
Heuristic Search Based Planning by Minimizing
Anticipated Search Efforts

Ishani Chatterjee

CMU-RI-TR-22-62

September 9, 2022

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Maxim Likhachev, Co-chair
Manuela Veloso, Co-chair

Stephen Smith
Shlomo Zilberstein, University of Massachusetts Amherst

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright © 2022 Ishani Chatterjee. All rights reserved.





To my grandparents and parents.



iv



Abstract

We focus on relatively low dimensional robot motion planning problems, such
as planning for navigation of a self-driving vehicle, unmanned aerial vehicles
(UAVs), and footstep planning for humanoids. In these problems, there is a need
for fast planning, potentially compromising the solution quality. Often, we want
to plan fast but are also interested in controlling the solution quality because we
desire efficient planning. Bounded-suboptimal heuristic search algorithms are
a popular alternative to optimal heuristic search algorithms that compromise
solution quality for computation speed. Specifically, these searches aim to
find a solution that can be computed faster than the optimal solution while
guaranteeing that its cost is bounded within a specified factor of the optimal
cost (bounded-suboptimality). Currently, most bounded-suboptimal heuristic
search algorithms speed up planning by guiding the search using cost-to-goal
estimates. Cost-to-goal estimates are not necessarily correlated with the search
effort required to reach the goal. The key idea of this thesis is to explicitly
reason about anticipated search efforts required to reach the goal instead
of cost-to-goal estimates, and achieve higher speedup by guiding the search
along solutions that minimize these anticipated search efforts while ensuring
bounded-suboptimality of the computed solutions. Also, bounded-suboptimal
heuristic search algorithms have been largely investigated in the context of
deterministic planning. In this thesis, we use the key idea of this thesis to
speed up planning while ensuring bounded suboptimality in the context of
deterministic as well as probabilistic planning.

To this end, our first contribution is to speed up deterministic robot planning
problems formulated as bounded-suboptimal heuristic search. Weighted A*
(wA*) search is a popular bounded-suboptimal heuristic search algorithm.
We investigate the problem of computing heuristics that explicitly aim to
reduce the search efforts of wA*. For heuristic computation, it is common
to solve a simpler planning problem in a relaxed space formed by relaxing
some constraints in the original search space. We introduce conservative
heuristics—novel heuristics that anticipate search efforts required to reach the
goal. We first introduce the notion of a conservative path in the relaxed space,
whose existence guarantees the existence of a feasible path in the original space.
Conservative heuristics are computed such that if a conservative path exists in
the relaxed space, then the search can follow the heuristic gradient to find a
feasible path in the original space while expanding only those states that appear
on this path. We propose an algorithm to compute conservative heuristics.
We evaluate conservative heuristics theoretically as well as empirically using
simulated experiments in humanoid footstep planning, planning for a UAV, and
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a real-world experiment in footstep planning for a NAO robot.

Our second contribution is to speed up a particular class of planning under
uncertainty problems. Many real-world planning problems involve robots
having to plan in partially known environments. This frequently requires
planning under uncertainty over missing information about the environment.
Unfortunately, the computational expense of such planning often precludes
its scalability to real-world problems. The Probabilistic Planning with Clear
Preferences (PPCP) framework computes optimal policies in a scalable way
for a subset of such planning problems wherein there exist clear preferences
over the actual values of missing information. It runs a series of fast, de-
terministic, A*-like searches to construct and refine a policy, guaranteeing
optimality under certain conditions. Aligning with the key idea of this thesis,
we anticipate that while running a series of A*-like searches to compute a
policy, search efforts are correlated with the amount of missing information
each path relies upon to reach the goal. We observe that by exploiting this
correlation and minimizing the amount of missing information each path relies
upon, marginally suboptimal policies can be computed significantly faster. To
that end, we introduce Fast-PPCP, a novel planning algorithm that computes
a provably bounded-suboptimal policy using significantly lesser number of
searches than that required to find an optimal policy, for the same subset of
problems that can be solved by PPCP. We evaluate Fast-PPCP theoretically
and experimentally, showing its benefit over popular baselines. Moreover, to
evaluate Fast-PPCP in discounted-reward problems such as RockSample, we
also formulate a transformation that converts discounted-reward problems into
discounted-cost problems to which Fast-PPCP can be applied.

In the final part of the thesis, we are motivated by the application of Fast-PPCP
to real-world robot navigation problems in partially-known environments. In
such problems, Fast-PPCP can potentially waste search efforts in exploring
multiple partial policies that use an unknown region to reach the goal before
discovering that those partial policies are invalid. To reduce this wastage, we
introduce an optimized version of Fast-PPCP for planning in environments with
large unknown regions. We demonstrate its utility in off-road robot navigation
in simulation and on a physical robot.
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Chapter 1

Introduction

1.1 Motivation

We focus on relatively low dimensional robot motion planning problems, where the robot

has to search for a path from a start location to reach a goal location. Examples of low

dimensional motion planning problems are:

• Planning in 4 dimensions (4D), i.e., x and y position, orientation and velocity for a

self-driving vehicle.

• Planning in 5D, i.e., x and y position, orientation, velocity, and time for navigation of

unmanned aerial vehicles (UAVs).

• Planning in 4D, i.e., x and y position, orientation and foot ID (left or right) for

footstep planning for humanoids.

Heuristic search-based planning is a popular method for low dimensional robot motion

planning ([78], [84], [74], [58], [83], [1]), where the planner searches for a path using

an estimate of the cost to goal. This estimate is known as a heuristic. For example, the
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1. Introduction

Euclidean distance between the start and the goal is a heuristic for a robot trying to find the

shortest path from start to goal.

There is a need for fast heuristic search-based planning when limited time is available

for planning and execution of the computed plan. The nature of the task can introduce time

sensitivity—for example, robots, while navigating in dynamic environments with moving

pedestrians, need to react quickly to pedestrians.

For example, consider a scenario where the planner has computed a path from start to

goal, and the robot executes this path. Suppose a new obstacle appears in the environment,

which creates a narrow passage on the current path of the robot. A new obstacle previously

not within the sensing range can appear in the environment if the robot can sense it now. A

new obstacle can also get externally added to the environment; for example, a person brings

in a piece of furniture. Suppose the passage is narrow enough for the robot to be unable to

fit inside it. In that case, it becomes necessary for the planner to be able to quickly compute

a new detour plan that goes around the obstacle to complete planning and execution within

the allotted time. Also, aborting the execution of the current plan and computing a new plan

has to be completed before the robot’s inertia leads to a collision. These factors necessitate

fast planning and re-planning.

Often, we want to plan fast but are also interested in controlling the solution quality

because we desire efficient planning. In the footstep planning and in planning for self

driving, if the goal has to be reached within a certain time then the planner cannot produce

really long paths. Similarly, UAVs face energy usage constraints while flying. As a

result, they need to preserve fuel while flying and thus can’t take very long routes. In

such examples, where controlling the solution quality is also essential in addition to

fast planning, bounded-suboptimal heuristic search algorithms are a popular alternative

to optimal heuristic search algorithms. These algorithms compromise solution quality
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for computation speed. Specifically, these algorithms aim to find a solution that can be

computed faster than the optimal solution, while guaranteeing that the solution cost is

bounded within a specified factor of the optimal cost (bounded-suboptimality).

Bounded-suboptimal heuristic search algorithms have been largely investigated in

deterministic planning—in planning where there is no uncertainty about the environment,

or the outcomes of the actions executed by the robot, or the robot state. Currently, most

bounded-suboptimal heuristic search algorithms speed up planning by guiding the search

using cost-to-goal estimates. Cost-to-goal estimates are not necessarily correlated with the

search effort required to reach the goal, which leads to wasted search efforts in environments

with narrow passages. The first research question we investigate in this thesis is:

• How to increase the efficiency of bounded-suboptimal heuristic search in the context

of deterministic planning in cluttered environments with narrow passages?

Further, we are also interested in problems where there is uncertainty regarding the

environment, specifically, when the environment is partially known. In the real-world,

robots often have to plan despite the environment being partially known. This frequently

necessitates planning under uncertainty over missing information about the environment

in order to generate solutions that are robust to uncertainty. For example, consider a robot

navigating in a space with multiple rooms connected through doors—such as hospital

spaces, university campuses, and home environments (Figure 1.1). The status of some of

the doors is unknown, whether they are open or closed—there is uncertainty due to status

of the doors being unknown. In general, planning under uncertainty is computationally

expensive. The computational expense of planning under uncertainty often precludes its

scalability to real-world problems. Thus, there is a need for developing efficient planning

under uncertainty algorithms that can effectively reason about the uncertainty to generate a

solution in real-time that is robust to uncertainty.
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Figure 1.1: Room with doors whose status (open/closed) of green doors is unknown.

[80] focused on a specific subset of problems with partially known environments,

wherein clear preferences exist over the possible values of unknown variables in the

environment. For example, in Figure 1.1 the robot prefers that an unknown door be open

rather than closed. For this subset, the method proposed by [80] computes an optimal

solution in an efficient and scalable way that is significantly faster than existing methods.

The second research question we investigate in this thesis is:

• How to further speed up planning under uncertainty when the environment is partially

known and clear preferences exist, while aiming for bounded-suboptimality of the

solution?
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1.2 Key idea

As stated in section 1.1, bounded-suboptimal heuristic searches rely on cost-to-goal es-

timates. Cost-to-goal estimates are not necessarily correlated with search efforts. The

key idea of this thesis is to explicitly reason about anticipated search efforts required to

reach the goal instead of cost-to-goal estimates, and achieve higher speedup by guiding

the search along solutions that minimize these anticipated search efforts while ensuring

bounded-suboptimality of the computed solutions. In this thesis, we use this key idea to

speed up planning while ensuring bounded-suboptimality in the context of both determinis-

tic planning as well as planning under uncertainty. In the context of deterministic planning,

we introduce a novel methodology for computing heuristics that try to anticipate the search

efforts required to reach the goal. Specifically, the heuristic values are proportional to the

expected number of search expansions needed by a bounded-suboptimal search algorithm

to reach the goal. Under certain conditions, it can be shown that the heuristic value is,

in fact, proportional to the actual number of search expansions required by a bounded-

suboptimal search algorithm to reach the goal. In the context of planning under uncertainty,

we anticipate that search efforts are correlated with the amount of uncertainty encountered

on a path while trying to reach the goal. We introduce a novel algorithm that exploits this

correlation and plans by minimizing the amount of uncertainty encountered on a path while

trying to get to the goal.

1.3 Contributions

We now explicitly state the primary contributions of this thesis.
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1.3.1 Introduction of Conservative Heuristics to reduce search efforts

in search-based motion planning, its theoretical and

experimental analysis

Our first contribution addresses our first research question. In particular, we aim to speed up

deterministic robot planning problems formulated as bounded-suboptimal heuristic search.

Weighted A∗ (wA*) search is a popular bounded-suboptimal heuristic search algorithm. We

investigate the problem of computing heuristics that explicitly aim to reduce the search

efforts of wA*. For heuristic computation, it is common to solve a simpler planning

problem in a relaxed space formed by relaxing some constraints in the original search space.

We introduce conservative heuristics—novel heuristics that try to anticipate search efforts

required to reach the goal.

We first introduce the notion of a conservative/non-conservative edge in the relaxed

space, whose existence does/does not guarantee the existence of a corresponding feasible

edge in the original space. This notion extends to a purely conservative path in the relaxed

space, whose existence guarantees the existence of a feasible path in the original space.

Conservative heuristics are computed such that if a purely conservative path exists in the

relaxed space, then the search can follow the heuristic gradient to find a feasible path in

the original space, while expanding only those states that appear on this path. Whenever

this condition holds, conservative heuristic values can be shown to be proportional to the

true search efforts required to reach the goal. In the case when a purely conservative path

does not exist in the relaxed space, conservative heuristics values are proportional to the

minimum number of non-conservative edges in the relaxed space required to reach the

goal. Given no other information about non-conservative edges, all of them have the same

number of expansions in expectation. Thus, the total number of non-conservative edges
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needed to reach the goal is proportional to the number of expansions in expectation, which

is one way to measure anticipated search efforts needed to reach the goal. Thus, minimizing

the number of non-conservative edges in a path to a goal minimizes the anticipated search

efforts needed to reach the goal.

We propose an algorithm to compute conservative heuristics. We theoretically derive the

suboptimality bound, analyze the number of expansions made by wA* using conservative

heuristics under certain conditions, and other properties of using conservative heuristics in

wA*. Further, we evaluate conservative heuristics using simulated experiments in humanoid

footstep planning and planning for a UAV. Results show significant benefits of conservative

heuristics in terms of computation speed compared to baseline heuristics that estimate

cost-to-goal.

1.3.2 Introduction of Fast-PPCP: a novel algorithm that minimizes

anticipated search efforts in probabilistic planning, its

theoretical and empirical evaluation

Our second contribution addresses our second research question. In particular, we aim

to speed up a particular class of planning under uncertainty problems. We focus on the

problem of planning under uncertainty over missing information about the environment. As

noted in [79], real-world planning problems often possess the property of clear preferences

(CP), wherein there exist clear preferences over the actual values of missing information.

For example, consider a robot navigating in a partially known environment: it will clearly

prefer any unknown region to be traversable rather than not. Likhachev and Stentz in

[79] showed that the property of clear preferences, when combined with an assumption of

perfect sensing (PS)—an assumption that there is no noise in sensing the value of missing

information—can be utilized to compute optimal policies in an efficient and scalable way.
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Specifically, they introduced the Probabilistic Planning with Clear Preferences (PPCP)

framework that computes optimal policies in a scalable way for problems that exhibit

clear preferences and assume perfect sensing (CP-PS problems). It runs a series of fast,

deterministic, A*-like searches to construct and refine a policy, guaranteeing optimality

under certain conditions.

Aligning with the key idea of this thesis, we anticipate that while running a series

of A*-like searches to compute a policy, search efforts are correlated with the amount

of missing information each path relies upon to reach the goal. We observe that by

exploiting this correlation and minimizing the amount of missing information each path

relies upon, marginally suboptimal policies can be computed significantly faster. To that

end, we introduce FAST-PPCP, a novel planning algorithm that computes a provably

bounded-suboptimal policy using significantly lesser number of searches than that required

to find an optimal policy, for CP-PS problems. In these problems, FAST-PPCP runs much

faster than PPCP, which outperforms other optimal solvers such as RTDP-BEL, LAO*,

PAO* (Ferguson, Stentz, and Thrun 2004), and HSVI2 when applied to CP-PS problems.

To the best of our knowledge, no heuristic search-based approach developed so far for

planning under uncertainty – has attempted to speed up planning by guiding the search

along solutions that explicitly minimize anticipated search efforts required to reach the goal

while guaranteeing bounded suboptimality.

Differences with PPCP. We now highlight the algorithmic differences between PPCP and

FAST-PPCP. FAST-PPCP uses a search that operates very differently compared to the

search in PPCP search. It searches in an augmented state space to account for bounded-

suboptimality, has different edge-costs to minimize the amount of missing information each

path relies upon to reach the goal, has a different termination condition, and exploits pruning

techniques to prune parts of the state space to increase search efficiency. Additionally,
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FAST-PPCP also has novel strategies for scheduling the searches that ensure that the first

time the search terminates, the policy is guaranteed to be bounded suboptimal, and ensure

completeness.

We present the theoretical analysis of FAST-PPCP. We also present experimental

analysis in the domain of robot navigation in partially unknown environments. Moreover,

to evaluate FAST-PPCP in discounted-reward problems such as RockSample, we also

formulate a transformation that converts discounted-reward problems into discounted-cost

problems to which FAST-PPCP can be applied.

1.3.3 Adaptation and experimental evaluation of algorithms that

achieve speedup by minimizing anticipated search-effort in

real-world robotics problems

As part of experimental validation of our first contribution, as stated in subsection 1.3.1,

we implement a footstep planner on a physical NAO robot based on [58]. The robot starts

executing the plan computed by the footstep planner to reach from start to goal as shown in

Figure 1.2. When a new obstacle is introduced into the environment, it creates a narrow

passage between the white and brown boxes on the current path of the robot. The robot

is unable to fit inside this narrow passage. We show the utility of using Conservative

Heuristics to quickly compute a detour plan that does not go through the narrow passage,

compared to a baseline heuristic.

As part of experimental validation of our second contribution, we aim to demonstrate the

benefits of FAST-PPCP in real-world robot navigation problems in which the environment

has large unknown regions. Partially known off-road terrains such as mines, military bases

and disaster sites can have large unknown regions. Similarly, indoor environments can have

large carpets or rugs. For some carpets that are thick, it is unknown at the time of planning
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(a) (b)

(c) (d) (e)

Figure 1.2: (a) Initial environment. (b) Narrow passage between white and brown box created
by the sudden addition of a new obstacle, the humanoid robot NAO waiting for plan. (d), (e) NAO
executing the recomputed footstep plan (c) that goes around the obstacle.

whether the robot can get on to the carpet and completely traverse it or not.

For an environment with large unknown regions, FAST-PPCP can potentially waste

search efforts in exploring multiple partial policies that use an unknown region to reach

the goal, before discovering that those partial policies are invalid. Our key idea is that

FAST-PPCP can use the value of one invalid partial policy that uses a given unknown

region, to update knowledge about the value of other partial policies that also use this

unknown region. These updated values can then be used to preempt explicit exploration of

invalid policies and thereby reduce wasted search efforts.

To this end, we introduce an optimized version of FAST-PPCP for planning in en-

vironments with large unknown regions. We have experimentally evaluated optimized

FAST-PPCP in simulation over a real-world map of Fort Indiantown Gap, Pennsylvania,

10



1. Introduction

constructed from satellite imagery (Figure 1.3). The traversability of most of the terrain

Figure 1.3: Satellite imagery of a part of Fort IndianaTown Gap, PA. There are large
regions of unknown traversability due to dense forest canopies (dark green).

can be deduced from the satellite image, except for a few regions occluded by canopies in

the aerial view. We have also demonstrated the working of optimized FAST-PPCP on a

physical robot—Husarion ROSbot 2.0 PRO—in an indoor space with large carpets whose

traversability is unknown at the time of planning.

1.4 Thesis outline

The following outline summarizes each chapter of the thesis.

Chapter 2 We review the relevant background on optimal and bounded suboptimal

search-based planning. We also give an overview of heuristics computed in relaxed spaces

using search-based planning which provides the background for chapter 4. Finally, we give

an overview of the framework of probabilistic planning with clear preferences over missing
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information. This provides a relevant background for chapters 5 and 6.

Chapter 3 We review the relevant literature.

Chapter 4 We present our first contribution. We introduce Conservative Heuristics–

novel heuristics that aim to speed up deterministic robot planning problems formulated as

bounded-suboptimal heuristic search. We present its theoretical and empirical analysis.

Chapter 5 We present our second contribution. We introduce FAST-PPCP– a novel

planning algorithm that computes a provably bounded-suboptimal policy using significantly

lesser number of searches than that required to find an optimal policy, for a special class of

planning under uncertainty problems. We present its theoretical and empirical analysis.

Chapter 6 We present the application of FAST-PPCP in real-world robot navigation

problems with large unknown regions. We introduce an optimization in FAST-PPCP, and

demonstrate its utility in both simulation and real-world experiments.

Chapter 7 Additionally, we also present the application of PPCP to solve the problem

of search-based planning with learned behaviors for navigation among pedestrians.

Chapter 8 We conclude the thesis with a summary of its contributions and present

potential directions for future work.
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Chapter 2

Background

In this chapter, we provide relevant background about optimal and bounded suboptimal

search-based planning, abstraction heuristics in planning, and probabilistic planning with

clear preferences over missing information.

2.1 Search-based planning

Search-based planning algorithms are one of the fundamental classes of algorithms used for

robot motion planning in deterministic environments. Search-based planning algorithms

are used in many other areas [70], [69], [61], apart from motion planning. These algorithms

generate a graph representation of the planning problem and search the graph for a solu-

tion. The construction of the graph representation is often interleaved with the searching

procedure. In the case of robot motion planning, a robot state that uniquely specifies the

robot in terms of its base footprint pose, joint poses, etc., is represented as a node in the

search graph. An edge in the graph represents the feasible transitions from one robot state

to another in accordance with the kino-dynamic constraints of the robot. Each edge has
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a weight that is proportional to the cost of transition that is represented by an edge. For a

given start and goal states and a graph representing the problem, an optimal graph search

algorithm can find a solution that minimizes the total cost from the start to the goal.

2.2 Search-based planning using A* search and its

variants

Figure 2.1: A* search algorithm.

One of the most popular optimal graph search algorithms is A* search [45]. The A*

algorithm shown in Figure 2.1 finds a minimum cost path from a start state sstart ∈ S to a

goal state sgoal ∈ S in a directed graph G(S,E). S is the set of nodes in the graph and E

is the set of edges that connect the nodes. A* search only works for deterministic graphs

where each edge e ∈ E connects a single node s to another single node s′. An edge cost
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function c : S×S→ R+ maps a pair of states, i.e., each edge e(s,s′) to a positive scalar-

valued cost. If s and s′ are not connected in the graph, the edge-cost c(s,s′) is assigned an

infinite cost. For each state, A* search computes and updates three values associated with

the state. The g-value g(s) is the minimum path cost accumulated over the edges on the

best path from sstart to s. The h-value h(s) is a heuristically estimated minimum path cost

accumulated over the edges on the best path from s to sgoal . The f-value f (s) = g(s)+h(s)

is an estimated minimum path cost from sstart to sgoal that passes through s and is also

referred to as priority of state s. OPEN represents a priority queue called OPEN list that

contains all the states that have been discovered but not yet expanded. Starting with OPEN

containing sstart only, A* repeatedly expands the state in OPEN with the minimum f-value,

i.e., with the highest priority. The state expansion process, ExpandState(), consists of two

operations. One is to find or generate a successor of the expanded state for each action.

Then the g-value of the successor is updated by the best path cost found so far. When sgoal

is to be expanded, i.e., sgoal has the highest priority in OPEN, the search process terminates

and return the best path found. Several theoretic properties of A* search depends on the

heuristic function h(s). If the heuristic is consistent, i.e., it satisfies the triangle inequality

h(s) ≤ h(s′)+ c(s,s′),∀s,s′ ∈ S and h(sgoal) = 0, then A* is guaranteed not to expand a

state more than once. If the heuristic is admissible, i.e., it never over-estimates the best path

cost from s to sgoal for ∀s ∈ S, then A* is guaranteed to find the optimal (minimum cost)

path. If a heuristic is consistent, it is also admissible, but not vice versa.

