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1 Introduction

Contemporary secure systems are complex and designed to
provide subtle security properties in the face of attack. Ex-
amples of such systems include virtual machine monitors,
security kernels, web browsers, and secure co-processor-
based systems such as those utilizing the Trusted Comput-
ing Group’s Trusted Platform Module (TPM) [13]. In many
cases, it is unclear what security guarantees are offered by
such systems and against what class of adversaries. The
common practice of enumerating known attacks coupled
with informal security arguments is clearly unsatisfactory.

In this paper, we provide an overview of a program that
we have initiated to developsimple, sound, andscalable
techniques for proving the security of networked system
designs. We report on our preliminary experiences with
developing and applying theLogic of Secure Systems (LS2)
and outline our vision for this research program.

Overcoming the complexity of systems remains a cen-
tral challenge in system modeling and analysis. Despite
substantial progress, the goal of proving deep properties of
system implementations remains a major challenge. As an
alternative, we make the cause for the use of aggressive
abstraction: modeling and analysis of system designs at a
high-level where in-depth analysis can identify flawed de-
signs prior to implementation.

We designedLS2 to simplify the process of abstract-
ing away unnecessary details that complicate modeling and
analysis and to reveal high-level abstractions of security-
relevant systems components which we termsecurity skele-
tons. The security skeleton of a system is a sparse specifi-
cation and includes just the code responsible for security-
relevant operations.LS2 further reduces modeling effort by
natively including common systems primitives as language
constructs such as shared memory, memory protection, ma-
chine resets, cryptographic operations, network communi-
cation, control flow, and dynamic loading and executing of
code.

To analyze the security of a system, one first needs to
specify the property or properties of interest. Unfortu-
nately, there is a paucity of general definitions of security
for systems. This is in part due to the diversity of systems,
but also due to the fact that most systems analysis is per-
formed by enumerating specific attacks rather than proving

a system secure against a general class of attackers spec-
ified by their capabilities. One goal ofLS2 is to enable
the exploration of definitions of security for a wide variety
of systems ranging from web browsers to virtual machine
monitors and hypervisors.

To be secure, a system must satisfy a security definition
in the presence of an adversary. The inclusion of an ad-
versary into an analysis expands the possible states of the
system beyond those of the system alone. As a result, anal-
ysis without an adversary or analysis of a system’s resis-
tance to specific attacks may result in overlooking possible
vulnerable system states. One goal ofLS2 is to encour-
age exploration and standardization of systems adversaries.
In addition to including a network adversary adopted from
protocol analysis,LS2 includes a local attacker modeled as
a malicious local thread. The adversaries are specified by
their capabilities, not the specific attacks they can perform.
As a result, a security proof guarantees a system is secure
against all attacks the adversaries can perform. To support
scalable reasoning and reduce the effort required to prove
designs secure, a sound proof system was developed that
allows reasoning about system security without explicitly
considering the actions of adversaries.

We have appliedLS2 to analyze trusted computing sys-
tems utilizing both TPMs and next generation hardware-
support for the late launch of a security kernel [12, 1, 8].
Our analysis clarifies ambiguous details of the specifica-
tion, explicitly states the requirements underlying the secu-
rity of the system, and discovers previously unknown secu-
rity vulnerabilities in a class of deployed trusted comput-
ing systems. After modifying the system specifications to
fix the vulnerabilities, we prove that the augmented system
satisfies a natural security property.

We are in the process of extendingLS2 to further sim-
plify modeling and analysis and increase expressiveness.
We are also adding support for tunable adversaries speci-
fied by the set of interfaces they are allowed to access. Af-
ter completing these extensions, we intend to model and
analyze the security of systems including web browsers,
hypervisors, and virtual machine monitors, in the process
developing new adversary models and formal definitions
of security.
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2 Modeling Secure Systems

In LS2 systems are modeled in a programming language.
A secure system is specified as a set of programs in this
language. Each program consists of a number of actions
that are executed in a straight line. For example, a trusted
computing system contains two programs, one to be exe-
cuted by the untrusted platform and the other by the remote
verifier. A single executing program is called athread. The
programming language is designed to beexpressiveenough
to model practical secure systems while still maintaining a
sufficiently high level of abstraction to enablesimple rea-
soning.

