the process of improving.
Interfaces. First, LS? currently cannot be used to reason
about system-specific interfaces. Instead reasoning muRefer ences
useLS's in-built primitives. For examplel S provides)) .)
a ‘write’ prmitve that models writing a cell o disk di- 2 et Mero Devces DG4 viuslator: secueuct
rectly (without any understanding of the directory struc- rev. 3.01, May 2005.
ture). However, in modeling a real file system, it may [2] s. Brookes. A semantics for concurrent separation logicPro-
be more useful to define and reason about a POSIX style ceedings of 15th CONCURO04.
“write” system call that maintains invariants of the inode [3] E. M. Chan, et al. BootJacker: Compromising computeisgis
structure. Currently, this cannot be donelif’. More forced restarts. IfProceedings of 15th ACM CC3008.

P) e . [4] A. Datta, et al. Protocol Composition Logic (PCLElectr. Notes
significantly, the adversary’s capabilities are defined ex- Theor. Comput. Sci172:311-358, 2007,
actly by the prlm-ltlves available in the prer_ammmg model,] S. Garriss, et al. Towards trustworthy kiosk computitmgWorkshop
not the system interfaces that are accessible to the adver-" on Mobile Computing Systems and Applicatidfeb. 2006.
sary. Whereas this is appropriate in some cases, in othergs] p. Harel, D. Kozen, J. Tiuryn. Dynamic Logic Foundations of
it makes the adversary stronger than necessary in practice. Computing. MIT Press, 2000.
In ongoing work, we are extendirgs® with methods for ~ [7]1 C. A. R. Hoare. An axiomatic basis for computer programi
describing system interfaces as combinations of specifica- ~ ¢ACM 12(10):576-580, 1969. ISSN 0001-0782.
tions and programs, and for reasoning about security with[€l !nté! Corporation. Trusted eXecution Technology — nahary

. . . . architecture specification and enabling considerationscuhent
adversaries that are confined to a stipulated but variable se ,ymper 31516803, Nov. 2006.

of interfaces. [9] L. Lamport. The temporal logic of actionsACM Transactions on

Access Control. The second major improvement that we Programming Languages and Systet(3), May 1994.

would like to make is the addition of a flexible model for [10] R.Milner, M. Tofte, R. HarperThe Definition of Standard MIMIT

access control. Currently, the only primitive for access.co 5’”;55“' Ca”,\‘/lb”sdghe’ ’V'dA’ U‘th’ 199t°~ t'_SBNfQ‘iGZ'G::_132‘6- t

trolin LS? is an exclusive-write lock on a RAM or disk cell [11] Systznf;gméeecdi;‘;‘; c?frihe ngég("g')‘?fz%i‘l%m g"e‘;‘fnll[;“?;r

that prevents all but the owning process from writing the . " . _— :
R L. [12] TCG. PC client specific TPM interface specification (JISersion

cell. Although fundamental to building more sophisticated 1.2, Revision 1.00, Jul. 2005.

access control in systems, this is a rather low-level specifij13] Trusted Computing Group (TCG).

cation of protection, and is limiting, for example, when we https://www.trustedcomputinggroup.org/, 2009.

want to reason about cells shared by multiple processes. In

future, we would like to enrich.S*’s access model with a

wider selection of permissions, and direct support for ac-