There are many variants of A* search. Weighted A* inflates the heuristic function

which leads to suboptimality of the returned solution [94]. Anytime Repairing A* finds an

initial solution quickly with a high inflation of the heuristic and then iteratively improves

the solution quality over time by decreasing the inflation factor [81]. Multi-Heuristic A*

leverages multiple and possibly inadmissible heuristics to guide the search efficiently [1].
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2.3 Abstraction heuristics in planning

Admissible heuristics are often defined as optimal solutions to a problem relaxation, that

is easier to solve than the original planning problem ([11], [16], [28], [27], [38], [30],

[31], [32], [34], [35], [46], [47], [49], [51], [50], [52], [55], [57], [60], [63], [64], [69],

[82], [97]). The relaxed problem is an abstraction of the original problem. Specifically,

abstraction heuristics are computed by solving the relaxed problem through a search.

Definition of abstraction heuristics. We now give a formal definition of abstraction. We

define a search problem as finding the minimum cost path through S from the start state

sstart to a goal state sgoal from a set of goal states G, or prove that no path exists. Let h∗S(s)

denote the cost of cheapest path through S from s to some sgoal ∈G (∞ if no path exists). An

abstraction is a mapping, λ , from the states of S to some abstract space AS, which preserves

labelled paths and goal states. In other words, if s c−→ s′ ∈ S, then λ (s) c′−→ λ (s′) ∈ AS, with

c′ ≤ c. Here, c is the cost of a path from s to s′ and c′ is the cost of the corresponding path

in the abstract space from λ (s) to λ (s′). Also, if s ∈ G, then λ (s) ∈ GAS, where GAS is

the set of projected goals in the abstract space. We now define abstraction heuristics. The

corresponding abstraction heuristic is

hλ (s) = hAS(λ (s)). (2.1)

An abstraction heuristic as defined in eq. 2.1 is admissible and consistent.

Properties of abstraction heuristics. Abstraction heuristics have attractive properties for

domain-independent planning. They are general, i.e., abstractions exist for every planning

domain/instance. Also, once an abstraction is chosen, the heuristic computation can be done

by generic and automatic procedures. However, applying abstraction heuristics to planning

presents some challenges. Typically, many abstractions are possible. It is a challenge
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to automatically choose a good abstraction. Also, for domain specific planning, it is a

challenge to find domains specific properties that help design better abstraction heuristics.

We address this challenge in this thesis in chapter 4.

2.4 Probabilistic planning with clear preferences over

missing information

[80] introduced the Probabilistic Planning with Clear Preferences (PPCP) framework that

computes optimal policies in an efficient and scalable way for problems that exhibit clear

preferences and assume perfect sensing (CP-PS problems), as stated in chapter 1. PPCP

runs a series of fast, deterministic, A*-like searches to construct and refine a policy. The

optimality of the final solution is guaranteed under certain conditions. In this section, we

first explain the problem setup in which PPCP can be applied and its required assumptions.

We then provide a brief overview of the working of PPCP.

2.4.1 Problem setup

We use the problem of robot navigation in partially known environments as a running

example to explain the concepts throughout the rest of the paper. PPCP can be applied

to any domain where the assumptions A1-5 listed in Table 2.1 hold true. Consider in

Figure 2.2 a robot that has to navigate from start (cell (11,48)) to goal (cell (51,57)) in

this environment represented by a 60× 60 grid (Red cells indicate blocked space). We

henceforth refer to this example environment as [Ex.: ] . The robot can occupy a free

grid-cell (white) and has 8 move actions that can move the robot in the cardinal and inter-

cardinal directions (N, S, E, W, NE, NW, SE, SW) by one cell. There are some states in the

environment whose status is unknown or hidden at the time of planning, which affects the
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Figure 2.2: Robot navigation between rooms with uncertainty about doors being OPEN or
closed.

outcomes of some actions. [Ex.: The status (free or blocked) of the four labelled green

cells is unknown, since we do not know whether some of the room doors represented by

the green cells are OPEN or closed.] .

PPCP formulates a belief state as a vector of discrete variables split into two compo-

nents: X = [S(X);H(X)]. The deterministic component—S(X)—is a set of variables whose

status is fully observable [Ex.: robot’s 2D location] . The hidden component—H(X)—is

a set of variables representing the statuses of all unknown/hidden states. We denote the

ith hidden variable in H(X) by hi(X). hi(X) = u indicates that hi(X) is unknown. [Ex.:

The four green cells are each represented by a hidden variable. Xst = [(11,48);h1 = u,h2 =

u,h3 = u,h4 = u] represents the start belief-state Xst , indicating that the values of all the

four hidden variables are unknown before the robot starts planning] . The robot can sense

an adjacent hidden cell to know if it is free (hi(X) = 0) or blocked (hi(X) = 1).

We denote the set of actions applicable at a belief state X by A(S(X)). A(S(X)) is

applicable at any belief state Y that has S(Y ) = S(X) since the applicability of an action

does not depend on the hidden variables in Y . However, the outcomes of an action depend
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on a hidden variable; for an action a taken at S(X), we denote the hidden variable in H(X)

affecting its outcome by hS(X),a. An action is deterministic [Ex.: Move actions] if its

outcome is unaffected by any hidden variable (hS(X),a = NULL). A deterministic action

has only one outcome because the underlying environment is deterministic. An action is

stochastic if it can have multiple possible outcomes depending on the status of a hidden

variable. [Ex.: Apart from the move actions, the robot can also take a stochastic action

sense and move—that senses an adjacent cell and moves the robot to it only if it is sensed

as free, else stays put.] .

We denote the set of possible outcomes (successors) of an action a taken at a belief-

state X by succ(X ,a) in the belief-space and succ(S(X),a) in the underlying deterministic

space [Ex. 2D grid]. If X ∈ succ(X ′,a), then S(X) = succ(S(X ′),a). We refer to S(X ′)

as the predecessor of S(X) (and X ′ as the predecessor of X). H(X) remains the same

as H(X ′) for a deterministic action, whereas, for a stochastic action, H(X) is the same

as H(X ′) except for hS(X),a which becomes known if it was unknown. The probability

distribution of the transitions P(X |X ′,a) is the same as that of the hidden variable hS(X ′),a.

Given the independence (A5), note that the belief state representation concisely represents

a probability distribution over all possible states. [Ex.: h1 in Figure. 2.2 represents the

status of the unknown cell (15,35) and affects the outcome of the action sense-and-move

taken on the adjacent cell (14,36). Let X ′ = [(14,36);u,u,u,u] be a belief state. When

taken on X ′, sense-and-move produces two belief-state outcomes: X1 = [(15,35);h1 =

0,u,u,u] and X2 = [(14,36);h1 = 1,u,u,u] both with a probability of 0.5] . The cost

of an edge in the belief-space is the same as the cost of the corresponding edge in the

deterministic environment: c(X ,a,X ′) = c(S(X),a,S(X ′)). [Ex.: the move actions have a

cost proportional to the euclidean distance between S(X) and S(X ′) (1.4 for diagonal, 1 for

others). The sense-and-move action follows the cost of move actions if the hidden cell is
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A1 The environment is deterministic, i.e., if the environment were fully known at the time of
planning, there would be no uncertainty in the outcome of an action.

A2 The agent has a probability distribution or belief over the status of these cells.
A3 The true status of a hidden variable becomes known immediately (perfect sensing assumption.
A4 Only one hidden variable can affect the outcome of an action a taken at S(X). However, the

same hidden variable is allowed to affect outcome of another action taken at another state.
A5 The variables in H are independent of each other and therefore P(H) = ∏

|H|
i=1 P(hi).

Table 2.1: Assumptions used in PPCP

free, else it incurs a cost of 2] .

Clear preferences: We assume that every hidden variable’s best (clearly preferred)

value is known beforehand, meaning that we prefer a hidden cell to be free (hS(X),a) rather

than blocked (hS(X),a). We define clear preferences [80] as: Let V ∗(X ′) denote the expected

cost of executing an optimal policy (policy that minimizes expected cost to goal) from state

X ′. For any given state X ′ and stochastic action a such that hS(X ′),a is unknown, there exists

a successor state Xb such that hS(X),a(Xb) = b (we denote the best value using the variable

b. In our example, b = 0) and Xb = argminX∈succ(S(X ′),a)
{

c(S(X ′),a,S(X)+V ∗(X))
}

. The

planning problem is to compute a policy (defined in Table 2.2) from Xst .

2.4.2 PPCP overview

The overall approach of PPCP is to compute an optimal policy in the belief-space by

running a series of A*[45]-like searches in the underlying deterministic environment

instead of the exponentially larger belief space. PPCP pseudocode and algorithmic details

can be found in [79]. This approach turns out to be orders of magnitude faster than solving

the full problem at once since the memory requirements are much lower.

PPCP iteratively constructs and refines a partial policy (defined in Table 2.2) from

Xst , while updating v-values (expected cost-to-goal) of the states reachable by following

the partial policy. PPCP in its first iteration computes the shortest path from S(Xst) in the
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deterministic space, assuming all hidden variables (h1 through h4 in [Ex.]) are set to their

best value (free in [Ex.]) and uses this path as an initial partial policy for the robot in the

belief-space. This partial policy has either deterministic outcomes or only the best outcomes

of sensing a hidden variable; the non-preferred outcomes have not been explored yet. In

the first PPCP iteration, the shortest path from S(Xst) in [Ex.] passes through the hidden

cell (15,35) assuming it is free, and has a sense-and-move action at (14,36). The partial

policy defines an action for the best outcome [(15,35);h1 = 0,u,u,u]; the non-preferred

outcome [(14,36);h1 = 1,u,u,u] does not have an action defined from it yet. assuming its

outcome is that the sensed hidden cell (15,35) is free (h1 = 0). However, the non-preferred

outcome of the action has not been explored yet. The second PPCP iteration in [Ex.]

computes a path from (14,36), again in the deterministic space, remembering that (14,36)

was the outcome of sense-and-move when (15,35) was blocked, but still assuming that

h2 through h4 are free. PPCP then includes this path into the partial policy in the belief

space from [(14,36);h1 = 1,u,u,u] and updates its v-value with the cost of this path (and

an underestimate of V ∗ of the non-preferred outcomes encountered on this path). Now that

PPCP has learnt the true expected cost to reach the goal through the hidden cell (15,35)

assuming other hidden cells are free, it starts the third iteration from S(Xst) again, to see if

reaching the goal through a different hidden cell has a lower expected cost.

What has the most impact on PPCP’s runtime? To explain from an algorithmic perspec-

tive, the updated v-value of [(14,36);h1 = 1,u,u,u] introduces a bellman error between the

v-value of the predecessor [(14,36);h1 = u,u,u,u] and what it should be according to the

expected cost over its successors in the current partial policy, which accumulates all the

way upto Xst in this example. Hoping to correct this error, PPCP starts another iteration,

searching from S(Xst). If it finds as optimal the same path as before, then the bellman error

at [(14,36);h1 = u,u,u,u] gets corrected, else PPCP finds a new path from S(Xst) which
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Term Definition

Policy from
bel state X

Tree rooted at X s.t every branch reaches a bel state Xg s.t S(Xg) = Sg for a given
goal Sg.

Unexplored
pivot

Non-preferred outcome on partial policy which has not been a pivot yet

Partial Policy
from a bel
state X

Policy that has at least one bel state without a defined action.

Primary
branch of a
policy from
X

Branch on the policy from Xp where every belief state on the branch is either an
outcome of a deterministic action, or the best outcome of a stochastic action.

Table 2.2: Definitions used in the explanation of PPCP

might introduce more unexplored outcomes in the partial policy.

More generally, each non-preferred outcome on the partial policy leads to an additional

PPCP iteration needed to define a policy from it. Also, whenever the v-value of a non-

preferred outcome is updated, its predecessor on the policy gets a negative Bellman error,

which gets accumulated up along the policy till the outcome of a stochastic action (or Xst ,

whichever comes first) is encountered, at which point PPCP starts another iteration from

this outcome (or Xst). To conclude, the number of iterations increases with an increase in

the number of stochastic actions in each branch of the partial policy.

Since PPCP continues to iterate until every outcome in the policy has an action defined

and has no bellman error, the number of PPCP iterations can be really high for environments

with a large number of hidden variables, especially if stochastic actions lie lower (closer to

a leaf node) on the policy.
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Chapter 3

Related Work

In this chapter, we review previous work in two primary areas: algorithms for efficient

search-based deterministic planning, and efficient belief space planning algorithms.

3.1 Efficient search-based deterministic planning

This section reviews relevant work in efficient search-based planning when uncertainty is

not considered during planning.

3.1.1 Bounded suboptimal heuristic search

We describe some popular bounded suboptimal variants of A∗ [87]. Weighted A∗ [94]

inflates the heuristic function to place more emphasis on cost-to-goal. It computes bounded

suboptimal solutions. Anytime Repairing A* (ARA*) [81] finds an initial path using a

high weight on the heuristic, and then keeps decreasing the weight and improving solution

quality. Multi-Heuristic A∗ uses multiple inadmissible heuristics along with a one consistent

heuristic function to compute bounded suboptimal solutions ([1]).
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3.1.2 Using distance estimates in heuristic search

Explicit estimation search (EES) introduced by [110] use an estimate of node-distance to

goal in bounded suboptimal search. However, the estimates used in the domains are all the

number of nodes in the cost-wise shortest path to goal. Also, EES requires three priority

queues, a heuristic function, and a distance function. With three queues to manage, EES

has substantial overhead when compared to other bounded suboptimal search algorithms.

Our work develops a heuristic function that anticipates search efforts, that can be used with

many popular bounded suboptimal search algorithms in deterministic planning such as

weighted A* and Multi-heuristic A*.

3.1.3 Abstract-space based heuristics in bounded suboptimal search

Abstract spaces have been investigated by [67] to reduce search efforts. AB-STRIPS, a

modification of STRIPS, defines an abstraction space hierarchy from the STRIPS represen-

tation of a problem domain, and utilizes the hierarchy in solving problems ([101]). ([66])

identified a criterion for selecting useful abstractions, proposed a tractable algorithm for

generating them, and empirically demonstrated that the abstractions reduce search.

Relaxed spaces and “safe” abstractions ([48]) have been used to compute solutions that

could be refined/extended to the original space ([9]). Bacchus and Yang showed that plans

in the relaxed space can be refined to a plan in original space with a high probability if

the relaxed space satisfies the Downward Refinement Property (DRP). It is difficult to find

non-trivial relaxed spaces with DRP. In our work, the relaxed spaces do not satisfy DRP,

but we observe that we can identify conservative edges in the relaxed space that can direct

the search in the original space towards goal. Also,we do not refine plans computed in the

relaxed space but use them to compute a heuristic to be used by the original search. Many

works use relaxed spaces to compute heuristics ([90]), ([54]), ([56]).
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Pattern databases ([28]) store a table mapping states or sub-goals in a relaxed version of

the original problem, to the cost-to-go of a pre-computed solution in the relaxed space to

reach these sub-goals. ([49]) compute heuristics in abstract-spaces for automated-planning,

where abstractions are computed using different sets of state variables.

The Fast Downward Planner attempts to combine refinement with heuristics ([49]).

([10]) define the weak refinement property (WRP) in studying the relationship between

refinement and heuristics, and ([89]) define “strong matching”, both of which come close

to the conservative property, except that it is not a requirement in our relaxed spaces. Also,

these works mainly deal with symbolic planning, whereas our focus is in motion planning.

([112]) use abstraction-based search in motion planning that divides the environment

into overlapping regions and has the effect of heuristically guiding the search towards the

next region, based on some computed bounds. However, they make assumptions about

the convexity of the regions. In our case, there is no such assumption about the planning

environment. To the best of our knowledge, no attempt has been made to identify and use

conservative edges for heuristic computation in the context of motion planning.

3.2 Efficient planning under uncertainty

This section reviews relevant work in efficient planning under uncertainty.

3.2.1 Heuristic-search based methods

Heuristic-Search based methods utilize domain knowledge to compute heuristics that guide

the search in belief spaces. Heuristic search methods do not need to evaluate the entire

belief space while find the optimal policy, unlike dynamic programming methods. These

methods typically minimize expected cost, as opposed to rewards typically used in other
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classes of approaches, and are used for solving Goal-POMDPs—POMDPs with terminal

states and no discounting of costs.

[44] proposed LAO* that is AO* for MDPs or belief MDPs with cycles. AO* algorithm

is an extension of A* search algorithm that can solve problems formalized as an acyclic

AND-OR graph (i.e., without loops). RTDP [12] performs a series of trials that consist

of real-time lookahead searches leading to value backups on greedy paths to the goal in

MDPs. The extension RTDP-BEL operates in the belief space [14]. It forward simulates a

single branch from the start to the goal and updates the values only for the nodes on the

branch. The initial values of the states are an admissible heuristic, and the values converge

to the optimal value through repeated forward simulations of branches. Labeled RTDP

is a variant of RTDP in which improves the converge of RTDP: values converge faster

because the states with converged values are labelled as solved. [65] recently developed

the Partially Observable Multi-Heuristic Dynamic Programming or POMHDP which is

an anytime POMDP solver, that leverages multiple heuristics to efficiently compute high-

quality solutions while guaranteeing asymptotic convergence to an optimal policy. Through

iterative forward search, POMHDP utilizes domain knowledge to solve POMDPs with

specific goals and an infinite horizon [65]. It utilizes a particle representation of a belief

state instead of a factored belief space. Heuristic search-based methods for belief space

planning do not explicitly reason about minimizing search efforts while ensuring bounded

suboptimality.

3.2.2 Point-based methods

Point-based methods are a popular class of methods for planning in large POMDPs: they

represent the value function by a vector set of sampled points and its piece-wise linear

combination ( [92]). This representation is used to update or backup the lower bound of the
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value function (in the reward setting) by sampling a new belief state. Point-based methods

compute the optimal policy by iteratively sampling a new belief state and backing up the

lower bound. [92] introduced the point-based method called Point-Based Value Iteration

(PBVI) with lower bound of the value function ( [93]).

Point-based methods also the restrict value function updates to a subset of the belief

space [103]. This subset is the search space that is reachable from the starting belief, as

referred to as the reachable space, which grows as the search proceeds. [92] also introduced

the idea of reachable belief spaces in their work on PBVI. They showed that the value

function by a vector set of sampled points because the optimal value function is always

piece-wise linear and convex in the belief space. However, point-based methods result in

higher computational complexity and thus are not scalable to large search spaces typically

encountered in real-world planning.

HSVI and HSVI2 utilize a heuristic strategy to focus the search towards regions of

high uncertainty about the values [105, 106]. High uncertainty regions have a large gap

between the upper and lower bounds of the value function. The initial values of the upper

bounds and lower bounds can be computed as discussed in [103]. Apart from the domain

of RockSample introduced in [105, 106], SARSOP (Successive Approximations of the

Reachable Space under Optimal Policies) [72] is considered the state-of-the-art offline

point-based POMDP solver in other benchmark domains. It also works by maintaining

the upper and lower bounds of the value function. SARSOP uses heuristic exploration

to converge to a subset of points optimally reachable from the start, often outperforming

HSVI2 [72]. Anytime online variants of Point-based methods are possible ([100]).

Offline and online solvers: Typical POMDP solvers compute a policy prior to execu-

tion. They take significant time (sometimes hours) to terminate, and changes in environment

dynamics require recomputing policies from scratch. In contrast, online solvers compute a
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finite horizon (partial) policy for the current state of an agent, thereby interleaving plan-

ning and execution [100]. However, since these solvers have a finite, receding horizon,

they are subject to getting stuck in local minima. Popular online POMDP solvers include

DESPOT [107] and POMCP [104], which are Monte-Carlo based methods and discussed

next.

3.2.3 Monte-Carlo based methods

The work on Partially Observable Monte Carlo Planning (POMCP) ([104]) introduced the

idea of Monte Carlo-based planning in POMDPs. The idea of using Monte Carlo Planning

in MDPs existed in Monte Carlo Tree Search (MCTS). These approaches maintain a a

particle representation of a belief state and can sample the belief state and transitions,

that converts the POMDP to an MDP. They use the Upper Confidence Bound applied to

Trees (UCT) approach to guiding the tree search to balance between the exploration and

exploitation. DESPOT (Deteminized Sparse Partially Observable Tree) ([107]) is a variant

of POMCP. It gains efficiency by sparsification of the belief tree by sampling a small

number of challenging scenarios.

However, when faced with large observation spaces, DESPOT becomes overly opti-

mistic and computes sub-optimal policies, because of particle divergence [40]. [40] intro-

duced a new online POMDP solver DESPOT-α , which builds upon DESPOT. DESPOT-α

improves the practical performance of online planning for POMDPs with large observation

as well as state spaces. Adaptive belief tree (ABT) was designed specifically to accommo-

date changes in the environment without having to replan from scratch ([71]). ABT is also

based on POMCP. It reuses and improves the existing solution and update the solution as

needed whenever the POMDP model changes ([108]). There are approaches to deal with

continuous action and observation spaces ([102]), [108]).
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3.2.4 Planning in special classes of belief-MDPs

[88] use a factored representation to represent separately the fully known and hidden

components of a robot’s state and derive a compact lower-dimensional representation of

its belief space. With this representation, they use a point-based algorithm to compute

approximate POMDP solutions. POMDP-lite [26] are a subclass of POMDPs in which

the hidden state variables are constant or only change deterministically, and come up with

a model-based Bayesian reinforcement learning algorithm to plan in this subclass. [18]

propose a Bayesian reinforcement learning-based modelling and planning framework which

uses Gaussian processes to model environmental uncertainty in a principled manner. They

exploit the Bayesian RL formulation to plan more efficiently in these types of uncertain

environments than previous methods are able to. [7] introduce Oracular Partially Observable

Markov Decision Process (O-POMDP), a special type of POMDP in there is an “oracle”

available—a human or a perfect sensor—in any state instead of observations, that tells the

agent its exact state for a fixed cost. The agent is thus given access to information-gathering

actions in addition to domain-level actions. They propose an algorithm to solve O-POMDP.

3.2.5 Planning under uncertainty in real-world robotics problems

In this section we review early and recent works that develop and evaluate planning under

uncertainty algorithms in real-world robotics problems. Amato et. al. [5] have demonstrated

for the first time that complex multi-robot domains can be solved with Dec-POMDP-based

methods. [65] demonstrate the efficacy of their proposed POMHDP framework on a real-

world, highly-complex, truck unloading application. [73] evaluate PPCP on a custom

quad-rotor helicopter. Work in [6] enables a robot equipped with an arm to dynamically

construct query-oriented MOMDPs for multi-modal predicate identification of objects. The

robot’s behavioral policy is learned from two datasets collected using real robots. Their
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approach enables a robot to explore object properties in a way that is significantly faster

while improving accuracies in comparison to existing methods.