2.1 Language Constructs

Following its predecessor, PCL [4], the language includes
process calculi and functional constructs for modeling
cryptographic operations, straightline code, and network
communication among concurrent processes. We introduce
new constructs for modeling machines and shared mem-
ory, a simple form of access control on memory, machine
resets, and dynamically loading and executing unknown
(and potentially untrusted) code. The primitives for read-
ing and writing to memory are inspired by the treatment of
memory cells in impure functional languages like Standard
ML [10]. We model memory protection, a fundamental
building block for secure systems [11], by allowing pro-
grams to acquire exclusive-write locks on memory cells.
The treatment of dynamically loading and executing un-
known and untrusted code is novel to this work. The abil-
ity to model the execution of unknown and untrusted code
is integral to faithfully modeling security threats against
web browsers including malicious javascript and plugins,
program isolation in virtual machines, and code attestation
protocols in trusted computing.

While these constructs are the common denominator for
many secure systems, they are by no means sufficient to
model all systems of interest. The language, however, is
extensiblein a modular fashion, as we have illustrated by
extending the core language with a trusted computing sub-
system. At a high level, each system component can be
viewed as exposing aninterface. For example, the inter-
face for memory includes read, write and reset operations.
Adding a new component to the system involves adding
operations in the programming language corresponding to
the interface exposed by it. For example, Platform Config-
uration Registers (PCRs) in the TPM can be modeled as a
special form of memory that can be accessed via read, reset
and a new extend operation. Some extensions can have a
more global effect on the language semantics. For example,
adding the machine reset operation to the language affects
both how state of local memory and TPM PCRs may be
updated. We describe below the core language constructs.

Straightline code and cryptography. Straight line code
execution is modeled using sequences of actions that per-
form standard operations like signing and signature veri-
fication, encryption and decryption (both symmetric and
asymmetric), nonce generation, hashing, value matching,
pairing and projection. Each action returns a value, which
may be given a name to refer to the value in subsequent
actions. Our model of straightline code execution is thus
functional. This design choice simplifies reasoning signifi-
cantly.
Network primitives. Threads can communicate using ac-
tions to send and receive values over the network. Net-
work communication is untargeted, i.e., any thread may in-
tercept and read any message (dually, a received message
could have been sent by any thread). Information being
sent over the network may be protected using cryptogra-
phy, if needed. The treatment of network communication
and cryptography follows PCL. The language constructs
we present next are new to this work.
Machines and shared memory. Threads can also share
data through shared memory. The programming model
contains machines explicitly. Each machine contains a
number of memory cells that are shared by all threads run-
ning on the machine. These cells may be classified into
RAM, persistent store (hard disk), or other special purpose
cells (such as PCRs). Depending on the type of cell, its be-
havior may be slightly different. For example, RAM cells
are set to a fixed value when a machine resets, whereas
persistent store is not affected by resets. Despite these dif-
ferences, the prominent characteristics of all cells are that
they can beread andwritten through actions provided in
the programming language, and that they aresharedby all
threads on the machine. Consequently, any thread (includ-
ing an adversarial thread) has the potential to read or mod-
ify any cell.
Access control on memory. Shared memory, by its very
nature, cannot be used in secure programs unless some ac-
cess control mechanism enforces the integrity and confi-
dentiality of data written to it. Access control varies by
type of memory and application (e.g., memory segmenta-
tion, page table read-only bits, access control lists in file
systems, etc). Our programming model provides an ab-
stract form of access control throughlocks. Any running
thread may obtain an exclusive write lock on any previ-
ously unlocked memory cell by executing a single action
provided for this purpose. The semantics of the program-
ming language guarantee that while the lock is held by the
thread, no other thread will be able to write the cell. The
thread may later relinquish the lock it holds by executing
another action. Locking in this manner may be used to en-
force integrity of contents of memory. In a similar man-
ner, one may add read locks that provideconfidentialityof
memory contents. Our abstract locks, although simple, are
a faithful model of the memory protection that hardware
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usually provides. They can be used to build other forms of
access control such as page tables and access control lists
if needed.
Machine resets. The language allows a machine to be
spontaneously reset. When a machine reset occurs in our
model, all running threads on it are killed, all its RAM cells
are set to a fixed value, and a single new thread is created
to reboot the machine. This new thread executes a fixed
booting program. We model the reset operation since it has
significant security implications for secure systems [3]. In
the context of trusted computing, e.g., the fact that a TPM’s
PCRs are set to a fixed value is critical in reasoning about
the security properties of attestation protocols. In addition,
it has been shown that adversaries can launch realistic at-
tacks against trusted computing systems using machine re-
sets [5].
Untrusted code execution. The last salient feature of our
programming model is an action that dynamically branches
to code. The code branched to is represented by an arbitrary
value, that may reside in memory or on disk, or even be
received over the network. Note that this code could have
come from an adversary. Execution of untrusted code is
necessary to model several systems of interest, e.g., trusted
computing systems and web browsers.
Operational semantics. The abstract runtime environ-
ment of the language is called aconfiguration: It contains
all the executing threads, the state of memory on all ma-
chines, and the state of memory locks held by threads. The
operational semantics of the language captures how sys-
tems execute to produce traces. It is defined using process
calculus-stylereduction rulesthat specify how a configura-
tion may transition to another.
Example Model. Figure 1 shows an example security
skeleton of a trusted computing system that utilizes a TPM
and hardware support for late launch. The protocol in-
cludes four agents executing a number of processes includ-
ing: (1) OS(m), executed by the machine itself (called ˆm),
that receives a nonce from the remote verifier, and performs
a late launch. (2)LL(m), executed by the hardware plat-
form, that acquires exclusive write locks on the PCRs, per-
forms a dynamic reset of PCRm.dpcr.k, reads the binary
of the programP from the secure loader block (SLB), and
measures or in trusted computing parlance, extends, then
calls P, (3) P(m) that measures the nonce, evaluates the
function f on input 0 (the functionf and its input may
be replaced by some other function depending on applica-
tion), and extends a distinguished stringEOL into m.dpcr.k
to signify the end of the late launch session. (4)TPM(m),
executed by the TPM ofm, that signs the dynamic PCR
m.dpcr.k, and sends it to the verifier. (5)Veri f ier(m), exe-
cuted by a remote verifier, that generates and sends a nonce,
receives signed integrity measurements, verifies the signa-
ture, and checks that the measurements match the expected
sequence(dinit,P(m),n,EOL).

OS(m) ≡ n′ = receive ;
write m.nonce,n′;
late launch

LL(m) ≡ P = read m.SLB;
extend m.dpcr.k,P;
call P

P(m) ≡ n′′ = read m.nonce;
extend m.dpcr.k,n′′;
eval f ,0;
extend m.dpcr.k,EOL

TPM(m) ≡ w = read m.dpcr.k;
r = sign (dPCR(k),w),AIK−1(m);
send r

Veri f ier(m) ≡ n = new ;
send n;
sig= receive ;
v = verify sig,AIK(m);
match v,(dPCR(k),

seq(dinit,P(m),n,EOL))

Figure 1:Security Skeleton for Trusted Computing System

2.2 Adversary Model

We formally model adversaries as extra threads executing
concurrently with protocol participants. Such an adversary
may contain any number of threads, on any machines, and
may execute any program expressible in our programming
model. However, the adversary cannot perform operations
that are not permitted by the language semantics. For ex-
ample, the adversary can neither write to memory locked
by another thread, nor can it break cryptography.

Interfaces to system components also provide a useful
conceptual view of theadversary. Since the capabilities of
the adversary are constrained by the system interface, we
refer to her as aCSI-ADVERSARY. For example, the adver-
sary can write to unprotected memory cells, but can only
update PCR’s through the extend operation in its interface.
Formally, the adversary may execute any program express-
ible in our programming model, i.e. the adversary can per-
form symbolic cryptographic operations, intercept and in-
ject messages that it can create into the network, read and
write memory cells that are not explicitly locked by another
thread, and reset machines. Because of these capabilities,
the adversary can launch a broad range of attacks on the
network and the local machines including replay attacks,
modifying and injecting malicious code on local machines,
and exploiting race conditions.