There are many sources of uncertainty in real-world robot navigation problems. Wheel

slippage and skidding can happen due to uneven terrain or slippery surfaces, which may

introduce noise in the output of action execution. These noises may be hard to model

precisely. There can be noise in sensing obstacles due to imperfect perception systems. A

noisy localization system may make the navigation less robust. For robust navigation, it is

important to effectively reason about uncertainties introduced by various sources.

An online version of the Despot algorithm introduced in [40] to effectively reasons

about the uncertainties in a planning framework introduced by moving pedestrians. [42],

[43] incorporate uncertainty in the state-space by modelling the belief state as a Gaussian

distribution. They augment the state-space with the mean and covariance parameters of a

Gaussian distribution. This state representation allows the formulation of the problem as a

belief MDP, as well as the use of graph search algorithms on this state space to efficiently

solve it. The results showed that this approach could find a path with the minimal cost that

ensures the vehicle has a very little chance of collision with obstacles by approaching to

feature-rich landmarks as necessary. ([17]) finds a path in the belief space by incrementally

constructing a belief tree using RRT in Gaussian belief spaces . Other works also focus on

using search algorithms to find a path in a Gaussian belief MDP ([76], [96]).

([86]) propose a motion planning framework in which the uncertainty is the articulated

object models such as doors and drawers ([86]), and not in the robot state and object poses.

They construct a belief MDP with a probability distribution of the articulated object model.

They use LAO* to find a policy in this belief. They show that a robot can identify the

articulation type of the given object by a sequence of actions from the planner. Some works

in manipulation perform robust part feeding by utilizing contact between the parts and the
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environment to align its pose ([2], [41]) . These approaches reduce uncertainty in object

orientation on a plane by a sequence of actions. They require rigorous analysis of the

configuration space that particularly depends on the shape of the object, which is usually

not possible for high dimensional problems. Some recent works in robust grasping and

in hand manipulation also utilize contact between the object parts and the environment to

reduce uncertainty ([29], [33]). However, they do not use a motion planner.

Many works formulate object search as a POMDP. There is a very recent work that

performs multi-resolution POMDP planning for multi-object search in 3D [118]. They

design a novel octree-based belief representation to capture uncertainty of the target ob-

jects at different resolution levels, and derive abstract POMDPs at lower resolutions with

dramatically smaller state and observation spaces. They demonstrate their approach on a

mobile robot to find objects placed at different heights in two regions by moving its base

and actuating its torso. Work by ([119]) uses a particle filter representation for a belief

state and constructs a belief tree in offline by searching over a finite number of actions.

They apply their work for 2D object pose identification. Notably, [8] first infers a room

to search in then perform search by calculating candidate viewpoints in a 2D plane. [77]

plans sensor movements online, yet assume objects are placed at the same surface level

in a container with partial occlusion. [116] address object fetching on a cluttered tabletop

where the robot’s FOV fully covers the scene, and that occluding obstacles are removed

permanently during search. [113] formulates the multi-object search (MOS) task on a 2D

map using the proposed Object-Oriented POMDP (OO-POMDP).

3.2.6 Fully and partially observable non-deterministic planning

Fully Observable Non-Deterministic Planning, or more popularly known as FOND planning,

is a body of work that relates to the probabilistic planning framework presented in this thesis.
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Algorithms under FOND planning focus on planning in a partially observable environment,

with sensing actions that implement perfect sensing. They use a series of calls to classical

planners to iteratively construct and refine a policy.

Planning in a partially observable environment with perfect sensing (PPOS) can either

be online, i.e., by interleaving planning, sensing, and acting; or offline, i.e., by generating a

plan with decision points predicated on sensing outcomes. Online contingent plans ([4],

[16], [14]) are generally easier to compute since integrating online sensing with planning

eliminates the need to plan for a potentially exponential number of contingencies. In the

absence of deadends, online contingent planning can be fast and effective.

On the other hand, offline contigent planning algorithms ([91], [98], [114], [13], [99])

constructs conditional plans with decision points for sensing outcomes and guarantees

that the goal will be achieved if it is possible to do so. The plan is larger than an online

plan but has the merit that it is generalized to deal with alternative sensing outcomes.

PO-PRP [85] is a popular offline planner in PPOS environments that focuses on solving

a compelling class of PPOS problems where the initial state specification includes a set

of state constraints. PO-PRP demonstrates how PPOS problems can be solved offline by

exploiting and extending a modern FOND planner. The main contribution of the PO-PRP

work is that, in contrast to the commonly held belief that offline planning for PPOS is

impractical, PO-PRP can produce conditional plans several orders of magnitude faster and

smaller than the best planners. [75] shares similar execution structure with PO-PRP. Other

offline contigent planners based on heuristic search include Contingent-FF ([54]), and the

offline variant of CLG ([4]).

Partially-Observable NonDeterministic planner (POND) (Bryce, Kambhampati, and

Smith 2006) relaxes the perfect sensing assumption in the FOND planning formulation.

POND is a conditional progression planner that uses AO* search. It focuses on problems
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where an agent starts in an uncertain state but has deterministic actions. ProbPRP [20]

addresses the class of probabilistic planning problems where the objective is to maximize

the probability of reaching a prescribed goal. ProbPRP leverages core similarities between

probabilistic and fully observable non-deterministic (FOND) planning to construct a sound,

offline probabilistic planner that exploits algorithmic advances from the state-of-the-art

FOND planner, PRP [85], to compute compact policies that are guaranteed to bypass

avoidable deadends.

RFF [109] is a work that closely relates to the framework of FAST-PPCP. It generate

policies in MDPs by (1) determinizing the given MDP model into a classical planning

problem; (2) building partial policies off-line by producing solution plans to the classical

planning problem and incrementally aggregating them into a policy, and (3) using sequential

Monte-Carlo (MC) simulations of the partial policies before execution, in order to assess the

probability of replanning for a policy during execution. The objective of the RFF planner

is to quickly generate policies whose probability of replanning is low and below a given

threshold. However, the main differences between FAST-PPCP and RFF are as follows.

RFF does not exploit the property of clear preferences used by Fast-PPCP. Neither does it

aim to optimize or provide any guarantee on the value of the computed policy.
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Chapter 4

Speeding Up Search-Based Motion

Planning via Conservative Heuristics

4.1 Introduction

Weighted A* (wA*) [95], has been widely used for relatively low-dimensional motion

planning problems such 2D navigation [37], path planning for UAVs [59], [83], and footstep

planning for humanoids [58]. wA* with high weight shows better search efficiency in

domains that show a strong correlation of the heuristic function with the node-distance-to-

goal [115]. A weak correlation may create heuristic depression regions, or local minima,

where the path suggested by the heuristic may not be feasible, severely degrading search

efficiency [115]. We investigate the idea of computing heuristic functions that explicitly

aim to reduce search expansions by wA*.

For heuristic computation, it is common to solve a simpler planning problem in a space

formed by relaxing some constraints in the original space [19], [56]. We define an edge

in the relaxed space as conservative if for each corresponding state in the original space
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there is an edge to at least one corresponding successor state. Existence of a path composed

only of conservative edges in the relaxed space, guarantees existence of a feasible path in

the original space. If the heuristic computation finds such a path in the relaxed space, then

simply following the heuristic gradient can guide the search to the goal, while expanding

only the states that appear in the solution. Our first contribution is in observing that in

motion planning problems formulated as heuristic search one can often identify conservative

edges in the relaxed space. Secondly, we propose a heuristic computation algorithm that

minimizes the use of non-conservative edges to reduce inefficient expansions in the original

space.

Motivation behind the conservative property is similar to several ideas explored in

classical hierarchical planning. Relaxed spaces and “safe” abstractions [48] have been used

to compute solutions that could be refined/extended to the original space [9]. Bacchus

and Yang showed that plans in the relaxed space can be refined to a plan in original space

with a high probability if the relaxed space satisfies the Downward Refinement Property

(DRP). It is difficult to find non-trivial relaxed spaces with DRP. In our work, the relaxed

spaces do not satisfy DRP, but we observe that we can identify conservative edges in the

relaxed space that can direct the search in the original space towards goal. Also, we do

not refine plans computed in the relaxed space but use them to compute a heuristic to be

used by the original search. Many works use relaxed spaces to compute heuristics [90],

[54], [56]. Pattern databases [28] store a table mapping states or sub-goals in a relaxed

version of the original problem, to the cost-to-go of a pre-computed solution in the relaxed

space to reach these sub-goals. [51] compute heuristics in abstract-spaces for automated-

planning, where abstractions are computed using different sets of state-variables. The

Fast Downward Planner attempts to combine refinement with heuristics [49]. [10] define

the weak refinement property (WRP) in studying the relationship between refinement and
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heuristics, and [89] define “strong matching”, both of which come close to the conservative

property, except that it is not a requirement in our relaxed spaces. Also, these works

mainly deal with symbolic planning, whereas our focus is in motion planning. [112] use

abstraction-based search in motion-planning that divides the environment into overlapping

regions and has the effect of heuristically guiding the search towards the next region, based

on some computed bounds. However, they make assumptions about the convexity of the

regions. In our case, there is no such assumption about the planning environment. To the

best of our knowledge, no attempt has been made to identify and use conservative edges for

heuristic computation in the context of motion planning.

4.2 Planning with conservative heuristics

In this section, we define notations and definitions and describe the problem. We then

explain the algorithm to compute conservative heuristics.

4.2.1 Definitions, notations and problem description

Consider a graph G = (S,E,c), where S is the set of states, E = {(s,s′)|s,s′ ∈ S} denotes

the set of feasible transitions/edges in the graph and, c is a cost-function such that c(si,s j)

is the cost of an edge (si,s j). A planning problem consists of finding a path π(si,s j) in

G from si to s j. π∗(si,s j) denotes the least-cost path between si and s j. The cost of any

path π(si,s j) is the cumulative cost of all edges along it and is denoted by c(π(si,s j)). Let

hc : S→ N be our conservative heuristic function estimating cost-to-goal. We assume that

si ∈ S is a goal-state if and only if hc(si) = 0. We use wA* to compute a path in G from a

start state sst to any state in the goal-set Sg = {s ∈ S | hc(s) = 0}.
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Heuristic space:

Consider another state-space S̃, an abstract space used to compute heuristics. We call it the

heuristic-space. Let λ : S→ S̃ be a many-to-one mapping representing the projection of

each state in S to the heuristic-space S̃, such that |S̃| < |S|. Moreover, λ−1(s̃) = {s ∈ S |

λ (s) = s̃} ∀s̃ ∈ S̃. The heuristic-space has its own set of transitions Ẽ = {(s̃i, s̃ j)|s̃i, s̃ j ∈ S̃}.

Let G̃ be the graph defined by S̃ and Ẽ. π(s̃i, s̃ j) denotes a path in G̃ from s̃i to s̃ j, and

c(π(s̃i, s̃ j)) denotes its cost in G̃. We assume that for every pair of states si and s j in S,

c(π∗(si,s j)))≥ c(π∗(λ (si),λ (s j))) (4.1)

if ∃ π(si,s j) s.t |c(π(si,s j))|< ∞,

then ∃ π(λ (si),λ (s j)) s.t |c(π(λ (si),λ (s j)))|< ∞ (4.2)

We assume states in the goal-set Sg map to one goal-state s̃g in the heuristic space, ie,

s̃g = λ (sg)∀sg ∈ Sg.

Conservative edges:

An edge (s̃, s̃′) ∈ Ẽ is conservative iff ∀s ∈ λ−1(s̃) ∃ (s,s′) ∈ E s.t s′ ∈ λ−1(s̃′). A conser-

vative edge (s̃, s̃′) guarantees that every state s ∈ λ−1(s̃) is connected to at least one state in

λ−1(s̃′). Thus, existence of a path in the heuristic-space from λ (si) to λ (s j) which consists

of only conservative edges, guarantees existence of a path from si to s j in the original space.

Fig. 4.1 illustrates this reasoning. If the search in G is guided to always prefer successors

connected via conservative edges in G̃, it would reach the goal by expanding only such

successors, making the number of expansions equal to the solution size.
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Figure 4.1: (a) A conservative edge in (S̃) and its corresponding set of states and edges in (G). (b)
Non-conservative edges (red) with missing edges between some pairs of corresponding states in S.
(c) Path (green) in S, comprising solely of conservative edges in S̃.

Identifying conservative edges in G̃ is a domain-dependent process. For example, when

planning in S = (x,y,orientation) for a non-circular robot, S̃ can be obtained by dropping

the orientation, or, S̃ = (x,y). Here, the heuristic-space is obtained by abstracting away a

specific geometric property of the robot (in this case the orientation), which is equivalent to

treating the non-circular robot as a circular one in the heuristic-space. Inflating obstacles

by the radius of the robot-footprint’s circumcircle (circumradius) identifies the space that

the robot can physically occupy for all possible orientations. States in S̃ lying outside of

this inflated-obstacle region are surely not in collision with obstacles, therefore an omni-

directional robot can surely move between neighbouring states. Thus, edges between these

states are conservative. Fig. 4.2 shows the conservative and non-conservative edges in a 2D

environment inflated by the robot circumradius.

4.2.2 Conservative heuristic computation

We want to compute hc(s) such that it (1) guides the search in the original space along

paths that minimize the number of non-conservative edges in S̃, (2) prefers the shortest

between all paths made purely of conservative edges and, (3) is α consistent (∞ > α > 1).

We define a heuristic to be α-consistent if for all s,s′ ∈ S such that s′ is a successor of s,
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Figure 4.2: A planning environment with obstacles (red) inflated by the circumradius of a
polygonal robot. Edges inside the inflated region (light blue) are non-conservative, while those
outside (dark blue) are conservative.

hc(s)≤ αc(s,s′)+hc(s′), and hc(s) = 0 for all s ∈ Sg. Consider a graph G̃m = (S̃, Ẽ,cm),

which is G̃ but with modified edge-cost. For any s ∈ S and its image s̃ = λ (s), we define

hc(s) = cm(π
⋆
m(s̃, s̃g)), where π⋆

m is the optimal path in G̃m from s̃ to s̃g, Let Ẽco be the set

of conservative edges in Ẽ, Ẽnco = Ẽ \ Ẽco . Let cmin be the minimum edge-cost in G̃. We

define cm in Eq. (4.3).

cm(s̃i, s̃ j) =

 cmin/|Ẽco| if (s̃i, s̃ j) ∈ Ẽco

αcmin if (s̃i, s̃ j) ∈ Ẽnco

(4.3)

From Eq. (4.3), we see that the optimal path (π⋆
m(s̃, s̃g)) in G̃m would rather consist of all

possible conservative edges than incorporating a single non-conservative one. Thus, the

desired properties of hc are achieved.

Pseudocode 1 shows the heuristic computation in detail. We need to first compute cmin
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Pseudocode 1 Conservative Heuristic Computation
1: cmin = min∀(s̃,s̃′)∈Ẽ c(s̃, s̃′)
2: n = 0
3: for every (s̃, s̃′) do ▷ Compute |Ẽco|
4: if is_conservative((s̃, s̃′)) == True then
5: n = n+1
6: end if
7: end for
8: |Ẽco|= n
9: g(s̃g) = 0

10: OPEN = s̃g, CLOSED = /0
11: while at least one s̃ ∈ S̃ hasn’t been expanded and OPEN ̸= /0 do
12: remove s̃ from OPEN with minimum g(s̃)
13: insert s̃ into CLOSED
14: for every predecessor s̃′ of s̃ s.t s̃ not in CLOSED do
15: if is_conservative((s̃, s̃′)) == True then
16: cm(s̃, s̃′) = cmin/|Ẽco|
17: else
18: cm(s̃, s̃′) = αcmin

19: end if
20: if g(s̃)> g(s)+ cm(s̃, s̃′) then
21: g(s̃) = g(s)+ cm(s̃, s̃′)
22: Insert s̃ into OPEN with g(s̃) as key
23: end if
24: end for
25: end while

and total number of conservative edges |Ẽco| (Lines 1:5). We then compute the shortest

path in G̃m from s̃g to every state in G̃m. This is done by running a backward Dijkstra’s

search on G̃m from s̃g to every state in G̃m. G̃m is implicitly constructed: for each expanded

s̃ and a predecessor s̃′, we check whether (s̃, s̃′) is conservative and assign costs according

to the scheme described in Eq. (4.3) (Lines 6:19).

For each state s expanded by wA* search in the original graph G, we first find its

projection s̃ = λ (s) and query its g-value g(s̃), which was updated when s̃ was expanded

in the heuristic computation search. g(s̃) is the cost of the shortest path in G̃m. Therefore,

hc(s) = g(s̃).
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We prove the following (full proofs can be found in [21]):

• hc is α consistent.

• wA* using hc is complete, with cost of the returned solution being no more than w.α

times optimal solution cost in G (Theorem 1,3).

• The chosen cost-scheme guarantees that the longest purely conservative path has

lower cost than any path with a non-conservative edge in G̃m (Theorem 4).

• If a purely conservative path exists in G̃m from s̃st to s̃g, then number of expansions

made by wA* with sufficiently large w equals the length of the shortest purely

conservative path from s̃st to s̃g (Theorem 5). If not, hc will still guide the search

towards the use of edges in G that have conservative mappings in G̃m. In doing so,

wA* returns a solution with cost within the stated sub-optimality bound. However,

no guarantees on the number of expansions can be provided.

It is to be noted that finding conservative edges (function is_conservative((s̃, s̃′)) in

Lines 3 and 13) is domain-dependent. However, in navigation-planning domains, domain-

knowledge helps in computing conservative edges efficiently. In the aformentioned example

of planning in (x,y,orientation), given the map of the environment and the circumradius

rc of the robot, an edge can be deemed conservative by checking if both the vertices

comprising the edge are at a distance greater than rc from the nearest obstacle 1. This check

is an O(1) operation and can be performed during the implicit construction of G̃m. The

next section shows how conservative edges can be computed efficiently for two navigation

domains: (1) path-planning for a UAV, and (2) humanoid foot-step planning.

1Distance-Transforms are typically used to compute and store the distance of each state in a 2D or 3D
grid to its nearest obstacle.
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4.3 Theoretical properties

Let (s̃, s̃′)co and (s̃, s̃′)nco denote a conservative and a non-conservative edge respectively.

Let cm(s̃, s̃′) denote the cost of edge (s̃, s̃′) in the modified abstract graph G̃m. As men-

tioned, cm(s̃, s̃′)co = cmin/|Ẽco| and cm(s̃, s̃′)nco = αcmin. We call any path πco(s̃, s̃g) from

s̃ to s̃g purely conservative if it consists of only conservative edges, and a path πnco(s̃, s̃g)

non-conservative if it has at least one non-conservative edge. Let Pco and Pnco be the set

of purely conservative and non-conservative paths respectively. We will denote conser-

vative heuristics above by hc. The open-list at expansion step i of wA* is denoted by OPENi

Theorem 1: Completeness: For a finite graph G, wA* using hc is complete, that is,

if a finite-cost path exists in G wA* using hc will find it.

Proof. For a state s and goal sg, hc(s) is the cost of the shortest path in the modified abstract

graph G̃m from s̃ to s̃g. If a finite-cost path exists in G from s to sg, from the property of

abstract graphs stated in (1) in the paper, a finite-cost path surely exists in G̃ and therefore in

G̃m, which has the same set of edges as G̃. Also, the edge-costs in G̃m are finite. Therefore,

hc(s) is finite, and wA∗ using hc is guaranteed to find a path in G if it exists.

Theorem 2: hc(s) is α-consistent: ∀s,s′ ∈ S, s.t(s,s′) ∈ E, hc(s)≤ αc(s,s′)+hc(s′) and

hc(sg) = 0.

Proof. Let s̃ = λ (s), and s̃′ = λ (s′). Since edge-costs in G̃m are positive, from triangle

inequality: c∗m(s̃, s̃g)≤ c∗m(s̃, s̃
′)+ c∗m(s̃

′, s̃g).

For (s̃, s̃′), let π∗c be the least cost path in G̃ with cost c∗(s̃, s̃′) and number of edges nc∗ . Let

cm(π
∗
c ) be its cost in G̃m. Then, cm(π

∗
c )≤max(cm(π

∗
c )) = ∑

nc∗

i=0 αcmin = nc∗αcmin.

Since c∗m(s̃, s̃
′) is the cost of the shortest path in G̃m,
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c∗m(s̃, s̃
′)≤ cm(π

∗
c )≤ nc∗αcmin .

c∗(s̃, s̃′) = ∑
nc∗

i=0 c(s̃i, s̃i+1),∀s̃i ∈ π∗c .

∴ c∗(s̃, s̃′)≥ nc∗cmin

∴ c∗m(s̃, s̃
′)≤ cm(π

∗
c )≤ nc∗αcmin≤αc∗(s̃, s̃′)≤αc(s,s′) =⇒ c∗m(s̃, s̃g)≤αc(s,s′)+c∗m(s̃

′, s̃g)

Since hc(s) = c∗m(s̃, s̃g) and hc(s′) = c∗m(s̃
′, s̃g),

∴ hc(s)≤ αc(s,s′)+hc(s′). hc(sg) = c∗m(s̃g, s̃g) = 0

Theorem 3 For a finite graph G, the solution returned is guaranteed to be no worse than

w ·α times the optimal solution cost in G, where w is the heuristic inflation weight in wA*.

Proof. Since hc is α-consistent, wA* with or without re-expansions returns a solution that

is w ·α times the optimal cost.

Theorem 4 In G̃m If ∃ π(s̃, s̃g) ∈ Pco then the least-cost path from s̃ to s̃g is the shortest

length purely conservative path, denoted by π∗co(s̃, s̃g).

Proof. Lemma 1: The cost of any purely conservative path is strictly less than the cost of

any non-conservative path in G̃m.

Proof Let πno ∈ Pno πnco ∈ Pnco be arbitrary and fixed. Lemma 1.a: cm(πnco)> cmin

Let Enco ̸= {} be the non-conservative edges of πnco.

cm(πnco)≥ ∑
e∈Enco

cm(e) = ∑
e∈Enco

αc(e)> cmin

Lemma 1.b: cm(πco) ≤ cmin
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Let Eco be the set of edges in πco

cm(πco) = ∑
e∈Eco

cm(e) = ∑
e∈Eco

cmin

Ẽco
= |Eco|

cmin

|Ẽco|
≤ cmin

Combining 1.a and 1.b, cm(πco)≤ cmin < cm(πnco)

Thus if ∃ π(s̃, s̃g) ∈ Pco then the least-cost path π∗co(s̃, s̃g) is purely conservative. As all

conservative edges have the same cost in G̃m, π∗co(s̃, s̃g) must be the shortest length purely

conservative path.

Theorem 5 For a state sc0 ∈ S, let us assume there exists a purely conservative path from

s̃c0 to s̃g, and let π∗co( ˜sc0, s̃g) = s̃c0s̃c1.....s̃n−1s̃g be the least-cost purely conservative path of

size n from its abstract projection s̃c0 to s̃g. Let π(s0,sg) be the solution found by wA∗. Then,

π(sc0,sg) = sc0sc1....sn−2sg = πco(sc0,sg), where πco(sc0,sg) = sc0sc1....sn−2sg is a path in

G corresponding to a purely conservative path in G̃m s.t λ (sci) = s̃ci , ∀i ∈ [n] . If sc0 is

the start state, wA* with a sufficiently large weight w will expand only along πco(sc0,sg) in

path order, thereby making the number of expansions equal to the solution size n.

Proof. Sketch: Lemma 0: In each expansion step of wA* with w→ ∞, the state with

min(hc(s)) in OPEN will be expanded. To prove Theorem 5 we need to show the statement

T (n) : ∀i ∈ [n], wA∗ with w→ ∞ expands sci on its expansion step i. We prove this by

induction on the expansion step number x. For x = 0, the open-list OPEN0 has only {sc0}

and is surely expanded. Assuming T ( j) is true for j ≤ i for some i ∈ [n], we now show

T (i+1) is true, as follows:

Lemma 2 For any state sci on πc(sc0,sg) in original graph, let S
′
i be the set of successors.

Out of all successors in S
′
i, hc(s

′∗
ci) = hc(sc(i+1)) =mins′∈S′i

hc(s′). OR, the minimum h-value

is of that successor sc(i+1) which lies on πco(sc0,sg), ie, whose abstract projection s̃c(i+1)

lies on π∗c0( ˜sc0, s̃g).
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Lemma 3 For any state sci on πco(sc0,sg) and its successor sc(i+1) on πco(sc0,sg), hc(sc(i+1))<

hc(sci).

If Lemma 2 and Lemma 3 are proved, then using them we prove T (i + 1) as fol-

lows: If s is expanded at x=i, hc(s) = mins∈OPENi(hc(s)) from Lemma 0, where OPENi

is the open list at expansion step i. T (i) is true, =⇒ hc(sci) = mins∈OPENi(hc(s)).

At x=i+1, OPENi+1 = {OPENi − sci} ∪ S
′
i. From Lemma 2 and Lemma 3 we have

hc(sc(i+1)) < hc(sci) < hc(s)∀s ∈ {OPENi− sci}. Thus, hc(sc(i+1)) < hc(s)∀s ∈ S
′
i AND

hc(sc(i+1)) < hc(s)∀s ∈ {OPENi− sci} =⇒ hc(sc(i+1)) < hc(s)∀s ∈ S
′
i ∪{OPENi− sci}

=⇒ hc(sc(i+1))< hc(s)∀s ∈ OPENi+1.

This means that hc(sc(i+1)) is mins∈OPENi+1(hc(s)), and thus sc(i+1) is expanded at x=i+1,

proving T (i+1).

Lemma 2: Sketch of proof : hc(s) of a successor s′ in S
′
i the cost in G̃m of either (a) a

least-cost non-conservative path from s̃′, or (b) a least-cost purely conservative path from

s̃′. From Theorem 4, hc(s′ci)< hc(s′) for all s′ of type (a), or, out of all successors, those

that have a purely conservative path as the least-cost path always have h value strictly less

than other successors that do not. Out of all abstract successors in (b), if s̃
′∗
ci is the abstract

successor with the minimum valued least-cost conservative path among all successors, we

show that s̃
′∗
ci lies on π∗co(

˜s′∗ci, s̃g)} which is a sub-path of π∗co( ˜sc0, s̃g). π∗co( ˜sc0, s̃g) maps to

πco(sc0,sg) in G. Thus, hc(s
′∗
ci) = hc(sc(i+1)) = mins′∈S′i

hc(s′).

Lemma 3: Proof : hc(sci) = cm(π
∗
c (s̃ci, s̃g)), and hc(sc(i+1)) = cm(π

∗
c ( ˜sc(i+1), s̃g)). cm(π

∗
c (s̃ci, s̃g))=

cmin/|Ẽco|+ cm(π
∗
c (s̃ci, s̃g)) which follows from Lemma 2.

cmin/|Ẽco|> 0 ∴ cm(π
∗
c ( ˜sc(i+1), s̃g))< cm(π

∗
c (s̃ci, s̃g)). ∴ hc(sc(i+1))< hc(sci).

|Ẽco| can be computed while computing c ∗m (s̃, s̃g) for all states in G̃. However, if

c∗m (s̃, s̃g) is computed lazily on-demand when the heuristic value of any state ∈ λ−1(s̃)

is queried, |Ẽco| may not be known in advance. In such cases, |Ẽco| can be replaced by
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|Ẽ| which is known in advance. Since |Ẽ| ≥ |Ẽco|, cmin/|Ẽ| ≤ cmin/|Ẽco| and all the above

theorems still hold.

4.4 Implementation and experimental analysis

In this section, we present the experimental setup and results of empirical analysis in the

domains of path planning for a UAV and humanoid footstep planning.

4.4.1 Path planning for a UAV in (X,Y,Z)

We first evaluated the effectiveness of our heuristic computation for path planning in

S = (X ,Y,Z) for a simulated omnidirectional UAV. We discretized the environment (Figure

4.3 bottom left), terrain (obstacles) in maroon) into 600× 600× 400 cells. G is a 3D

26-connected grid with transition costs proportional to euclidean distance between states.

Heuristic space:

G̃ is defined by dropping the z, or, λ ([x,y,z]) = [x,y]. Thus, G̃ is a 2D 8-connected grid. We

assume a maximum flying range in z for the UAV given by zmax. We consider s̃ = [x,y] ∈ S̃

as ’free’ if there exists a z < zmax for which s = [x,y,z] is obstacle-free, thus ensuring Eq.

(4.2) holds.

Conservative edge computation:

For every 2D [x,y] state, obstacles in z are represented as the terrain elevation-map (Figure

4.3, example elevation values ze shown in yellow). For a 2D edge ([x,y], [x′,y′]), let ze and

z′e be the respective elevations for [x,y] and [x′,y′]. We compute zd = |ze− z′e|, the absolute

difference in elevation of two adjacent 2D states forming the edge. Since the 3D grid is
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26-connected, a zd value of 0 or 1 implies that every s = [x,y,z] projecting to [x,y] has at

least one collision-free edge to a s′ = [x′,y′,z′] projecting to [x′,y′], making ([x,y], [x′,y′])

conservative (Fig 4.3 (top left), red and blue). However, zd > 1 indicates that there is one

state s = [x,y,z] projecting to [x,y], which has no collision-free edge to any s′ = [x′,y′,z′]

projecting to [x′,y′], making ([x,y], [x′,y′]) non-conservative (Fig 4.3 (top left), green. zd =

2).

Figure 4.3: (top left) Cons.(red and blue) and a non-Cons. edge(green) for UAV domain, terrain
elevation map (grey: terrain, yellow: elev values(ze)). (top center, right) visualized h-values and
optimal 2D paths by hc and hb respectively. (bottom left, right) 3D paths using hc, hb.

type of environment heuristic w in wA* succ rate # expansions sol size sol cost planning time(s) heur comp time(s)
difficult hc 100 100% 534±99 534±99 5333±994 0.002±0.001 0.21±0.003
difficult hb 100 80% 56687±30740 537±94 5357±943 0.028±0.03 0.21±0.01

easy hc 100 100% 894±1263 381±96 3798±969 0.001±0.001 0.21±0.009
easy hb 100 100% 1921±4300 346±112 3452±1160 0.002±0.002 0.20±0.05

Table 4.1: Comparison of hc with baseline hb for UAV domain in ’difficult’ (more local minima)
and ’easy’ scenarios
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heuristic w in wA* succ. rate # expansions sol size sol cost planning time(s) heur comp time(s)
hc 100 37/39 1720±5850 50±35 156250±110820 6±19.8 0.07 ±1.39
hb 100 24/39 16000±19000 61.1±62.8 51630±52396 36±43 0.036±0.006

Table 4.2: Comparison of hc with baseline hb in Footstep Planning.

Results:

We compare hc with a base-line heuristic hb, which is cost of the optimal path in (x,y) space

but with the regular euclidean 2D edge-costs. hc is higher (yellow, red regions in Fig 4.3

(top center)) in the central region where elevation differences are steeper causing many

infeasible 3D edges and more non-conservative edges. As a result, hc guides the search

away from this region and on purely conservative paths (Fig 4.3 (top center) white-line),

unlike hb (Fig 4.3 (top right)). We evaluate in 20 ’Easy’(gradual terrain slopes, lesser

depression regions) and 20 ’Difficult’ (steeper slopes). Table 4.1 shows results. Success rate

indicates the number of instances when the planner finds a solution. Heuristic computation

time includes time taken to identify conservative edges and run the Backward Dijkstra’s

search in G̃m, Planning time indicates time taken by wA* to compute a solution, total time

being the sum of both. Statistics are computed for cases in which both planners were able

to find a solution. hc has significantly less expansions, while producing similar solution

costs and sizes. For the example in Fig 4.3, hc (Fig 4.3 (bottom left)) generates a path

around the steep regions, whereas hb (Fig 4.3 (bottom right)) computes a path through the

steep-sloped regions. The number of expansions using hc is 829, which is exactly equal

to the solution size (829), and significantly less than the number of expansions using hb

(20940). However, solution cost using hc is 8280, which is slightly greater than that using

hb (6270). For the ’easy’ scenarios where chances of encountering local minima are low,

search using hc and hb performs similarly.
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4.4.2 Humanoid footstep planning for bipedal walk

For this domain, state s = [xl,yl,θl,xr,yr,θr, ID] ∈ S consists of global position and orien-

tation of the two feet and ID of the foot being moved next (active foot). The environment

was divided into 800x800 cells. θ has a resolution of 45◦. The active foot moves relative

to the pivot foot. For each foot as pivot, there are 15 feasible motions of the active foot

in the form of a = [δx,δy,δθ ] relative to pivot foot. Transition-costs are proportional to

euclidean distance between the feet centers.

Heuristic Space:

G̃ is a 2D 8-connected grid. λ projects the 2 feet-positions in s to the 2D grid by computing

their mean. Cost of an edge is proportional to the euclidean distance between 2D cell-

centres.

Conservative edge computation:

For an (s̃, s̃′) to be conservative, every s ∈ λ−1(s̃) should have at least one valid pose

leading to a state in λ−1(s̃′), such that the mean moves along (s̃, s̃′). Owing to the kinematic

constraints of this humanoid, most edges in set Ẽ are non-conservative. Consider the

example in Fig 4.4, where the active foot (right) can have 2 feasible motions: a1 = [2,0,0]

or a2 = [0,0,45◦]. Let s1,s2 be states in λ−1(A), shown in Fig 4.4 (left) in red and black

respectively. None of the actions a1 or a2 applied in s2 result in a successor that projects to

B. Similarly, no action applied in s1 results in a successor that projects to C. Thus, (A,B)

and (A,C) are both non-conservative edges.

However, consider the state D, 5 edges North of A in the heuristic-space (Fig 4.4

(center)). Applying a1 thrice from s1 (Fig 4.4 (center)) moves the mean to D. Applying

a2 and then a1 four times from s2 (Fig 4.4 (right)) also moves the mean to D. Thus, we
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can choose a state s̃′, k edges away from A in heuristic space, with k being sufficiently

large such that every s ∈ λ−1(A) has a sequence of valid steps in G to move the mean to s̃′.

We call this sequence of moves as a ’macro-move’. Macro-moves exist in G as well as G̃.

Fig 4.4 (center) and Fig 4.4 (right) depict macro-moves in G from s1 and s2 respectively,

corresponding to the macro-move (A,D) in G̃. If we can find macro-moves from every

s ∈ λ−1(A) to some s′ ∈ λ−1(D), then (A,D) satisfies the conservative property and thus,

becomes a conservative macro-move.

Figure 4.4: (left) Biped states s1, s2 (red, black) such that λ (s1) = λ (s2) = A ∈ S̃. States(pink)
forming a “North” macro-move in E for s1. (right) States(yellow) forming a “North” macro-move
in E for s2. (A,D) is the corresponding macro-move in Ẽ.

We can generate such macro-moves from A in other directions as well. Here, we

select k = 20 and add macro-moves in 4 directions (North, East, West, South) in G̃. These

macro-moves represent sequence of actions and are analogous to motion primitives and can

be computed offline. Once computed for all s ∈ λ−1(A) for any A ∈ S̃, these can be applied

to any state s ∈ S to compute its relevant successors.
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We compute conservative heuristic hc(s) of state s, by performing a Dijstra’s search in

G̃ with the macro-moves included. Note that, macro-moves are like any other edge and no

edges have been removed from any of the graphs, hence all the guarantees described before

still hold.

Results (Simulation):

We used the model of a full-size humanoid for our experiments and allowed a maximum

planning time of 90 seconds. We chose a typical indoor environment with narrow passages,

corridors and varying doorway sizes. Also, the environment has multiple pathways for

traversing between different locations, therefore requiring the search to explore these

options. Table 4.2 compares the performance of conservative heuristic (hc) with the

baseline 2D Dijkstra’s shortest path heuristic (hb). Results are averaged over 39 random

starts and goals. hc has a remarkably higher success rate (94.8%) compared to hb (61.5%).

Moreover, using hc reduces planning times by an order of ≈ 6 and expansions in the final

search by a factor of 10. The heuristic computation time is slightly higher for hc (0.07

seconds) than hb (0.036 seconds) owing to the addition of macro-moves in Ẽ. Two examples

of the search using hc and hb shown in Fig 4.5 (left) and (right) respectively. In the first

example (top), wA* with hb takes a long time but finds a path through the narrow passage.

In the second example (bottom), wA* with hb isn’t even able to find the solution in 90s.

Results (Robot experiment):

Fast re-planning is useful when the environment is changing. We implemented a footstep

planner for the NAO robot based on [58] and show advantages of using hc in quickly

computing footstep plans in the following scenario:
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Figure 4.5: Results with hc (left) and hb (right) for footstep planning.

• We placed a set of static obstacles in the environment and computed initial footstep

plans using hc and hb.

• During execution, we added an obstacle in the environment creating a narrow passage

on the robot’s path, triggering re-planning. wA*(w=8) using hb keeps expanding

states in the local minima created by the passage and fails to find a path in the given

time. wA*(w=8) using hc re-plans in 978 ms (heuristic computation time: 187 ms,

planning time: 791 ms). A video demonstration of this experiment can be found here:

https://youtu.be/zs4HX84jE1w
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Figure 4.6: Initial environment (top left). Planner stuck in local minima (top center) created by the
narrow passage between white and brown box using hb, NAO waiting for plan (top right). NAO
executing plan computed using hc (bottom).

4.5 Conclusions, Discussion, and Lessons Learned

We proposed a heuristic computation algorithm using conservative edges in the heuristic-

space for reducing state expansions by wA*, proved theoretical properties and applied

our approach in several motion planning domains, observing significant reductions in

expansions and planning times. Future work is to have a probabilistic definition of the

conservative property.

Note that the computation of conservative edges is domain-dependent. However, it is

this very domain knowledge that helps us to identify conservative edges efficiently. For

example, suppose we find the maximum possible area the robot can occupy independent

of its orientation, given by its circumcircle, and inflate obstacles by this radius. In that

case, any edge lying outside this inflated region is a conservative edge. We realize that

the notion of conservative edges is one way to utilize domain knowledge to compute
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efficient heuristics. It is essential to devise other ways to see how domain knowledge can be

compactly defined and used in an algorithm to develop heuristics and other ways to guide

the search that lead to efficient planning.

We also observe that the speed-ups for a given start and a goal depend on the shortest

purely conservative path length. Thus, where the conservative edges are present in a given

environment plays a significant role in speed-ups. Suppose the conservative edges are

positioned such that the shortest purely conservative path is extremely long. In that case, it

may be possible to find a path with non-conservative edges with a much lesser number of

search expansions than the length of the shortest purely conservative path.

It is possible to have domains where conservative edges do not exist in the original

abstract space. In that case, one can potentially add conservative edges artificially by offline

computation. Artificial conservative edges may be intuitive to compute for some planning

problems, such as the humanoid footstep planning as presented in this chapter. However, it

may not be easy to add conservative edges artificially for other planning problems, such as

planning with dynamics.

For the number of expansions by weighted A* search to be equal to the solution size,

the used weight on the h-value has to be sufficiently high. Given this fact, one might argue

that we should use a purely greedy search since weighted A* with very high weight is

practically a greedy search. However, we do not use a pure greedy search because weighted

A* still allows the user to “control” the greediness by setting the weight. If we want the

solution cost to be no more than w times optimal, using the f-value f = g + w·h instead of f

= h (greedy) gives us the ability to preserve bounds. This way, we can use a weight w high

enough to give significant practical speed-ups. Of course, if the weight w is really large,

then the benefits of using weighted A* instead of a purely greedy search are diminished.
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Chapter 5

Speeding Up Planning under Uncertainty

with Fast-PPCP

5.1 Introduction

In many real-world planning problems, AI agents operate in partially known environments.

One approach for the agent to plan in such environments is by taking a deterministic

approach, i,e., planning by assuming some instantiation of the variables that represent

missing information about the environment (unknown variables), executing few actions

of the plan, and replanning in response to sensing. While computationally efficient, this

approach may lead to highly suboptimal behavior. In contrast, planning under uncertainty

allows an agent to be much more robust with respect to missing information but also

becomes computationally dramatically more expensive as it is a special class of planning

for Partially Observable Markov Decision Processes (POMDPs) [62, 68].

As noted in [80], real-world planning problems often possess the property of clear

preferences (CP), wherein one can identify beforehand clearly preferred values for unknown
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variables in the environment. For example, consider a robot navigating in a partially known

environment: it will clearly prefer for any unknown region to be traversable rather than not.

Another example is the air traffic management problem, with unknown weather conditions

at certain locations: it is clearly preferred to have weather suitable for flying than not.

Likhachev and Stentz in [79] showed that the property of clear preferences, when

combined with an assumption of perfect sensing—an assumption that there is no noise in

sensing and any sensing operation returns the true state of the variable being sensed—can

be utilized to compute optimal policies in an efficient and scalable way. Specifically,

they introduced Probabilistic Planning with Clear Preferences (PPCP) that scales to large

problems by running a series of fast, deterministic, A*-like searches to construct and refine

a policy, guaranteeing optimality under certain conditions [80].

However, we often prefer feasible, marginally suboptimal policies over optimal ones

if the former can be computed significantly faster. Our key insight is that marginally

suboptimal policies can be found much faster if, when running a series of A*-like searches,

a plan tries to minimize the number of unknown variables it makes assumptions about to

reach its goal. To that end, we introduce FAST-PPCP, a novel planning algorithm that

computes a provably bounded-suboptimal policy using much lesser number of searches

than that required to compute an optimal policy, for problems that exhibit clear preferences

and assume perfect sensing (CP-PS problems). The paper presents theoretical analysis of

FAST-PPCP and shows its significant benefits in runtime on several domains. We present

theoretical analysis of FAST-PPCP and shows its significant benefits in runtime on several

domains (section 5.3.4, section 5.5).

PPCP is a solver that is specifically designed for CP-PS problems. As such it outper-

forms other optimal solvers such as RTDP-BEL, LAO*, PAO* [36], and HSVI2 when

applied to CP-PS problems. FAST-PPCP also focuses on CP-PS problems but runs much
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Figure 5.1: Robot navigation between rooms with doors open/closed.

faster than PPCP by trading off optimality of a solution for speed while still guaranteeing

bounded suboptimality.

5.2 Problem definition, assumptions and background

Example domain. We use the problem of robot navigation in partially known environments

as a running example. Consider in Figure 5.1 a robot that has to navigate from start cell

(11,48) to goal cell (51,57) in the environment represented by the 60× 60 grid (dark

grey cells indicate blocked space). We refer to this example as [Ex.: ] . The robot can

occupy a free grid-cell (light grey) and has eight move actions to move in the cardinal

and inter-cardinal directions by one cell. The status of some states in the environment is

unknown or hidden at the time of planning, which affects the outcomes of some actions
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[Ex.: The status (free/blocked) of the four cells h1-h4 (2D coordinates shown) is unknown]

. The robot can also take a stochastic action sense-and-move, that senses an adjacent cell

and moves the robot to it only if it is free, else stays put. The cost of a move action is equal

to the Euclidean distance between two adjacent cells (1.4 for diagonal, 1 for others). The

cost of a sense-and-move action is follows the cost of a move action if the hidden cell is

free, else is 2.

Problem Definition and Assumptions. PPCP and FAST-PPCP formulate a belief state

as a vector of discrete variables split into two components, X = [S(X);H(X)]. The de-

terministic component, S(X), is a set of variables whose status is fully observable [Ex.:

robot’s 2D location] . The hidden component, H(X), is a set of variables representing

the statuses of all unknown/hidden states. We denote the ith unknown variable in H(X)

by hi(X). hi(X) = u indicates that hi(X) is unknown. [Ex.: Cells h1-h4 are each rep-

resented by an unknown variable of the same name; hi = 0/1/u indicates the cell hi is

free/blocked/unknown. Xst = [(11,48);h1 = u,h2 = u,h3 = u,h4 = u] represents the start

belief-state Xst ; the values of all the unknown variables are unknown before planning starts]

.

We denote the set of actions applicable at a belief state X by A(S(X)). Action a ∈

A(S(X)) is applicable at any belief state Y where S(Y ) = S(X). However, the outcome

of an action a depends on an unknown variable, and we denote the unknown variable in

H(X) affecting its outcome by hS(X),a. An action is deterministic [Ex.: move actions] if

its outcome is unaffected by any unknown variable (hS(X),a = NULL), and so it has only

one outcome because the underlying environment is deterministic. An action is stochastic

[Ex.: sense-and-move actions] if it can have multiple possible outcomes depending on the

status of an unknown variable. We assume that the assumptions A1-5 in Table 5.1 hold;

FAST-PPCP can be applied to any domain where they hold.
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A1 The environment is deterministic, i.e., if the environment were fully known at the time of
planning, there would be no uncertainty in the outcome of an action.