3



3 Analysis

Despite the complexity inherent in reasoning about secu-
rity in the face of adversaries that are generically speci-
fied only by their capabilities, reasoning principles inLS2

are fairly easy to use. Technically, this is accomplished
through a combination of an intuitive and simpleproof sys-
temthat is used to prove security properties, and a system-
independentsoundness theoremthat connects the proof
system to execution of programs and, more significantly,
captures the complexity of reasoning about actions of ad-
versaries. The latter theorem, although non-trivial, has
been established once and for all. As a consequence of the
theorem, proofs of security properties proceed by induction
on programs of known system components only, without
ever having to consider adversarial actions. This simplifies
reasoning significantly, and makesLS2 amenable to use in
practical systems.

Formally, security of a system is specified as safety prop-
erties of its components, which are further expressed as in-
variants of the programs of the components. These invari-
ants are similar to program invariants in Hoare logic [7].
A proof of a security property for a component consists of
an induction on the program of the component using fixed
rules and axioms (that constitute the proof system). These
rules and axioms are designed to be expressive enough to
prove most properties of interest, yet simple to understand.
For example, a literal English translation of one of the ax-
ioms for reasoning about values stored in memory is the
following: “If only threadT can write to a memory celll
during a time intervali andT does not write tol during i,
thenl must contain the same value throughouti.” Similarly,
an axiom for reasoning about memory protection reads, “If
threadT has an exclusive-write lock on memory celll at
the beginning of time intervali, andT does not relinquish
its lock duringi, thenl must hold the lock throughouti.”

Like these two axioms, all other axioms and rules inLS2

are fairly obvious. The technical difficulty lies in proving
that these axioms are sound, i.e, that the properties they
state actually hold when programs execute. For example, in
the case of the first axiom above, this amounts to showing
that no matter what the adversary and other concurrently
executing programs try to do, the value in celll will not
change duringi. This requires an exhaustive induction on
the possible programs of the adversary, which is both te-
dious and non-trivial. However, as mentioned earlier, this
complexity is dealt with once in the soundness theorem;
proofs of security of systems simplyuse the axioms and
rules without paying any heed to their correctness and are,
therefore, straightforward.

Based on our experience withLS2, we believe that its
use requires an initial learning phase, but little subsequent
effort for application to new systems. As an example, one
member of our group who had no prior familiarity with pro-

gram logics was able to useLS2 to prove security properties
of several core components of TPMs with only a moderate
effort after an initial intense phase of learning the formal
syntax and proof system. We believe that this will be the
case for other system designers as well. Whereas the diffi-
culty with initial learning is inherent in logical syntax and
formal proofs, ease of subsequent use is a consequence of
careful design of the reasoning principles used inLS2.
Example Analysis. We formally define an integrity prop-
erty of the system in Figure 1. We summarize the system
security property as follows: if the verifier is not the TPM,
the TPM does not leak its signing key, and the TPM exe-
cutes only the processesTPM(m) andTPMSRTM(m)1, then
after executing its code successfully, the remote verifier is
guaranteed thatJ performed a single late launch on ma-
chinem at some timetL, J calledP(m) only once attC, J
evaluatedf once attE (and this happened after the veri-
fier generated the nonce),J extendedEOL into m.dpcr.k at
time tX, andm.d.pcr.k was locked for the threadJ from tL
to tX. We formalize this security property calledJTC below.

[Veri f ier(m)]tb,teV ∃J,tX,tE,tN,tL,tC,n.

∧ (tL < tC < tE < tX < te)
∧ (tb < tN < tE)
∧ (New(V,n) @ tN)
∧ (LateLaunch(m,J) @ tL)
∧ (¬LateLaunch(m) on (tL,tX ])
∧ (¬Reset(m) on (tL,tX ])
∧ (Call(J,P(m)) @ tC)
∧ (¬Call(J) on (tL,tC))
∧ (Eval(J, f ) @ tE)
∧ (Extend(J,m.dpcr.k,EOL) @ tX)
∧ (¬Eval(J, f ) on (tC,tE))
∧ (¬Eval(J, f ) on (tE,tX))
∧ (IsLocked(m.dpcr.k,J)on(tL ,tX ])