A2 The agent has a probability distribution or belief over the status of these cells.
A3 The true status of a hidden variable becomes known immediately (perfect sensing assumption.
A4 Only one hidden variable can affect the outcome of an action a taken at S(X). However, the

same hidden variable is allowed to affect outcome of another action taken at another state.
A5 The variables in H are independent of each other and therefore P(H) = ∏

|H|
i=1 P(hi).

Table 5.1: Assumptions used in FAST-PPCP.

We denote the set of possible outcomes of action a taken at a belief-state X ′ by

succ(X ′,a) in the belief-space and by succ(S(X ′),a) in the underlying deterministic space

[Ex. 2D grid]. We refer to X ′ as the predecessor of X . Note that H(X) = H(X ′) for a

deterministic action, whereas for a stochastic action, H(X) is the same as H(X ′) except

for hS(X),a, which becomes known if it was unknown. The probability distribution of tran-

sitions P(X |X ′,a) is the same as that of the unknown variable hS(X ′),a. Given assumption

A5, X concisely represents a probability distribution over all possible states. [Ex. h1 in

Figure 5.1 represents the status of the unknown cell (15,35) and affects the outcome of

the action sense-and-move taken on the adjacent cell (14,36). Let X ′ = [(14,36);u,u,u,u]

be a belief state. When taken on X ′, sense-and-move produces two belief-state outcomes:

X1 = [(15,35);h1 = 0,u,u,u] and X2 = [(14,36);h1 = 1,u,u,u] both with a probability of

0.5]. If Xb, Xnp are the preferred and non-preferred outcome of (X ′,a), then the cost

C(X ′,a,Xb) of the edge (X ′,a,Xb) in the belief-space =C(S(X ′),a,S(Xb)), the cost of the

corresponding edge in the deterministic space, and C(X ′,a,Xnp) =C(S(X ′),a,S(Xnp)).

Clear preferences: We assume that every hidden variable’s best (clearly preferred)

value is known beforehand, meaning that we prefer a hidden cell to be free (hS(X),a) rather

than blocked (hS(X),a). We define clear preferences [80] as: Let V ∗(X ′) denote the expected

cost of executing an optimal policy (policy that minimizes expected cost to goal) from state

X ′. For any given state X ′ and stochastic action a such that hS(X ′),a is unknown, there exists
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Term Definition

Full Policy
from belief
state X

Tree rooted at X s.t every branch reaches a belief state Xg s.t S(Xg) = Sg for a given
goal Sg.

Unexplored
belief state

Non-preferred outcome on partial policy from which a path has not been searched
yet

Policy-
devoid belief
state

Non-preferred outcome on partial policy without an action defined from it (Unex-
plored belief states and belief states from which policy growth failed)

Partial Policy
from X

Policy rooted at belief state X that has at least one belief state without a defined
action.

Table 5.2: Definitions used in the explanation of FAST-PPCP.

a successor state Xb such that hS(X),a(Xb) = b (we denote the best value using the variable

b) [Ex.: b = 0] and Xb = argminX∈succ(X ′,a)
{

c(S(X ′),a,S(X)+V ∗(X))
}

.

The planning problem is to compute a policy (defined in Table 5.2) from Xst .

PPCP Overview and Motivation for FAST-PPCP. The overall approach of PPCP is to

compute an optimal policy in the belief-space by running a series of A* [45]-like searches

in the underlying deterministic environment instead of the exponentially larger belief space.

This approach turns out to be orders of magnitude faster than solving the full problem at

once since the memory requirements are much lower. PPCP iteratively constructs and

refines a partial policy (defined in Table 5.2) from Xst , while updating V -values of the states

reachable by following the partial policy.

We make an observation that each non-preferred outcome on the partial policy leads

to an additional PPCP iteration needed to define a policy from it. Also, whenever the

V -value of a non-preferred outcome is updated, its predecessor on the policy gets a negative

Bellman error. This gets accumulated up along the policy till the outcome of a stochastic

action (or Xst , whichever comes first) is encountered, at which point PPCP starts another

iteration from this outcome (or Xst). To conclude, the number of iterations increases with
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an increase in the number of stochastic actions in each branch of the partial policy.

Since PPCP continues to iterate until every outcome in the policy has an action defined

and has no Bellman error, the number of PPCP iterations can be really high for environments

with a large number of unknown variables, especially if stochastic actions lie lower (closer

to a leaf node) on the policy. [Ex.: PPCP requires 159 iterations and 1.3 seconds to find

the optimal policy in this environment that has only 4 unknown variables] . However, there

exists a policy in [Ex.: ] with expected cost of 93.8 that is only 1.04 times higher than

that of the optimal policy (90.1). FAST-PPCP computes this policy with 3 search iterations

in just 34 milliseconds (ms), which is 40 times faster than PPCP.

This is because a FAST-PPCP search operates very differently compared to PPCP

search, in order to meet the following search objective: to compute a path that explicitly

minimizes the number of stochastic transitions in it, while ensuring that including this

path in the partial policy can result in a provably bounded suboptimal full policy π f from

Xst , when construction of the policy is completed. Also, it has a novel policy growth

strategy such that the first time the search terminates, the policy is guaranteed to be bounded

suboptimal which leads to significant speedup. It also has a novel strategy for scheduling

the searches to ensure completeness.

5.3 Fast bounded suboptimal PPCP

We give an overview of the working of FAST-PPCP in the following subsection.

5.3.1 Operation and Intuition in a Nutshell

In Figure 5.2, we present a block diagram of the FAST-PPCP algorithm showing how its

algorithmic components/blocks interact. The complete pseudocode is given in Appendix
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B in chapter A. The notations introduced in this subsection appear in the pseudocode in

chapter A.

FAST-PPCP iteratively develops partial policies into a full policy π f rooted at Xst

(definitions of partial and full policy are in Table 5.2). It aims to find a π f that satisfies the

following: V π f (Xst)≤ αV ∗(Xst), where V π f (Xst) is the V -value (expected cost-to-goal) of

following the full policy π f from Xst , α > 1 is a user-defined constant, and αV ∗(Xst)≜ B∗

is the desired suboptimality bound. We refer to such a full policy as a B∗-bounded policy.

However, V ∗(Xst) is not known. Hence, before FAST-PPCP begins, it computes V ∗L (Xst),

a lower bound on V ∗(Xst) (Block 1.) which we describe at the end of this section. FAST-

PPCP ensures that the full policy it computes satisfies V π f (Xst)≤ αV ∗L (Xst)≜ BL. We refer

to such a policy as a BL-bounded policy.

In an iteration i, FAST-PPCP either performs (1) Policy Growth: adds a new branch

to the current partial policy π̂i, or (2) Policy Correction: replaces existing branches in π̂i.

FAST-PPCP terminates as soon as the partial policy it maintains becomes a full policy.

If the combination of Policy Growth and Policy Correction fails to find π f , FAST-PPCP

performs (3) Improvement of BL. Throughout its operation, for every belief state X in

π̂i, FAST-PPCP maintains and updates V -value estimates V̂ (X). For every policy-devoid

belief state X in π̂i specifically, it maintains V ∗u (X), an underestimate of V ∗(X), which is

initially set to a known underestimate before FAST-PPCP begins. For any partial policy π̂

from a belief state X , we define its expected cost V̂ π̂(X), which is the same as the expected

cost of a full policy except that the V̂ -value of each policy-devoid belief state X in π̂ is set

to its corresponding underestimate V ∗u (X). For a partial policy π̂i from Xst , FAST-PPCP

maintains V̂ π̂i(Xst).
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Figure 5.2: FAST-PPCP block diagram of Main function.

Policy Growth

In Policy Growth mode, FAST-PPCP first picks any belief state Xp on π̂i without an action

defined from it. Initially, π̂i is empty and Xp = Xst (Block 2.). FAST-PPCP attempts to

grow π̂i from Xp. Specifically, it searches for a path ρbs from S(Xp) in the underlying

deterministic space instead of the exponentially larger belief space. This deterministic

space is constructed assuming every unknown variable in Xp is set to its preferred value, and

every observed/known variable in Xp—that was initially unknown when planning began—is

set to its observed value. [Ex.: It searches in the 2D grid assuming every unknown cell

in Xp is set to free, and every hidden cell whose status is observed in H(Xp) is set to the

observed value (free/blocked)] . The path ρbs maps to a corresponding path in the belief
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space, ρbel
bs , that consists of transitions that only correspond to either deterministic actions,

or stochastic actions with clearly preferred outcomes. We refer to this as the primary branch

corresponding to ρbs from Xp to goal. If ρbs is found, FAST-PPCP then updates π̂i by

adding ρbel
bs to π̂i. Next, we explain the objective and constraint used by COMPUTEBSPATH,

the FAST-PPCP search to find ρbs.

COMPUTEBSPATH (Block 3.): In order to minimize the number of stochastic transitions

as its search objective, FAST-PPCP ensures that the search computes the path with the least

number of stochastic transitions first as a candidate, ρc, for ρbs. Adding the primary branch

ρbel
c to π̂i will result in the updated partial policy π̂c

i . To meet the bounded suboptimality

aim, FAST-PPCP additionally checks if π̂c
i is NOT invalid—one that cannot be developed

into an BL-bounded policy no matter which unexplored belief state on it is explored in the

future. To do this, FAST-PPCP computes V̂ ρbel
c (Xp), the expected cost of the partial policy

that corresponds to the primary branch ρbel
c .

V̂ ρbel
c (Xp) is a lower bound on the V -value of any policy containing ρbel

c that can be

developed in future iterations. This is because the V̂ -value of any policy-devoid belief state

X is maintained to be V ∗u (X), and we show that any non-preferred outcome of a stochastic

transition in ρbel
c can only be policy-devoid. FAST-PPCP then computes V̂ π̂c

i (Xst), the

expected cost of π̂c
i , which consequently is also a lower bound on the V -value of any

policy containing π̂c
i . If V̂ π̂c

i (Xst) > BL (rejection condition), no full BL-bounded policy

π f containing π̂c
i can be developed thereafter. Candidate ρc is then rejected: ρbel

c is not

added to π̂i. In this way, FAST-PPCP sequentially computes candidate paths from S(Xp) in

increasing order of the number of stochastic transitions on them, and rejects them until a

candidate path ρc is found, such that V̂ π̂c
i (Xst)≤ BL (formally stated later in Theorem 1).

We refer to ρc that meets this constraint as ρbs and the corresponding V̂ π̂c
i (Xst) as V̂ π̂bs

i (Xst).

UPDATEMDP (Block 5.): If ρbs is found (Block 4. Outcome Y), ρbel
bs is added to π̂i
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from Xp to get the updated partial policy π̂bs
i , and V̂ (Xp) is updated to be the lower bound

V̂ ρbel
bs (Xp) computed during the search. FAST-PPCP also updates the V̂ -values of belief

states on ρbel
bs .

UPDATEMDPREVERSE (Block 6.): Starting from Xp, it backs up V̂ -values of every

belief state on the branch in π̂i from Xp up till Xst to remove their respective Bellman errors.

As a result, V̂ of (Xst) gets updated to V̂ π̂bs
i (Xst).

COMPUTEPOLICYDEVOIDX (Block 7.): FAST-PPCP then finds a policy-devoid non-

preferred outcome in π̂bs
i . It starts the next iteration of Policy Growth from this outcome.

When the final primary branch gets added to the maintained partial policy and it has no

more policy-devoid outcomes, a full policy π f has been found and FAST-PPCP terminates

(Block 8. evaluation fails). Since π f is no longer a partial policy, V̂ π f (Xst) in this iteration

is no longer a lower bound but is the actual V -value of π f . Since V̂ π f (Xst)≤ BL has been

ensured in Policy Growth, π f is BL-bounded, and also B∗-bounded (formally stated later in

Theorem 3).

Policy Correction

In Policy Growth, it is possible that every candidate path ρc from S(Xp) is rejected by

COMPUTEBSPATH (Block 4. evaluation fails) and Xp is not Xst (Block 9. evaluation

fails) because adding any of them to π̂i results in an invalid updated partial policy π̂c
i with

V̂ π̂c
i (Xst)> BL. While computing a ρc, FAST-PPCP maintains minV̂ ρbel

c (Xp), the minimum

value of V̂ ρbel
c (Xp) over all ρc computed so far. In this case, since every possible path has

been visited, minV̂ ρbel
c (Xp) is a lower bound on V ∗(Xp). FAST-PPCP updates V ∗u (Xp) to

minV̂ ρbel
c (Xp) (Block 10.). Even if no branch is added to π̂i from Xp, backups are still

done as described from Xp up until Xst (Block 11.) to get the updated V̂ π̂i(Xst) which now

exceeds BL. FAST-PPCP then corrects π̂i by removing a safe primary branch in it and trying

67



5. Speeding Up Planning under Uncertainty with Fast-PPCP

to replace it with one that results in an updated partial policy π̂cs
i with V̂ π̂cs

i (Xst)≤ BL. A

primary branch is safe if removing it does not discard any BL-bounded policy if one exists.

This guarantees that FAST-PPCP finds a BL-bounded policy if one exists, or, is BL-complete

(formally stated later in Theorem 2).

COMPUTESAFEX (Block 12.): To find a safe primary branch, FAST-PPCP looks for

a non-preferred outcome Xsafe in π̂i with a primary branch from it such that V̂ (Xsafe) is a

lower bound on V -value of any policy containing this primary branch. FAST-PPCP can

guarantee this is the case only if: (1) this primary branch has deterministic transitions only,

or (2) every non-preferred outcome Xnp of a stochastic transition on this primary branch

is policy-devoid, and therefore has V̂ (Xnp) set to an underestimate of V ∗(Xnp). In this

case, keeping this primary branch in π̂i and performing Policy Growth via any such Xnp

to obtain an updated partial policy π̂+x will surely have V̂ π̂+x
(Xst) ≥ V̂ π̂i(Xst) > BL (i.e.,

no BL-bounded policy can develop from ρbel
safe with the rest of π̂i unchanged). Hence, this

primary branch can be removed without missing a BL policy. FAST-PPCP resumes Policy

Growth from Xsafe in the next iteration. If Policy Growth fails again, it continues Policy

Correction to further change π̂i by removing another safe branch.

Computation/Improvement of BL

Before it begins, FAST-PPCP computes V ∗L (Xst), a lower bound on V ∗(Xst), by running

one iteration of PPCP (Block 1.). For a very small α or V ∗L (Xst), it may be the case that no

BL-bounded policy from Xst exists. This is the case when every candidate path is rejected

by COMPUTEBSPATH (Block 4. evaluation fails) when attempting to grow the policy

from Xst (Block 9. evaluation succeeds). However, there may exist full policies that are

not BL-bounded but are B∗-bounded, i.e., BL <V π(Xst)≤ B∗ where V π(Xst) is the V -value

of the full policy π . To ensure completeness and find these policies, FAST-PPCP performs
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Improvement of BL: It increases BL by running PPCP iterations till V ∗L (Xst) increases

(Block 13.), and restarts afresh from Xst (Block 2.) using this increased (looser) value for

BL. Increase in V ∗L (Xst) is guaranteed in [80].

5.3.2 Implementation details of some functions

We refer to Xp, the belief state from which FAST-PPCP starts an iteration, as a pivot. The

complete pseudocode is given in Appendix B in chapter A.

COMPUTEBSPATH implementation

We now describe procedure COMPUTEBSPATH shown in Pseudocode 2. At iteration i

starting from pivot Xp, FAST-PPCP aims to find a path from S(Xp) in a deterministic

graph G i = {Si,E i} where Si,E i are the states and edges representing feasible transitions

in the deterministic space. In order to ensure that the primary branch computed from Xp is

feasible, the status of the hidden variables observed (known) according to H(Xp) is used

while determining Si,E i: state s is the clearly preferred/non-preferred outcome in G i of

action a executed at s′ if hs′,a is known to have clearly preferred/non-preferred value in

H(Xp). The unknown variables in H(Xp) are assumed to have their clearly preferred value

while determining Si,E i: state s is the clearly preferred outcome in G i of action a executed

at s′ if hs′,a is unknown in H(Xp).

However, in order to meet the search objective and constraint explained in Policy

Growth—which is to compute a path ρbs from S(Xp) in G i that minimizes the total number

of stochastic transitions on it such that V̂ π̂bs
i (Xst)≤ BL—COMPUTEBSPATH is a backward

A∗-like search run on an augmented deterministic graph G i
sto = {Si

sto,E
i}. The search is

backward in order to allow the computation of V̂ π̂bs
i (Xst) by back-propagating values from

the goal that has its V̂ -value = 0. A search state n ∈ Si
sto is defined as n = [s,V̂ ρ(s)], where
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s is a state in Si, ρ is a path from s to goal Sg in G i. E i is the same set of edges as in G i. We

first describe the edge-costs in G i
sto, then explain V̂ ρ(s).

Edge-costs in G i
sto: We derive the edge-costs with the following aims: (1) In G i

sto,

Pseudocode 2
1: procedure COMPUTEBSPATH(Xp,α,V ∗L (Xst),P(Xp|Xst , π̂i))
2: ng = [Sg,0]; besta(ng) = NULL;
3: gsto(ng) = 0;
4: V ∗u (Xp) = ∞; OPEN = /0
5: Insert ng in ∆dom(Sg)

1

6: Insert Sg in OPEN with priority gsto(Sg)+hc(S(Xp),Sg);
7: while 1 do
8: if OPEN is empty then ▷ Policy Growth failed
9: V̂ (Xp)← V ∗u (Xp) updated during this search, π̂i(Xp) = NULL
10: and return FALSE
11: end if
12: Remove search-state n with the smallest gsto(n)+hc(S(Xp),s(n))
13: in OPEN
14: if s(n) = S(Xp) then
15: V̂ ρbel

c (Xp)← V̂ ρc (S(Xp)), V̂ component of n =
16: [S(Xp),V̂ ρc (S(Xp))]

17: Update V ∗u (Xp)← V̂ ρbel
c (Xp)) if V̂ ρbel

c (Xp))<V ∗u (Xp)

18: Update V̂ π̂c
i (Xst) by replacing old V̂ (Xp) with V̂ ρbel

c (Xp), as
19: in Eq. 5.8
20: if V̂ π̂c

i (Xst)≤ αV ∗L (Xst) then ▷ Policy growth is successful
21: V̂ π̂bs

i (Xst)← V̂ π̂c
i (Xst)

22: V̂ (Xp)← V̂ ρbel
c (Xp)

23: return TRUE
24: end if
25: end if
26: s← s(n)
27: for each action a∈A(s′) and predecessor s′ s.t s= S(succ(X ′,a)b) where X ′ = [s′,H(Xp)]
28: compute V̂ ρ ′(s′) using Eq. 5.1 with X ′ = [s′,H(Xp)]
29: search-predecessor n′ = [s′,V̂ ρ ′(s′)]
30: if a is a stochastic action then
31: gsto(n′) = gsto(n)+ |E|.cmax;
32: else
33: gsto(n′) = gsto(n)+ cmax;
34: end if
35: if n′ not visited before or¬ISDOMINATED(n′) then
36: Insert n′ in ∆dom(s′)
37: Insert n′ in OPEN with priority gsto(n′)+hc(S(Xp),s′)
38: and besta as a;
39: end if
40: end for
41: end while
42: end procedure
43: procedure ISDOMINATED(n′)
44: return (gsto(n)≥ gsto(n′) andV̂ (n)≥ V̂ (n′)) for any
45: n ∈ ∆dom(s(n′)) ▷ returns true if n′ is dominated by an n ∈ list of
46: ∆dom(s(n′)) undominated search-states of s(n′)
47: end procedure

1V̂ (Xp) initialized to V ∗u (Xp)≤V ∗(Xp)
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ordering paths according to their modified cost is the same as ordering them according

to their number of stochastic transitions. To ensure the path with minimum number of

stochastic transitions is the least cost path, we need to make sure that the largest purely

deterministic path (consisting of deterministic transitions only) is strictly less than the

smallest path with a single stochastic transition (which is a one-edge path with only

one stochastic edge). To satisfy this, we set the costs of deterministic and stochastic

transitions as β and |E|β respectively, where |E| is the total number of edges in G i. (2)

Assume that a non-zero consistent heuristic function hc(S(Xp),s) is known for the original

cost function in G i [Ex.: Euclidean distance is consistent heuristic given edge-costs are

Euclidean distance] . We want to use the same heuristic in COMPUTEBSPATH. To do

this, we need to ensure that csto(n,a,n′) ≥ c(s,a,s′) for all edges (s,a,s′) in Gi. Setting

mincsto(n,a,n′) = cmax = max∀(s,a,s′)∈Gi(c(s,a,s′)) ensures this. Accordingly,

csto(n,a,n′) =


|E|cmax a is stochastic

cmax a is deterministic

However, the cost csto of a path ρc from S(Xp) to goal in G i has no notion of the V -value of

a policy from S(Xp) containing ρbel
c . Maintaining the second component V̂ ρ(s) in state n

serves this purpose.

V̂ ρ(s) computation: V̂ ρ(s) is computed as follows: Let ρ ′ be a path in G i from s′ to

goal. Let s be the outcome of (s′,a) for an action a in ρ ′. Let ρ ′bel be the corresponding

primary branch of ρ ′ from a belief state X ′ = [s′,H(X)]. Let Xb = succ(X ′,a)b be the

preferred outcome of belief state-action (X ′,a). Since ρ ′ maps to ρ ′bel, which is a primary

branch, s = S(Xb). Let ρ be the subpath from s to Sg and ρbel be its corresponding primary

branch from Xb. FAST-PPCP recursively defines V̂ ρ ′(s′) which can be computed by backing
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up from Sg with V̂ (Sg) = 0 as follows:

V̂ ρ ′(s′)=∑Xnp∈succ(X ′,a)\Xb P(Xnp|X ′,a)(c(s′,a,S(Xnp))+V̂ (Xnp))

+P(Xb|X ′,a)(c(s′,a,s)+V̂ ρ (s)) (5.1)

V̂ ρ(s) is the same as V̂ ρbel
(X) which is lower bound on the V -value of any policy from X

containing ρbel.

Predecessor generation: Note that COMPUTEBSPATH while searching does not

keep track of H(·) part of the belief states: while computing the predecessor of s which

corresponds to computing predecessor of Xb, FAST-PPCP has the predecessor X ′ defined

as X ′ = [s′,H(Xp)] (line 29). This implements the assumption that the hidden variable hs′,a

sensed by executing a on s′, if it was unknown in H(Xp), remains unknown in the primary

branch from Xp to X ′ and is sensed for the first time when Xb is generated as outcome. More

generally, it can only find a primary branch from Xp that satisfies the condition C1: The

primary branch does not have two belief states X1 and X2 with actions a1 and a2 respectively

that sense the same hidden variable in H(Xp), i.e, hS(X1),a1 ̸= hS(X2),a2 (Formally stated in

Lemma 9). Since E i is the same set of edges as in G i, while generating a predecessor n′

from n, COMPUTEBSPATH assumes that each action a has only one outcome if , i.e., s(n)

is an outcome of action a executed at s(n′) (which is s′) if and only if s = S(succ(X ′,a)b).

With search states and edge-costs as described, COMPUTEBSPATH searches backwards

from [Sg,0], expanding states from the OPEN list in non-decreasing order of f (n) =

gsto(n)+hc(n,S(Xp)) where hc is a consistent heuristic (Line 13).

V̂ π̂c
i (Xst) computation: The first time a search state s = [S(Xp), V̂ ρc(S(Xp))] is ex-

panded, COMPUTEBSPATH has found a path ρc from S(Xp) with the minimum number

of stochastic transitions in G i, and the lower bound V̂ ρbel
c (Xp)( = V̂ ρc(S(Xp))) of its cor-

responding primary branch ρbel
c from Xp. COMPUTEBSPATH then computes V̂ π̂c

i (Xst), a
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lower bound on any policy that can develop from the updated partial policy π̂c
i , if ρbel

c is

added to π̂i. To compute this, it replaces the old V̂ (Xp) with the current estimate V̂ ρbel
c (Xp)

to get V̂ π̂c
i (Xst) as (Line 19):

V̂ π̂c
i (Xst)←V̂ π̂i(Xst)+P(Xp|Xst ,π̂i)(−V̂ (Xp)+V̂ ρbel

c (Xp)) (5.2)

where P(Xp|Xst , π̂i) is the probability of reaching the pivot Xp following the current partial

policy π̂i from Xst . It then checks if V̂ π̂c
i (Xst) ≤ αV ∗L (Xst). If this is false, then ρbel

c gets

rejected and COMPUTEBSPATH continues expansions from OPEN.

COMPUTEBSPATH termination: COMPUTEBSPATH terminates in either of the

following cases: (1) when for the first time n = [S(Xp),V̂ ρbel
c (Xp)] gets expanded such that

V̂ π̂c
i (Xst)≤ αV ∗L (Xst) (Line 20). Upon termination it returns a path that meets the search

objective given the constraint (Theorem 1). Or, (2) when OPEN list is empty (Line 8)

indicating that policy growth failed from Xp. In this case, line 9. implements updating

V̂ (Xp) with the minimum value of V̂ ρbel
c (Xp) over all ρc in G i.

COMPUTEBSPATH performs dominance checks (Line 35) through procedure ISDOMI-

NATED (Pseudocode 2 Line 43). If a search-state n′ is dominated by any previously seen

search state n with s(n) = s(n′) (Line 44-46), the sub-graph that can be generated from n′

is pruned. This significantly increases search efficiency.

COMPUTESAFEX implementation

As mentioned in section 5.3.1, FAST-PPCP looks for a non-preferred outcome Xsafe in

π̂i with a primary branch from it such that: (1) this primary branch has deterministic

transitions only, or (2) every non-preferred outcome of a stochastic transition on this primary

branch is policy-devoid. To find Xsafe, COMPUTESAFEX first considers any arbitrary non-

preferred outcome Xe on π̂i that has an existing primary branch from it. Starting from Xe,
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COMPUTESAFEX traverses down the primary branch from Xe. It sequentially visits each

belief state X in the primary branch and checks if the action π̂i(X) at X—given by the

current partial policy π̂i—is deterministic, or every non-preferred outcome of taking π̂i(X)

at X is policy-devoid. If this is the case, then it moves down (towards the goal belief state

Xg) on this primary branch to the preferred outcome of taking π̂i(X) at X (there is only one

outcome when π̂i(X) is deterministic). If not, then it resets Xe as the non-preferred outcome

of π̂i(X) that is not policy-devoid and has an existing primary branch. It then restarts the

traversal down this primary branch.

5.3.3 Working example

In Figure 5.3 we present a working example of FAST-PPCP in [Ex.] with α = 1.485.

Before it begins, FAST-PPCP computes V ∗L (Xst) = 63.4 by running one PPCP iteration.

αV ∗L (Xst)≜ BL = 94.1.

In its first iteration (i = 0), it starts Policy Growth with Xst = [(11,48),u,u,u,u] as

the pivot. It attempts to find a path from start state S(Xst) = (11,48) in the 2D grid G0

(5.3(a)) constructed assuming all the four hidden cells are set to their clearly preferred

value, denoted by 0, since all of them are unknown in H(Xst). COMPUTEBSPATH first

finds a deterministic path with zero stochastic transitions as the first candidate (when it

expands from OPEN a search-state n with s(n) = (11,48) for the first time). However,

it gets rejected because its cost exceeds BL. The second candidate path (5.3(a)) with one

stochastic transition corresponding to a sense-and-move action at (29,38)—that senses the

adjacent hidden cell h3 (30,38)—is found when n = [(11,48),V̂ ρbs(S(Xst)) = 71.6] gets

expanded. V̂ ρbs(S(Xst)) is the same as V̂ ρbel
bs (Xst), the expected cost of the partial policy that

corresponds to the primary branch ρbel
bs (dotted blue rectangles in 5.3(b)) that ρbs maps to.

The updated partial policy at the end of first iteration π̂1 ≜ ρbel
bs , and V̂ π̂1(Xst) =
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Figure 5.3: FAST-PPCP operation in Ex.. Number near an arrow (action) in a partial policy
indicates transition costs (described in section 5.2). Some intermediate successors have been omitted
(dotted).
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V̂ ρbel
bs (Xst) = 71.6. UPDATEMDP updates V̂ values of belief states along ρbel

bs from Xst(5.3(b)

blue bold V̂ -values). COMPUTEPOLICYDEVOIDX searches for a policy-devoid outcome in

π̂1 and finds the non-preferred outcome [(29,38);u,u,1,u] (5.3(b) black solid line rectangle)

of the sense-and-move action at (29,38) when (30,38) is sensed as blocked.

The second iteration grows π̂1 from Xp = [(29,38);u,u,1,u]. This time it finds a path

in G1 (5.3(c)) assuming the unknown hidden variables h1,h2 and h4 are free but h3 is

blocked, because h3 is known to be blocked (=1) in H(Xp). COMPUTEBSPATH keeps

rejecting other paths until it expands n = [(29,38),V̂ ρbel
bs (Xp) = 45.3] that corresponds to

the path ρbs (5.3(c)) and the primary branch ρbel
bs (dotted blue rectangles in 5.3(d)). For

this ρbs, V̂ π̂bs
1 (Xst), the lower bound on the V -value of any policy that can develop from

the updated partial policy π̂bs
1 if ρbel

bs is added to π̂1, is 79.7 which is within BL. The

value 79.7 is computed as in eq. 5.8, using P(Xp|Xst , π̂i) = 0.5, V̂ (Xp) = 29 which is

the initialized Euclidean distance between S(Xp) = (29,38) and goal, V̂ π̂1(Xst) = 71.6,

and V̂ ρbel
bs (Xp) = 45.3 (5.3(d) blue bold V̂ ). In addition to updating V̂ -values along ρbel

bs ,

UPDATEMDPREVERSE corrects the Bellman error of V̂ -value of [(29,38);u,u,u,u] given

its non-preferred outcome [(29,38);u,u,1,u] got updated: its updated V̂ according to the

Bellman expectation equation becomes 42.7 = 0.5∗ (1+37.2)+0.5∗ (2+45.3) (5.3(d)

pink italics V̂ ). This Bellman backup is all the way up till (Xst). The third iteration begins

from the policy-devoid belief state [(29,45);u,1,1,u]. A path with no stochastic transition

qualifies as ρbs (ρbel
bs shown in 5.3(e) blue). Since no more policy-devoid outcomes exist in

the updated partial policy (5.3(e)), FAST-PPCP terminates (full policy shown in 5.3(f) by

superimposing paths found in the three iterations).

5.3.4 Theoretical analysis

We now present the theoretical analysis of FAST-PPCP.
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We refer to an edge (s,a,s′) in the graph G i as deterministic (stochastic) if a is deter-

ministic (stochastic). |E| is the total number of edges in G i.

Lemma 1. Consistent heuristic for COMPUTEBSPATH: Let s and s′ be two states in

S ∈ Rn. Let ∥s− s′∥2 be the euclidean distance between s and s′ in Rn. Let the modified

edge-cost be csto(s,a,s′) = cmax if a is deterministic, and csto(s,a,s′) = |E|cmax if a is

stochastic, where cmax = max∀(s,a,s′)∈G i(c(s,a,s′)) is the maximum given edge-cost in the

deterministic graph G i and |E|= |E|. With these modified edge-costs in G i, the euclidean

distance heuristic hcons(s) =
∥∥s−S(Xp)

∥∥
2 is a consistent heuristic for a backward search

from the goal Sg to the pivot S(Xp) to compute the shortest path in G i if c(s,a,s′)> ∥s− s′∥2.

Or, hcons(s) = 0 for s = S(Xp), and

∥∥s−S(Xp)
∥∥

2 + csto(s,a,s′)≥
∥∥s′−S(Xp)

∥∥
2 ,∀s ∈ S s.t s ̸= S(Xp)

Proof. According to triangle inequality,

∥∥s−S(Xp)
∥∥

2 +
∥∥s− s′

∥∥
2 ≥

∥∥s′−S(Xp)
∥∥

2 . (5.3)

If edge (s,a,s′) is deterministic, then csto(s,a,s′) = cmax, else csto(s,a,s′) = |E|.cmax. Since

|E| ≥ 1, in both cases csto(s,a,s′)≥ cmax ≥ c(S,a,s′). Thus, if c(s,a,s′)≥ ∥s− s′∥2,

=⇒ csto(s,a,s′)≥
∥∥s− s′

∥∥
2 (5.4)

Using 5.4 in 5.3 we get

∥∥s−S(Xp)
∥∥

2 + csto(s,a,s′)≥
∥∥s′−S(Xp)

∥∥
2 . (5.5)
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We define a purely deterministic path as a path consisting of only those edges that are

generated by deterministic actions.

Note that the set of paths in G i is the same as the set of paths in G i
sto.

Lemma 2. Let ρ l be an arbitrary and fixed path in the set of all longest paths purely

deterministic paths in G i, with cost csto(ρ
l). Let ρst be any arbitrary and fixed path in G i

that has at least one stochastic edge, with cost csto (ρ
st). The cost csto of ρ l

det is strictly less

than the cost csto of any path having at least one stochastic action, or

csto(ρ
l)< csto(ρ

st)

Proof. For any arbitrary and fixed path ρ in G i, let Nρ

det and Nρ

sto be the total number of

deterministic and stochastic edges in ρ . The cost csto(ρ) of the path is given by:

csto(ρ) = Nρ

det · cmax +Nρ

sto · |E|cmax

For ρ l
det , Nρ

sto = 0 because it is purely deterministic, and Nρ l

det < |E| as long as there exists

at least one stochastic edge in G i. Therefore,

csto(ρ
l) = Nρ l

detcmax < |E|cmax

Let ρst be any arbitrary and fixed path in G i that has at least one stochastic edge. For this

path, Nρst

sto ≥ 1 and Nρst

det ≥ 0. Thus, its cost csto follows the following inequality:

csto(ρ
st) = Nρst

sto |E|cmax +Nρst

det cmax ≥ |E|cmax

Thus, csto(ρ
l)< csto(ρ

st).

Lemma 3. Let ρ1 and ρ2 be two arbitrary and fixed paths in G i from S(Xp) to Sg. Let
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Nρ1
sto and Nρ2

sto be the total number of stochastic actions in ρ1 and ρ2 respectively. For a

sufficiently large |E|, if Nρ1
sto < Nρ2

sto, then csto(ρ1)< csto(ρ2).

Proof. For any arbitrary and fixed path ρ in G i, let Nρ

det and Nρ

sto be the total number of

deterministic and stochastic edges in ρ . The cost csto(ρ) of the path is given by:

csto(ρ) = Nρ

det · cmax +Nρ

sto|E|cmax

For paths for which Nρ

det
Nρ

sto
<< |E|, csto(ρ) ∼ Nρ

sto|E|cmax =⇒ csto(ρ) ∝ Nρ

sto. Thus, if

Nρ1
sto < Nρ2

sto, then csto(ρ1)< csto(ρ2)

Derivation of the cost-scheme in G i
sto. In Gi, we want the search to consider paths

as candidate for ρbs in increasing order of the number of stochastic transitions, starting

from the one with minimum. This can be done by modifying edge-costs from given cost

c(s,a,s′) in Gi such that the path with the minimum number of stochastic transitions is

the shortest (minimum cost) path in Gi, or more generally, ordering paths according to

their cost using this modified cost-scheme is the same as ordering them according to the

number of stochastic transitions. Then running a backward A∗ from Sgoal to S(Xp) that

expands in increasing order of f = gsto +hc where hc is consistent heuristic and expanding

S(Xp) for the first time would give the path with least number of stochastic transitions.

The second time S(Xp) is expanded, the second best path in terms of number of stochastic

transitions trans is found, and so on. To get this desired search behavior, an intuitive

cost scheme is 0/1 cost assignment (Note that to design a cost function that minimizes

number of stochastic edges, all stochastic edges should have the same constant cost, and all

deterministic edges should have another constant cost), i.e, assigning 1 to stochastic actions

and 0 to deterministic ones. But assigning 0 cost to edges would mean that a non-zero

heuristic function (for example euclidean distance) would not be consistent. It is essential
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to have a non-zero heuristic function in order to speedup search. Therefore, we assign a

positive cost β to the deterministic edges. To make sure the path with minimum number of

stochastic transitions is the least cost path, we need to make sure that even the largest purely

deterministic path is strictly less than the smallest path with a single stochastic transition

(which is a one-edge path with only 1 stochastic edge). To satisfy this, if deterministic

edges have cost β , stochastic edges are set to cost |E|β . Given this setting, the cost csto(ρ)

of a path with is:

csto(ρ) = Nρ

det ·β +Nρ

sto · |E|β

, where Nρ

det and Nρ

sto are the total number of deterministic and stochastic edges in

ρ . This cost scheme ensures that ordering of paths according to their cost csto is the

same as their ordering according to the number of stochastic transitions for sufficiently

large |E|. We assume that a non-zero consistent heuristic is known for the original

(given) cost function (For example, in the robot navigation domain, euclidean distance to

goal is a consistent heuristic function if the given edge-costs are euclidean distances).

If we want to use the same heuristic function for the modified cost-scheme as well,

we need to ensure that csto(n,a,n′) ≥ c(s,a,s′) for all edges (s,a,s′) in Gi. Setting

mincsto(n,a,n′) = cmax = max∀(s,a,s′)∈Gi(c(s,a,s
′)) ensures this. Thus, FAST-PPCP uses

the following cost-scheme:

csto(n,a,n′) =


|E|cmax, if a is stochastic

cmax, otherwise (a is deterministic)

Remark 1. COMPUTEBSPATH is a backward search from Sg to S(Xp) that expands

search-nodes in increasing order of f (n) = gsto(n)+ h(n,S(Xp)), where a search-node

n = (s,V̂ ρ(s)) and corresponds to a path ρ from s to goal Sg with V̂ being V̂ ρ(s).

Lemma 4. COMPUTEBSPATH expands nodes with state s = S(Xp) in increasing order of
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their gsto value.

Proof. Let n1 = (S(Xp),V̂ ρ1(s)) and n2 = (S(Xp),V̂ ρ2(s)) be two arbitrary nodes such that

both n1 and n2 have state s = S(Xp) and n1 is expanded before n2 by COMPUTEBSPATH.

Using Remark 1, if during the search n1 is expanded before n2, then f (n1)≤ f (n2).

Since both n1 and n2 have the state s = S(Xp) and h(n,S(Xp)) is an estimate for cost of

path from the state s in n to S(Xp) (since backward search), therefore, hc(n1,S(Xp)) =

hc(n2,S(Xp)) = 0.

Thus, f (n1) = gsto(n1) and f (n2) = gsto(n2), and using Remark 1 it follows that:

gsto(n1)≤ gsto(n2) (5.6)

Since eq. 5.6 holds for any arbitrary nodes n1 and n2 having s = S(Xp), hence lemma 4

holds.

Theorem 1. Termination Condition of COMPUTEBSPATH Let P be the set of all paths

in G i from S(Xp) to Sg in a FPI i. For a path ρc ∈ P, let V̂ π̂
+c
i (Xst) be the V̂ of the

updated partial policy π̂
+c
i from Xst assuming the primary branch ρbel

c gets added to π̂i.

COMPUTEBSPATH upon termination computes a path ρbs ∈ P that satisfies:

ρbs = argmin
ρc∈P

csto(ρc(S(Xp))) s.t V̂ π̂
+c
i (Xst)≤ αV ∗L (Xst) (5.7)

given ρbs exists.

Proof. In a FAST-PPCP iteration i, let πi be the partial policy computed so far (from

iteration 0 to i). If COMPUTEBSPATH expands a node n= (S(Xp),V̂ ρc(S(Xp))), it computes

the updated v-value estimate of Xst assuming ρ is included in πi, by replacing the old v-value
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estimate V̂ (Xp) of Xp with the new estimate V̂ ρbel
c (S(Xp)) to get V̂ π̂

+c
i (Xst) as:

V̂ π̂
+c
i (Xst)←V̂ π̂i(Xst)+P(Xp|Xst)(−V̂ (Xp)+V̂ ρbel

c (Xp)) (5.8)

where P(Xp|Xst) is the probability of reaching the pivot Xp following the current partial

policy πi from Xst .

COMPUTEBSPATH terminates when for the first time n = [S(Xp),V̂ ρbel
c (Xp)] gets ex-

panded such that V̂ π̂
+c
i (Xst)≤ αV ∗L (Xst). Given this, and lemma 4, theorem 1 holds.

Lemma 5. At the iteration when COMPUTEBSPATH is computing a path ρ from S(Xp)

(and the corresponding ρbel from Xp), any non-preferred outcome of a stochastic transition

in ρbel can only be policy-devoid.

Proof. Case 1: When an unexplored policy-devoid outcome is explored for the first time,

because sensing is perfect, the subgraphs that result from different outcomes of a single

stochastic action are disjoint. Thus, a subgraph from Xp is disjoint with a subgraph from

any other state pivot in any other branch in π̂i.

Case 2: When a safe branch is removed in policy correction from Xp, and another

branch is added from Xp, any non-preferred outcome of a stochastic transition in ρbel
c can

only be policy-devoid. (1) Only such an Xp gets its branch replaced which doesn’t have a

dependent branch from any non-preferred outcome Xnp of a stochastic transition on this

branch. (2) Because sensing is perfect, the subgraphs that result from different outcomes of

a single stochastic action are disjoint. Thus, a subgraph from Xp is disjoint with a subgraph

from any other previously explored pivot with an existing primary branch in π̂i. Thus, while

searching for branch from Xp only way to encounter a branch that has a non-preferred

outcome Xnp shared with a previously existing branch is if we removed a branch from
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Xp which had an existing branch ρnp from Xnp but did not remove ρnp because of which

V (Xnp) was not set to underestimate of V ∗. Since we never remove such a branch, this case

never arises.

Lemma 6. Let ρ ′ be a path in Gi from s′ to goal. Let s be the outcome of (s′,a) for an

action a in ρ ′. Let ρ ′bel be the corresponding primary branch of ρ ′ from a belief state

X ′ = [s′,H(X)]. Let Xb = succ(X ′,a)b be the preferred outcome of belief state-action

(X ′,a). Since ρ ′ maps to ρ ′bel, s = S(Xb). Let ρ be the subpath from s and ρbel be its

corresponding primary branch from Xb. For a path ρ ′ from s in Gi, FAST-PPCP recursively

defines V̂ ρ ′(s′) which can be computed by backing up from Sg with V̂ (Sg) = 0 as:

V̂ ρ ′(s′)=∑Xnp∈succ(X ′,a)\Xb P(Xnp|X ′,a)(c(s′,a,S(Xnp))+V̂ (Xnp))

+P(Xb|X ′,a)(c(s′,a,s)+V̂ ρ (s)) (5.9)

V̂ ρ ′(s′) is the same as V̂ ρ ′bel
(X ′) which is a lower bound on the V -value of any policy

containing ρ ′bel .

Proof. V̂ ρ ′(s′) is the same as V̂ ρ ′bel
(X ′):

V̂ ρ ′bel(X ′)=∑Xnp∈succ(X ′,a)\Xb P(Xnp|X ′,a)(c(X ′,a,Xnp)+V̂ (Xnp))

+P(Xb|X ′,a)(c(X ′,a,Xb)+V̂ ρbel(Xb)) (5.10)

V̂ ρ ′bel
(X ′) is a lower bound on the V value of any policy that contains ρ ′bel . This is because:

(1) V̂ (Xnp) of policy-devoid outcomes are underestimates V ∗u (X)≤V ∗(X). (2) We show in

lemma 5 that at the iteration when ρbel
c is being computed, any non-preferred outcome of a

stochastic transition in ρbel
c can only be policy-devoid. (3) Also, an edge in the belief-space

has the same cost as its mapping in the deterministic space, i.e, C(s′,a,s) = C(X ′,a,X)
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where s′ = S(X ′) and s = S(X).

Lemma 7. Between two subpaths ρ2 and ρ1(s) from a state s ∈ Gs to Sg, if ρ2(s) is

dominated by ρ1(s), then for any path ψ2(S(Xp)) from S(Xst) to Sg passing through ρ2(s),

there exists a path ψ1(S(Xp)) from S(Xp) to Sg that dominates ψ2(S(Xp))

The proof of lemma 7 is deferred to Appendix A in chapter A.

Lemma 8. Pruning using dominance: Let P be the set of all paths in Gs from S(Xp) to Sg.

Let Pσ ⊂ P be a subset of paths from S(Xp) to Sg such that no two paths have the same

g-value and every path σ ∈Pσ satisfies

σ = argmin
p∈P

gp
sto(S(Xp) s.t using gp

Q(S(Xp)) V̂ p(Xst)≤ αV ∗L (Xst) (5.11)

For a state s ∈ Gs, let ρ1(s) and ρ2(s) be two sub-paths from s to Sg that the search visits

with path costs gρ1(s) and gρ2(s). Let ρ2(s) be dominated by ρ1(s). For every state s ∈ Gs,

we prune all paths from S(Xp) to Sg that pass through ρ2(s). It is guaranteed that this

pruning method does not prune any path in Pσ .

The proof of lemma 8 is deferred to Appendix A in chapter A.