The proof of the above property consists of only around
fifteen steps and is concise enough to fit into five pages of
text. The proof itself required less than one day of effort
to establish. While performing the proof, we determined
that recently introduced hardware support for late launch
actually adversely affects the security of previous genera-
tion trusted computing systems! In particular, an attack is
possible that utilizes late launch hardware to exploit load-
time attestation protocols that measure software startingat
system boot. By performing a late launch after the oper-
ating system has been measured into a PCR, a malicious
program can modify the suspended OS binary without de-
tection. The attack enables an adversary to report false sys-
tem integrity measurements that are not tied to the actual
state of the platform. This vulnerability could be countered
if the suspended OS were able to maintain memory pro-
tections over the state previously measured into the static
PCRs, unfortunately current generation hardware does not
provide this option.

1TPMSRT M is not shown.
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4 Related Work

LS2 shares a number of features with PCL [4] and therefore
with other logics of programs [7, 6, 2]. One central differ-
ence from PCL is thatLS2 considers shared memory sys-
tems in addition to network communication. Although con-
current separation logic [2] also focuses on shared-memory
programs with mutable state, a key difference is that it does
not consider network communication. Furthermore, con-
current separation logic and other approaches for verifying
concurrent systems [9] typically do not consider an adver-
sary model. An adversary could be encoded as a regular
program in these approaches, but then proving invariants
would involve an induction over the steps of the honest par-
ties programs and the attacker. On the other hand, inLS2

(as in PCL), invariants are established only by induction
over the steps of honest parties programs, thereby consid-
erably simplifying the analysis.

5 Ongoing Work

Although we are satisfied with the overall approach ofLS2,
we have noticed a number of limitations of its program-
ming model that we are in the process of improving.
Interfaces. First, LS2 currently cannot be used to reason
about system-specific interfaces. Instead reasoning must
useLS2’s in-built primitives. For example,LS2 provides
a ‘write’ primitive that models writing a cell on disk di-
rectly (without any understanding of the directory struc-
ture). However, in modeling a real file system, it may
be more useful to define and reason about a POSIX style
“write” system call that maintains invariants of the inode
structure. Currently, this cannot be done inLS2. More
significantly, the adversary’s capabilities are defined ex-
actly by the primitives available in the programming model,
not the system interfaces that are accessible to the adver-
sary. Whereas this is appropriate in some cases, in others
it makes the adversary stronger than necessary in practice.
In ongoing work, we are extendingLS2 with methods for
describing system interfaces as combinations of specifica-
tions and programs, and for reasoning about security with
adversaries that are confined to a stipulated but variable set
of interfaces.
Access Control. The second major improvement that we
would like to make is the addition of a flexible model for
access control. Currently, the only primitive for access con-
trol in LS2 is an exclusive-write lock on a RAM or disk cell
that prevents all but the owning process from writing the
cell. Although fundamental to building more sophisticated
access control in systems, this is a rather low-level specifi-
cation of protection, and is limiting, for example, when we
want to reason about cells shared by multiple processes. In
future, we would like to enrichLS2’s access model with a
wider selection of permissions, and direct support for ac-

cess control lists or more sophisticated methods of enforc-
ing access control.
Isolation. Third, we want to develop techniques for rea-
soning about isolated process execution, which is quite
common in systems. For example, when a machine is reset,
rebooting is a purely sequential process until the operating
system enables time sharing. Currently, isolated process
execution has to be modeled by explicitly giving exclusive-
write locks on all cells to the executing process, so that
other concurrent processes have no effect on it. Although
technically sound, this is artificial, and we would like to add
axioms and rules to directly reason in these cases. In a re-
lated area, we want to enrich the programming model with
dynamic creation of processes (a “fork” primitive), which
is not possible hitherto.
Composition. Finally, in line with our focus on keeping
reasoning as simple as possible, we are developing tech-
niques to compose proofs modularly. We want to able to
answer questions like the following: if system A provides
propertyPA and system B provides propertyPB, then what
meaningful property (if any) is obtained by allowing A and
B to execute simultaneously? Suitable answers to this and
similar questions would enable modular reasoning about
system components, and reuse of existing proofs.
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