Remark 2. For a non-preferred outcome Xnp that has a primary branch ρbel from it in π̂i,

it is redundant to consider any outcome on ρbel as pivot. This is because ρbel has either

a success outcome or a deterministic outcome, and any eligible path (given the search

objective) found from either type of outcomes is a subpath in an eligible path from Xnp,

which can be computed by considering Xnp as pivot.

Theorem 2. (BL-Completeness) Let Πbl be a set of full policies from Xst in the belief-

space, such that every πbl ∈ Πbl satisfies two conditions: (C1) If there exists a pair of

states X1 ∈ πbl and X2 ∈ πbl , where X2 can be reached with a non-zero probability from X1

following πbl and whose actions πbl(X1) and πbl(X2) are affected by the hidden variables

hS(X1),πbl(X1) and hS(X2),πbl(X2), then it holds that hS(X1),πbl(X1) is not the same as hS(X2),πbl(X2).
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(C2) The V -value V πbl(Xst) of πbl from Xst is≤ αV ∗L (Xst)≜ BL, where BL is the lower bound

of V ∗(Xst) in the current iteration.

If there exists a non-empty set Πbl , then FAST-PPCP upon termination is guaranteed to

find a full policy π f ∈Πbl .

Proof. ComputeBSPath while searching does not keep track of the hidden component H(·)

of the belief states, therefore it can only find policies having primary branches that satisfy

condition (C1): a primary branch does not have two belief states with actions that sense the

same hidden variable in H(Xp).

Among such policies from Xst , if there exists policies with V -value <= αV ∗L (Xst),

Theorem 2 states that Fast-PPCP will find one such policy. Or, the only time Fast-PPCP

returns without solution from Xst is when no such policy exists.

This holds because of the following arguments.

1. When a candidate path (equivalently its corresponding candidate primary branch from

Xp) is computed during policy growth, we show that any non-preferred outcome of a

stochastic transition on this primary branch can only be policy-devoid. Fast-PPCP

always maintains the V̂ -value of any policy-devoid outcome X to be an underestimate

of V ∗(X). Given this, if a candidate primary branch is rejected, it is only when

no full policy with V -value <= αV ∗L (Xst) can develop from the updated partial

policy—formed by adding this candidate primary branch to the current partial policy.

Also, an existing primary branch is safely rejected during policy correction—without

discarding any full policy with V -value <= αV ∗L (Xst)—only if every non-preferred

outcome of stochastic transitions on this branch is policy-devoid. Thus, if a primary

branch is rejected given a partial policy, the only policies Fast-PPCP discards without

exploring fully are the ones that exceed αV ∗L (Xst).

2. The previous statement applies to a primary branch from Xst as well—the only time
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Fast-PPCP resumes policy growth from Xst and rejects a candidate or an existing

primary branch from Xst is when every non-preferred outcome of stochastic transitions

on this primary branch is policy-devoid. Since Fast-PPCP is never prevented from

exploring any non-preferred outcome in a partial policy, in the worst case, this is

when every non-preferred outcome Xnp has been explored and for each Xnp, all

candidate primary branches from Xnp have been rejected. Given 1., we conclude

that the existing primary branch from Xst is rejected only when no full policy with

V -value <= αV ∗L (Xst) can be developed from this primary branch.

The only time Fast-PPCP returns no-solution from Xst is when it rejects every primary

branch from Xst , indicating that no full policy with V -value <= αV ∗L (Xst) can be developed

from Xst .

Lemma 9. Completeness: Suppose there exists a policy π∗ from Xst in the belief-space such

that it satisfies the condition (C1): If there exists a pair of states X1 ∈ πbl and X2 ∈ πbl , where

X2 can be reached with a non-zero probability from X1 following πbl and whose actions

πbl(X1) and πbl(X2) are affected by the hidden variables hS(X1),πbl(X1) and hS(X2),πbl(X2), then

it holds that hS(X1),πbl(X1) is not the same as hS(X2),πbl(X2).

In the worst-case, FAST-PPCP is guaranteed to find π∗.

Proof. Since FAST-PPCP is BL-complete, a particular V ∗L (Xst) is increased only when

no solution is found from Xst , which indicates that every possible full policy has been

considered (not necessarily fully constructed). Then V ∗L (Xst) is increased by running PPCP

iterations. In the worst-case, in limit of the total of number PPCP iterations, it ends up

finding π∗. However, for a particular BL, if BL-completeness is not guaranteed and FAST-

PPCP misses finding a full policy π with V π(Xst)≤ BL, this π can also be missed in the

future in spite of increasing BL, because V π(Xst)≤ BL ≤ BLinc holds for BLinc, the increased
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BL. Thus, BL-completeness guarantees that any other π that is not π∗ but is B∗-bounded is

not missed.

Theorem 3. The full policy π f starting from Xst computed by FAST-PPCP upon termination

is bounded suboptimal.

Proof. FAST-PPCP terminates when it can’t find a policy-devoid belief-state on the current

π̂i. Since π f is no longer a partial policy, V̂ π f (Xst) in this iteration is no longer a lower

bound but is the actual V -value of π f . Since V̂ π f (Xst)≤ BL has been ensured in procedure

COMPUTEBSPATH, π f is V̂ π f (Xst)≤ BL ≤ B∗

5.4 Application to discounted reward-based belief-MDPs

with clear preference and perfect sensing

In this section, we show how to apply FAST-PPCP and PPCP in discounted reward belief

MDPs with clear preference and perfect sensing. We need this application such that we can

experimentally evaluate FAST-PPCP and PPCP for discounted reward-based domains in

addition to undiscounted cost-based domains stated so far in this thesis.

Consider a discounted reward-based belief-MDP MR, with clear preference and having

perfect sensing assumption (CP-PS belief MDP). We now show how to convert MR into a

discounted cost CP-PS belief-MDPs Mc in which FAST-PPCP and PPCP can converge to

a bounded suboptimal and optimal policy respectively. FAST-PPCP computes the initial

V ∗L (Xst)≤V ∗(Xst) by running a single PPCP search. This search is a backward A∗ search

that defines g-values in the underlying deterministic graph of Mc as Q̂ values (Eq. 3 in

PPCP (Likhachev 2006)). This definition makes the g-value of S(Xst) corresponding to the

optimal path from S(Xst) a lower bound on V ∗(Xst). For this to hold, Q̂ values need to be

monotonically increasing from Sg along an optimal path.
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• Assume: minimum cost in Mc is cmin, and maximum cost in Mc is cmax

• Assume: For a belief state action pair (X ,a) if best successor is X ′b with cost cs′b
and

S(X ′b) = s′b, non preferred outcome is X ′f with cost cs′f
and S(X ′f ) = s′f , then cs′b

≤ cs′f

and V ∗(X ′b)≤V ∗(X ′f ).

Then, cs′b
+ γ.V ∗(X ′b)≤ cs′f

+ γ.V ∗(X ′f ).

• We want to see if we can derive conditions such that Q̂v,g∗(S(X),a) > g∗(s′b) for

optimal trajectory.

If Qv,g∗(S(X),a)=∑s′∈{s′b,s
′
f }Ps′max(c(s,a,s′)+ γ.V (s′)),cs′b

+ γ.g∗(s′b))≥ cs′b
+

γ.g∗(s′b)≥ cmin + γ.g∗(s′b)

Sufficient to show cmin + γ.g∗(s′b)> g∗(s′b) or cmin > (1− γ)g∗(s′b)

If assume optimal path from every state to goal has maximum steps Tmax,

then (1− γ)g∗(s′b) ≤ (1− γ)(cmax + γ.cmax + γ2.cmax.....+ γTmax .cmax = (1−

γTmax).cmax

Also, we want Mc to be such that if a full policy π∗ from X is optimal in MR, it is also

optimal in Mc. Specifically, we want the following relation R1:

R1: If V π
MR

(X)>V π∗
MR

(X), then V π
Mc
(X)>V π∗

Mc
(X), and if V π

MR
(s) =V π∗

MR
(X), then V π

Mc
(X) =

V π∗
Mc

(X).

We assume:

(1) We know a constant Tmax s.t. Tmax = maxX∈MR(|π∗(X)|) where |π∗(X)| is the length of

the longest branch in the optimal policy π∗ from state X , and (2) We can compute a constant

C > Rmax = the maximum reward values in MR We propose the following transformation

from MR to Mc such that if π∗ from X is optimal in MR, it is also optimal in Mc:

(1) R→−R+C (map all rewards R in MR to costs −R+C in MC), and (2) For a belief
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state X ∈MR and a full policy π starting from X , let ρbel
l be the branch from X to goal in

π having the largest number of actions (given by |ρbel
l |) among other branches in π . If

|ρbel
l |< Tmax, for each branch ρbel in π add Tmax−|ρbel| number of self-absorbing actions

at goal with cost C , else add |ρbel
l | number of self-absorbing actions at goal with cost C .

In practice, we implement this in PPCP’s backwards A* search in the deterministic space

by planning for Tmax steps with the step number t included in the state space. This leads to

following relationship between values :

For full policy π from X with |π|= |ρbel
l | as defined,

V π
Mc
(X) =−V π

R (X)+C
(1− γ |π|)

(1− γ)
,/i f |π|> Tmax (5.12)

V π
Mc
(X) =−V π

R (X)+C
(1− γTmax)

(1− γ)
,/i f |π| ≤ Tmax (5.13)

In both cases, for |π∗| ≤ Tmax R1 holds.

Further, if Rmin and Rmax are the minimum and maximum reward values in MR respectively,

we derive the following condition on C to ensure monotonicity: In Mc, let cmin = C −Rmax,

and cmax = C −Rmin.

Recall that in order to get Qv,g∗(S(X),a)> g∗(s′b) for optimal trajectory, we showed that it

was sufficient to show:

cmin > (1− γ)g∗(s′b) (5.14)

In Mc, after the transformation, g∗(s′b)<
(1−γTmax)
(1−γ) max(cmax,C ).

Therefore, we need the following condition to be true:

cmin > (1− γ
Tmax)max(cmax,C ) (5.15)

For positive costs in Mc, we need C > Rmax
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Combined condition on C :

C > max
(

Rmax,
Rmax

γTmax
,
Rmax− (1− γTmax)Rmin

γTmax

)
(5.16)

5.5 Experiments

All experiments were run on a machine with an Intel® Core™ i7-5600U CPU @ 2.60GHz

× 4, and 15 GB RAM. All algorithms were implemented in C++11, compiled using the

same optimization flag -03.

Domain 1: Robot Navigation in Partially Known Environment We compare FAST-

PPCP with PPCP and weighted-RTDP-BEL (WRTDP-BEL)—with a weight on the

admissible heuristic in RTDP-BEL [15]—which serves as a suboptimal baseline belief-

MDP planner. We run experiments in the robot navigation domain on 2D grids of size

60×60 (small) with 7, 11 and 15 unknown variables and 300×300 (large) with 309 and

474 unknown variables (corresponding to 30%, and 50% of the doors being hidden).

Results: Results in Tables 5.3 (small environments) and 5.4 (large environments) are

averaged over 40 planning instances.
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Algorithm Time(s) Exp. cost Iterations

unk. = 7; α = 1.5

Fast-PPCP 0.03 ± 0.05 83 ± 12 3.12 ± 2.51

wRTDP-Bel 600 (timeout) 90 ± 10 237 ± 459

PPCP 1.10 ± 0.60 80 ± 10 138.87 ± 73.86

unk. = 11; α = 1.5

Fast-PPCP 0.03 ± 0.04 83 ± 11 2.90 ± 2.18

wRTDP-Bel 600 (timeout) 90 ± 11 162 ± 305

PPCP 0.75 ± 0.46 79 ± 10 89.29 ± 56.20

unk. = 15; α = 1.5

Fast-PPCP 0.03 ± 0.06 82 ± 12 3.15 ± 2.53

wRTDP-Bel 600 (timeout) 89 ± 11 171 ± 326

PPCP 1.17 ± 0.67 79 ± 10 140.57 ± 78.01

unk. = 7; α = 2.0

Fast-PPCP 0.01 ± 0.003 85 ± 12 2 ± 0

wRTDP-Bel 600 (timeout) 94 ± 5 71 ± 65

PPCP 1.10 ± 0.60 80 ± 10 138.87 ± 73.86

unk. = 11; α = 2.0

Fast-PPCP 0.03 ± 0.04 84 ± 12 2 ± 0

wRTDP-Bel 600 (timeout) 94 ± 5 67 ± 75

PPCP 0.75 ± 0.46 79 ± 10 89.29 ± 56.20

unk. = 15; α = 2.0

Fast-PPCP 0.01 ± 0.003 85 ± 13 2 ± 0

wRTDP-Bel 600 (timeout) 95 ± 5 81 ± 100

PPCP 1.17 ± 0.67 79 ± 10 140.57 ± 78.01

Table 5.3: Navigation (small environments)
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In small environments, FAST-PPCP with α = 1.5 computes a policy in 3 iterations

on average, with expected cost ∼ 1.03 times higher than the optimal, while being ∼

36 times faster in environments with 7 and 15 unknowns, and 25 times faster with 11

unknowns. However, with α > 1.6 (we have reported for α = 2), FAST-PPCP chooses

purely deterministic paths over paths with stochastic actions. WRTDP-BEL with weight 2

is unable to converge within a timeout of 10 minutes (values reported at timeout). For large

environments with 309 unknowns, FAST-PPCP with α = 1.5 and 1.7 computes solutions

∼ 1.03 higher than PPCP while being ∼ 11 and ∼ 25 times faster than PPCP. Similar

results are seen for both weights in the 474 unknown variables case. WRTDP-BEL is unable

to converge within 30 mins for large environments.

Algorithm Time(s) Exp. cost Iterations

unk. = 309; α = 1.5

Fast-PPCP 13.16 ± 36.63 412 ± 60 4 ± 4.19

PPCP 146 ± 23 380 ± 53 758 ± 525

unk. = 474; α = 1.5

Fast-PPCP 20.73 ± 43.7 514 ± 73 5.2 ± 5.6

PPCP 146 ± 23 380 ± 53 758 ± 525

unk. = 309; α = 1.7

Fast-PPCP 5.97 ± 23.62 408 ± 62 2.51 ± 2.2

PPCP 150 ± 0.1 384 ± 52 619 ± 379

unk. = 474; α = 1.7

Fast-PPCP 6.23 ± 24.58 539 ± 87 3.3 ± 3.7

PPCP 150 ± 0.1 384 ± 52 619 ± 379

Table 5.4: Navigation (large environments)

Domain 2: RockSample. We chose the RockSample domain [105] that has a clear
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preference of outcomes (it is preferred to sense a good rock over a bad rock) to evaluate

PPCP and FAST-PPCP in a discounted belief-MDP setting with discount factor γ = 0.95.

We maintain the perfect sensing assumption by removing “check" actions and update

the belief states accordingly. We compare with HSVI2 [105] which, as shown in [72],

performs better than SARSOP for the RockSample domain. Results are averaged over 3

environments each for Rocksample(10,10) and Rocksample(15,15) and planning instances

generated by varying the start state from top to bottom at the left boundary for each

environment (the goal is any state on the right boundary).

Results: Results are summarized in Table 5.5.

Algorithm Time(s) Exp. reward Iterations

RockSample(10,10)

Fast-PPCP (α = 1.1) 1.23 ± 0.20 21 ± 25 2 ± 0

PPCP 4.21 ± 1.28 51 ± 20 79 ± 52

HSVI2 600 (timeout) 12 ± 1 2215 ± 184

RockSample(15,15)

Fast-PPCP (α = 1.1) 5.12 ± 2.74 51 ± 120 2.11 ± 0.42

PPCP 44.13 ± 30.37 70 ± 150 203 ± 179

HSVI2 - - -

Table 5.5: RockSample

Note that the values reported in column 2 are expected rewards V π
R instead of expected

costs V π
C , the relation given in section 5.4. For α = 1.1, in RockSample(10,10) problems,

FAST-PPCP spends roughly a quarter of the time, in∼ 39 times fewer iterations than PPCP

on average to terminate, and in RockSample(15,15) problems, FAST-PPCP spends roughly

one-eighth of the time, in ∼ 100 times fewer iterations than PPCP on average to terminate.

For both RockSample domains, HSVI2 takes longer than 10 minutes to converge, and
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computing an explicit belief space for some RockSample(15,15) instances even exhausts

memory on a 15-GB RAM machine.

5.6 Conclusions, Discussion, and Lessons Learned

In this work, we present FAST-PPCP—a novel approach to probabilistic planning in

domains with clear preferences over missing information. We achieve substantial decrease

in run-time while incurring little loss in solution quality compared to PPCP, the state-of-

the-art for planning on these problems, as well as other popular belief-MDP planners.

One limitation of FAST-PPCP is that it may be possible to construct worst-case scenarios

in which FAST-PPCP performs computationally worse than PPCP. This is similar to the

behavior of bounded-suboptimal deterministic searches such as weighted A*. Another

limitation is the perfect sensing assumption which makes the scope of the problem narrower

than POMDP planning.

We observe that dominance relationships between search nodes, that are exploited to

prune parts of the search graph, significantly increase search efficiency. Without exploiting

state dominance relationships, the FAST-PPCP search is around ∼5 times slower compared

to the search using state dominance.

There are two main approaches to POMDP planning: offline policy computation and

online search. In offline planning, the agent computes beforehand a policy contingent upon

all possible future outcomes and executes the computed policy based on the observations

received. One main advantage of offline planning is fast policy execution, as the policy

is pre-computed. FAST-PPCP is an offline planner. In the RockSample domain, FAST-

PPCP scales up dramatically for larger size RockSample problems than was possible

previously by existing offline planners. Specifically, previous offline algorithms have

achieved speed-up without exceeding the memory limit of standard CPUs for a maximum
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size of RockSample(11,11) [117]. SARSOP [72], one of the fastest offline POMDP solvers,

exceeds memory limits for RockSample problems larger than size (11,11). HSVI2 [106]

and HSVI [105], two very popular offline POMDP solvers, exceed memory limits for

RockSample problems larger than size (10,10) and (7,8) respectively. However, we have

run FAST-PPCP on a RockSample problem of size (15,15) where FAST-PPCP terminates

within ∼5 seconds.

Both FAST-PPCP and PPCP assume a clear preference over the outcomes of uncertain

actions, that is, that we can identify a priori which outcomes of uncertain actions are known

to be the best. While many problems exhibit clear preferences, there are many others

for which it is difficult or impossible to predict clear preferences. However, in many of

these cases, we can come up with approximate preferences, where we do not know a clear

preference but have a bounded approximation on which outcomes we think may be the

best. For example, while navigating in an environment with some surfaces that might be

slippery, such as ice, we prefer that a surface is not slippery. But, the robot could "slip"

along ice directly towards the goal with little effort. If the action costs are proportional to

the efforts/energy required to reach the goal, it is not entirely true that it is best not to be

slippery.

If approximate preference holds in a domain, the properties of completeness and

bounded suboptimality would still hold for cases when FAST-PPCP finds a bounded

suboptimal policy by iteratively executing Policy Growth only—by only adding branches

to grow a partial policy in each iteration. If FAST-PPCP enters Policy Correction in an

iteration, that is, it starts removing and replacing existing branches in the current partial

policy, then the properties of completeness and bounded suboptimality would not hold. This

is because of the following. FAST-PPCP updates the underestimate of the value of optimal

policy from the state it decides to replace a branch. It performs the update by visiting all
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paths from that state in the deterministic space and finding the minimum over the value

of the partial policy corresponding to the primary branch that maps to a path. When clear

preference holds, this minimum value is a lower bound on the value of any partial policy

from the given state. However, this minimum value is not necessarily a lower bound when

approximate preference holds.
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Chapter 6

Optimizing Fast-PPCP for Planning in

Environments with Large Unknown

Regions

6.1 Motivation

In many real-world planning problems, AI agents operate in partially known environments.

One approach for the agent to plan in such environments is by taking a deterministic

approach, i,e., planning by assuming some instantiation of the variables that represent

missing information about the environment (unknown variables), executing few actions

of the plan, and replanning in response to sensing. While computationally efficient, this

approach may lead to highly suboptimal behavior. In contrast, planning under uncertainty

allows an agent to be much more robust with respect to missing information but also

becomes computationally dramatically more expensive as it is a special class of planning
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Figure 6.1: Satellite imagery of a part of Fort IndianaTown Gap, PA. There are large
regions of unknown traversability due to dense forest canopies (dark green).

for Partially Observable Markov Decision Processes (POMDPs) [62, 68].

[80] showed that real-world planning problems often possess the property of clear

preferences (CP), wherein one can identify beforehand clearly preferred values for unknown

variables in the environment. For example, consider a robot navigating in a partially known

environment: it will clearly prefer for any unknown region to be traversable rather than

not. For problems that exhibit clear preferences and assume perfect sensing (CP-PS

problems)—an assumption that there is no noise in sensing an unknown variable and any

sensing operation returns the true state of the variable being sensed— [23] introduced

FAST-PPCP, a novel planning algorithm that computes a provably bounded suboptimal

policy. It provides a substantial gain in runtime over common alternative approaches to

planning under uncertainty over missing information.

Starting from the start state, FAST-PPCP iteratively grows a partial policy into a full
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policy. In each iteration it adds a path to the partial policy from a state in it that has no policy

defined from it. For every policy-devoid state, FAST-PPCP maintains an underestimate of

its optimal value.

In this work, we are motivated by the application of FAST-PPCP for goal-directed

planning for navigation in partially known environments with large unknown regions.

Partially known off-road terrains such as mines, military bases and disaster sites can have

large unknown regions. Similarly, indoor environments can have large carpets or rugs. For

some carpets that are thick, it is unknown at the time of planning whether the robot can get

on to the carpet and completely traverse it or not.

In the domains of off-road navigation and indoor navigation, the agent typically has

a static map of the environment. For example, the agent has access to a map of a terrain

constructed from satellite imagery. The traversability of most of the terrain can be deduced

from these aerial images, except for a few regions that are occluded by roofs or canopies

in the aerial view (Figure 6.1). The agent can perfectly sense the traversability of each

unknown region from any state adjacent to the boundary of this region (boundary-adjacent

state). The preferred outcome of sensing is that the region is traversable.

When growing the partial policy constructed so far in this domain, consider the case

when FAST-PPCP discovers that adding any path that senses an unknown region h from

a boundary-adjacent state s leads to an invalid partial policy, i.e., one that would never

grow into a bounded-suboptimal full policy. It discovers this invalidity only after exploring

all paths from the non-preferred outcome of sensing h from s, which is a computationally

expensive operation. Once discovered, it updates its knowledge of the value-underestimate—

underestimate of the optimal value—of this non-preferred outcome with a more informed

underestimate, i.e., the minimum over the cost of all the explored paths.

FAST-PPCP in its current form is agnostic to the correlation between value-underestimates
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of sensing an unknown region from each boundary-adjacent state. As a result, it does not

update value-underestimates of sensing h from other boundary-adjacent states when one of

them gets its value-underestimate updated. Thus, it keeps adding paths that sense h from

other boundary-adjacent states, and discovers their invalidity only after wasting search

effort in explicitly exploring all paths from the non-preferred outcomes of sense actions

in them. The search effort in these explorations can be quite high when the number of

boundary-adjacent states is high due to large unknown regions. Large unknown regions

in real world off-road terrains can be common due to forest canopies, mine-tunnels or

structures covered with roofs. Similarly, even indoor environments can have large regions

of unknown traversability such as mats or carpets on the floor.

In this work, we introduce an optimized version of FAST-PPCP with the aim of reducing

wasted search effort incurred while planning in environments with large unknown regions.

Our key insight is the following: if sensing h from a boundary-adjacent state s results

in an invalid partial policy, then sensing h from other boundary-adjacent states near s

are also likely to result in invalid partial policies. The optimized version of FAST-PPCP

utilizes the correlation between value-underestimates of boundary-adjacent states; it uses the

updated value-underestimate of sensing h from s to simultaneously compute updated value-

underestimates of sensing h from other boundary-adjacent states. This update identifies

invalid partial policies without having to waste search efforts to discover the invalidity via

explicit exploration.

6.2 Problem Definition, Assumptions and Background

Example Domain. Consider an example environment in Figure 6.2, which is an ap-

proximate representation of the terrain in Figure 6.1. A robot has to navigate from start

to goal in the terrain represented by the 2D grid. We refer to this example as [Ex.: ]
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Figure 6.2: Approximate representation of the terrain in Figure 6.1 with two unknown
regions (grey).

and use this throughout the paper. The terrain has grid-cells that may or may not be

traversable. The robot can/cannot occupy the white/black grid-cells because they are known

to be traversable/non-traversable. The robot can move between the traversable cells using

eight move actions that move the robot in the cardinal and inter-cardinal directions by one

cell. However, there are some cells ( [Ex.: cells in light and dark grey regions] ) whose

traversability status is unknown at the time of planning, which affects the outcomes of some

actions. The robot can execute a stochastic action sense-and-move at any boundary-adjacent

state, that senses an unknown cell and moves the robot to it only if it is free, else stays put.

The cost of a move action is equal to the Euclidean distance between two adjacent cells (1.4

for diagonal, 1 for others). The cost of a sense-and-move action follows the cost of a move

action if the hidden cell is free, else is 2.
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A1 The environment is deterministic, i.e., if the environment were fully known at the time of
planning, there would be no uncertainty in the outcome of an action.

A2 The agent has a probability distribution or belief over the status of the unknown variables.
A3 All states in an unknown region have the same true status.
A4 If an unknown state is sensed and its status is known, the status of the entire unknown

region containing this state becomes known and is the same as that of the sensed state.
A5 The true status of an unknown variable becomes known immediately upon being sensed

(perfect sensing assumption).
A6 Only one unknown variable can affect the outcome of an action a taken at s(X). However,

the same unknown variable is allowed to affect outcome of another action taken at another state.
A7 The variables in H are independent of each other and therefore P(H) = ∏

|H|
i=1 P(hi).

Table 6.1: Assumptions used in the optimized version of FAST-PPCP.

Problem definition and assumptions. We assume that the environment is deterministic

and the uncertainty is only due to the traversability status of some cells being unknown

(assumption A1 in Table 6.1). Given no uncertainty in localization or transition uncer-

tainty, FAST-PPCP formulates a belief state as a vector of discrete variables split into two

component, X = [s(X),H(X)]. s(X) is the set of variables whose status is fully observable

[Ex.: robot’s 2D location] . The hidden component, H(X), is a set of variables where

each variable H(X), known as an unknown variable, represents the traversability status of a

given unknown region. An unknown region is a connected component such that all states

in the component have the same status (assumption A3 in Table 6.1). [Ex.: All cells in

an unknown region in our example domain have same traversability status due to either

homogenous terrain type or even slope.]

We denote the ith unknown variable in H(X) by hi(X). hi(X) = u indicates that hi(X)

is unknown. [Ex.: h1 is an unknown variables representing the status of the dark

grey region, h2 hi = 0/1/u indicates the cell hi is traversable/non-traversable/unknown.

Xst = [start;h1 = u,h2 = u] represents the start belief-state Xst ; the values of all the unknown

variables are unknown before planning starts] . We assume that the agent has a probability

distribution or belief over the status of the unknown variables (A2 in Table 6.1).
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We denote the set of actions applicable at a belief state X by A(s(X)). Action a ∈

A(s(X)) is applicable at any belief state Y where S(Y ) = s(X). However, the outcome of an

action a depends on an unknown variable, and we denote the unknown variable in H(X)

affecting its outcome by hs(X),a. There are either deterministic actions or stochastic sense

actions. The outcome of a deterministic action [Ex.: move actions] is unaffected by any

unknown variable, and so it has only one outcome because the underlying environment

is deterministic. A stochastic sensing action [Ex.: sense-and-move actions] can have

multiple possible outcomes depending on the true status of the unknown region being

sensed. We assume that the assumptions A4 and A5 in Table 6.1 hold for a stochastic sense

action. For a succcessor X ′ of X in the belief-space, note that the hidden component remains

the same in X and X ′, i.e., H(X) = H(X ′) for a deterministic action. For a stochastic action,

H(X) is the same as H(X ′) except for hs(X),a, which becomes known if it was unknown.

The probability distribution of transitions P(X ′|X ,a) is the same as the probability

distribution over statuses of the unknown variable hs(X),a that affects the outcome of

executing a at X . Given that we represent the status of all cells in a given unknown region

by a single unknown variable, we can make the assumption that the statuses of the unknown

variables in H(X) are independent of each other (A7 in Table 6.1) [Ex.: In our example

domain, this assumption can be implemented when the unknown regions are far enough

from each other such that knowing the traversability of one does not say anything about

the traversability of other regions] . Given this independence assumption, X concisely

represents a probability distribution over all possible states.

[Ex. h1 in Figure 6.2 represents the status of the dark grey unknown region and

affects the outcome of the action sense-and-move taken on any of the boundary-adjacent

cells s1− s14. Let X = [s1;u,u] be a belief state. When taken on X , sense-and-move

produces two belief-state outcomes: X1 = [s15;h1 = traversable,u] and X2 = [s1;h1 =
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Term Definition

Full Policy
from belief
state X

Tree rooted at X s.t every branch reaches a belief state Xg s.t S(Xg) = Sg for a
given goal Sg.

Partial Policy
from X

Policy rooted at belief state X that has at least one belief state without a defined
action.

Unexplored
belief state

Non-preferred outcome on a partial policy from which a path has not been
searched yet

Policy-
devoid belief
state

Non-preferred outcome on a partial policy without an action defined from it
(Unexplored belief states and belief states from which policy growth failed)

Table 6.2: Definitions

non− traversable,u] both with a probability of 0.5]. If Xb, Xnp are the preferred and

non-preferred outcome of (X ,a), then the cost C(X ,a,Xb) of the edge (X ,a,Xb) in the

belief-space =C(S(X),a,S(Xb)), the cost of the corresponding edge in the deterministic

space, and C(X ,a,Xnp) =C(S(X),a,S(Xnp)).

Clear Preferences. We assume that every unknown variable’s clearly preferred value

is known beforehand. [Ex.: we prefer that an unknown region is traversable rather

than blocked] . For any X , let V ∗(X) be the expected cost of executing an optimal pol-

icy (that minimizes expected cost to goal) from X . We define clear preferences [80]

as follows: For any given state X and stochastic action a such that hS(X),a is unknown,

there exists a successor state Xb such that hs(X),a(Xb) = b (we denote the clearly pre-

ferred value using the variable b) [Ex.: b = 0 representing traversable] and Xb =

argminX∈succ(X ,a)
{

c(S(X),a,s(X))+V ∗(X)
}

, where succ(X ,a) represents the set of suc-

cessors of executing a at X .

Planning Problem. The planning problem is to compute a policy (defined in Table 6.2)

from Xst .
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6.3 Fast bounded suboptimal PPCP

Before describing an overview of FAST-PPCP’s operation, we point the reader to Table 6.2

to familiarize with some definitions.

Key idea of FAST-PPCP. A FAST-PPCP search meets the following search objective: to

compute a path that explicitly minimizes the number of stochastic transitions in it, while

ensuring that including this path in the partial policy can result in a provably bounded

suboptimal full policy π f from Xst , when construction of the policy is completed. Also,

it has a policy growth strategy such that the first time the search terminates, the policy is

guaranteed to be bounded suboptimal which leads to significant speedup. It also has a

strategy for scheduling the searches to ensure completeness.

6.3.1 Overview of FAST-PPCP operation

In order to understand how search efforts are wasted, we first briefly revisit some concepts

related to FAST-PPCP using the environment in Figure 6.3 as an example.

Fast-PPCP: Search in the Deterministic Space. Starting from Xst = [start,h1 = u,h2 = u]

with an empty partial policy, FAST-PPCP attempts to iteratively grow a partial policy into

a full bounded suboptimal policy. In order to grow a partial policy, FAST-PPCP first

picks a policy-devoid belief state Xp in the current partial policy—a belief state without

an action defined from it. FAST-PPCP then starts an iteration from Xp and attempts to

add in the current partial policy a path from this belief state. To compute such a path,

FAST-PPCP searches for a path from the deterministic component s(Xp), in the underlying

deterministic space instead of the exponentially larger belief space. This deterministic

space is constructed assuming every unknown variable in X that is still unknown is set to

its preferred value, and every known unknown variable is set to its known value. Because
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of this construction, the found path p maps to a corresponding path pbel in the belief space

from Xp, that consists of transitions that only correspond to either deterministic actions, or

stochastic actions with their clearly preferred outcomes.We refer to such a belief-space path

corresponding to path p from s(Xp) as the primary branch from Xp to goal.

Fast-PPCP: Rejection Condition for a Path. In a FAST-PPCP search from S(Xp), FAST-

PPCP sequentially computes candidate paths from S(Xp) in increasing order of the number

of stochastic transitions on them, and rejects a path if adding it to the current partial policy

results in an invalid partial policy—one that cannot be developed into a bounded suboptimal

policy no matter which unexplored belief state on it is explored in future iterations. While

deciding whether to add or reject the path p during a FAST-PPCP search, the FAST-PPCP

search computes V̂ p(Xp)— the estimated expected cost of any full policy from Xp that

contains the primary branch pbel that maps to p. We define the estimated expected cost

of a partial policy from a belief state in the same way as the conventional definition of

the expected cost of a full policy, except that the V-value of a policy-devoid belief state

X in this partial policy is set to an estimate V̂ -value V̂ (X) maintained by FAST-PPCP. If

the true minimum V-value of X , V ∗(X), was known for each policy-devoid belief state,

then the estimated expected cost would be the true minimum expected cost. But V ∗(X) is

not known to FAST-PPCP for all X in the belief space at the start of planning; however

FAST-PPCP maintains an underestimate V̂ ∗(X) for all X . V̂ ∗(X) is initially set to a known

underestimate before FAST-PPCP begins. Since V̂ ∗(X2) is an underestimate of V ∗(X2), the

estimated expected cost V̂ p2(Xp) is a lower bound on the minimum expected cost of any

full policy from Xp containing pbel . FAST-PPCP then computes the estimated expected

cost of the updated partial policy if pbel is added to the current partial policy from Xp, with

V̂ -value of Xp as V̂ p(Xp). Since V̂ p(Xp) is a lower bound, the estimated expected cost

of the updated partial policy is also a lower bound on the minimum expected cost of a

106



6. Optimizing Fast-PPCP for Planning in Environments with Large Unknown Regions

full policy containing this updated partial policy. FAST-PPCP uses this lower bound to

reject a path: if this lower bound exceeds the suboptimality bound, then no full policy

containing this updated partial policy can be developed thereafter whose V-value is within

the suboptimality bound. Hence, p is rejected.

Fast-PPCP: Updating Underestimates of V ∗ in the case of invalid-solution-found.

It is possible during the FAST-PPCP search that it explores every path from S(Xp) as candi-

date and rejects all of them because adding any of them to the current partial policy results

in an invalid updated partial policy. We refer to this case as invalid-solution-found

from Xp given the current partial policy. In this case, since every possible path has been

computed and its V̂ p(Xp)-value is known, FAST-PPCP computes the minimum value of

V̂ p(Xp) over all possible paths; this minimum is an underestimate of V ∗(Xp). FAST-PPCP

then updates the initial underestimate of V ∗(Xp) to this minimum V̂ p(Xp). Note that FAST-

PPCP in its current form updates underestimate of V ∗ for a policy-devoid belief state in the

current partial policy only in the invalid-solution-found case.

6.4 Optimizing FAST-PPCP

In this section, we first present the motivation for optimizing FAST-PPCP using a running

example and then present the optimization.

6.4.1 Motivation for optimization in FAST-PPCP:

We now show an example in Figure 6.3 where FAST-PPCP wastes computational efforts.

At some FAST-PPCP iteration, let’s say it explores the belief state X1 = [s1,h1 = non−

traversable,h2 = non− traversable] in the current partial policy. Consequently, FAST-

PPCP concludes invalid-solution-found from X1. Then, FAST-PPCP updates the
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Figure 6.3: Running example to illustrate wasted computational efforts in FAST-PPCP.

underestimate V̂ ∗(X1) of V ∗(X1) as explained in Fast-PPCP: Updating Underestimates

of V ∗ in the case of invalid-solution-found..

At a later iteration, let us assume Xp = [S(Xp),h1 = u,h2 = non− traversable] is the

belief state from which FAST-PPCP starts an iteration. Consider the path p1 that has a

sense-and-move action executed at s1 that produces the non-preferred outcome X1 in the

belief space. The underestimate of V ∗(X1) was updated when X1 was previously explored

as mentioned before. Let us say this updated underestimate of V ∗(X1) is high enough

such that adding p1 makes the lower bound on the expected cost of partial policy exceed

suboptimality bound, and as a result p1 gets rejected. Consider any other path from S(Xp)

which also has a sense-and-move action to sense h1 and has only this stochastic action—

in Figure 6.3 this could be paths p2 or p3, or any other path from S(Xp) that has only one

sense-and-move action executed for sensing h1 at the states s2....s14 that are neighbors

of the unknown region represented by h1. Note that FAST-PPCP sequentially computes
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candidate paths from S(X p) in increasing order of the number of stochastic transitions on

them. Given that these paths have the same number of stochastic actions as p1, that is one,

FAST-PPCP after rejecting p1 would compute one of these paths as the next candidate. For

the sake of example, let the candidate path be p2.

Path p2 has a sense-and-move action at state s2 that senses the unknown variable h1

which produces the non-preferred outcome X2 = [s2,h1 = non− traversable,h2 = non−

traversable] in the belief space. If X2 is unexplored, the underestimate V̂ ∗(X2) of V ∗(X2)

used while computing the lower bound of the expected cost of the partial polic if path

p2 is added, as mentioned in Fast-PPCP: Rejection Condition for a Path. This initial

underestimate is likely to be much lower than the true minimum expected cost V ∗(X2) of

any policy from X2. Because of this low underestimate, FAST-PPCP would estimate the

lower bound of the expected cost of the partial policy if path p2 is added as really low,

which would not exceed the suboptimality bound. Because of this, FAST-PPCP would add

p2 in the current partial policy.

However, in reality the true V ∗(X2) might be high, because of which no path from X2

can be added to the current partial policy with its lower bound on expected cost within the

suboptimality bound. This would mean that no path exists from X2 adding which to the

updated partial policy can give a full bounded suboptimal policy, and thus p2 should have

been rejected. Only at a future iteration will FAST-PPCP start from X2 because it is unex-

plored, and then actually explore all paths from X2 to conclude invalid-solution-found.

Exploring all paths from X2 itself can be quite computationally expensive especially for

large environments.

After concluding no-sol-found from X2, FAST-PPCP at a further later iteration

might start again from Xp: this time, both p1, p2 would be rejected because their respec-

tive underestimates have been updated. However, any path pi from S(Xp) that only one
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sense-and-move action executed at a neighboring state si of h1 that is not s1 or s2—for

example path p3—with the unexplored non-preferred outcome Xi in the belief space—might

get added and later removed, because of the same reason by which p2 got added previously,

further increasing computation.

More generally, in the worst case FAST-PPCP might end up adding all paths hav-

ing a sense-and-move action executed at the neighboring states s2.....s14 of h1, and

rejecting them in future iterations only after spending computational efforts to conclude

invalid-solution-found from the non-preferred outcome of sensing h1. If the unknown

region represented by h1 is large, then the number of such paths can be high. Thus, the

overall computational effort spent to reject them could be quite high.

What if we could use the updated underestimate V̂ ∗(X1) to update the underestimate

V̂ ∗(Xi) from the initial really low underestimate to a higehr value, in such a way that

FAST-PPCP preemptively rejects pi in the same iteration when it rejects p1, and thus never

adds pi in the current partial policy? This would save future iterations that would be spent

in FAST-PPCP finding that Xi is policy devoid, and then actually exploring policies from Xi

only to discover that no full bounded suboptimal policies exist from Xi given the current

partial policy and then later rejecting pi.

We propose an optimization to address the following two questions.

• Q1: With paths p1, pi and belief states X1, Xi as defined earlier, and the true minimum

expected cost V ∗(Xi) being high such that pi should be rejected given the current

partial policy, can we update the underestimate V̂ ∗(Xi) so that pi gets rejected in the

same iteration when p1 is rejected?

• Q2: If this update requires any computation, is it significantly faster than that required

in starting a FAST-PPCP iteration and exploring all paths from Xi to conclude

invalid-solution-found.
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6.4.2 Optimization

Note that X1 and Xi have the same hidden component: H(X1) is the same as H(Xi). This is

because:

(1) p1 and pi are paths that map to their corresponding paths in the belief space from X(p).

Thus, unknown variables that are known in Xp are also known in X1 and Xi. Also,

(2) both paths have a sense-and-move action that senses the same unknown variable h1.

Since X1 and Xi are the outcomes of sensing h1 when it is non-traversable, h1 in both X1

and Xi is non-traversable. Thus, the set of known (and unknown) unknown variables in X1

is the same as that in Xi: H(X1) = H(Xi).

If X1 = [s1,H(X1)] and Xi = [si,H(Xi)] have the same hidden component, then any

feasible path from X1 to Xi is purely deterministic, .i.e, consisting only of deterministic

actions. This is because deterministic actions do not make any unknown variable known,

and thus are the only actions that can be used to go from X1 to Xi. Note that a deterministic

path uniquely maps to a path from s1 to si in the 2D grid constructed assuming whichever

cells are known in H(X1) (equivalently H(Xi)) are set to their known value, as mentioned

in Fast-PPCP : Search in the Deterministic Space. The dotted path from s1 to s2 in

Figure 6.3 is an example of a feasible deterministic path in the 2D grid where cells in

h1 and h2 are non-traversable because they are non-traversable in H(X1) (or H(Xi)). The

cost of such a path from X1 to Xi in the belief space is equal to the cost of the mapped

path from s1 to si. This is because (1) both paths have same actions, and (2) the cost

of a deterministic transition (X ,a,Y ) in the belief space—where (X ,a,Y ) represents the

transition that corresponds to executing deterministic action a at belief state X to produce

outcome Y —is equal to the cost of the mapped transition (s(X),a,S(Y )) in the 2D grid.

Given the cost of a deterministic path pbel from X1 to Xi is the same as the cost of its mapped

path p from s1 to si, our high-level intuition is that it is possible to derive a relationship
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between V ∗(Xi) and V ∗(X1)—which are minimum expected costs in the belief space—using

the cost of p, and subsequently between the underestimates V̂ ∗(X1) and V̂ ∗(Xi). The cost of

p can be computed by searching in the 2D grid space instead of the much larger belief space.

Thus, if V̂ ∗(X1) is updated and the cost of this path from s1 to si is known, then V̂ ∗(Xi) can

also be updated. This updated V̂ ∗(Xi) can make FAST-PPCP reject pi without having to

explore all paths from Xi to conclude invalid-solution-found. If the computational

expense of computing the cost of the path from s1 to si is significantly lower than that spent

in starting a FAST-PPCP iteration and exploring all paths from Xi, then FAST-PPCP can

achieve speedup.

We use this intuition to propose the following optimization: c(s1,s2) can be computed

offline using a Djikstra search from s1 to s2, thus this cost c(s1,s2) should be used to update

V (b2). Since costs in the 2D grid and belief space are same for deterministic actions, the

following inequality holds:

V (b1)≤V ∗(b1)≤ c(s1,s2)+V ∗(b2)

Or, V (b1)− c(s1,s2)≤V ∗(b2)
(6.1)

Thus, V (b1)− c(s1,s2) is an underestimate of V ∗(b2). If this underestimate is higher than

the previous underestimate of V ∗(b2), then we update the previous underestimate with this

new value. We perform this update for every X with S(X) being a boundary-adjacent state

whenever invalid-solution-found happens for a state X .

6.5 Simulation experiments

All experiments were run on a machine with an Intel® Core™ i7-5600U CPU @ 2.60GHz

× 4, and 15 GB RAM. All algorithms were implemented in C++11, compiled using the
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same optimization flag -03.

We evaluate optimized FAST-PPCP in simulation in the domain of robot navigation

in partially known off-road terrain. We run experiments on a real-world map of the Fort

IndianaTown Gap, PA (Figure 6.4) with a grid-size of 698×639 with 20 unknown regions

of radius 100 cells. A sense-and-move action is applicable only at the boundary (blue in

Figure 6.5) of an unknown region.

Figure 6.4: Real map of Fort IndianaTown Gap, PA (left). Unknown regions are shown in
red (right).

We compare the optimized version of FAST-PPCP with an optimization introduced in

the original PPCP paper. We compare the optimized version of FAST-PPCP with optimized

PPCP which implements a similar optimization used in the original PPCP algorithm.

6.5.1 Results

Results in Tables 6.3 are averaged over 20 planning instances. In the map in Figure

6.4, optimized FAST-PPCP with α = 1.3 computes a policy in ∼ 5 iterations on average.

The expected costs in the case of optimized FAST-PPCP are 1.07 times higher than the
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Figure 6.5: Visualization of a part of the map shown in Figure 6.4. Red regions are free,
black cells are the regions whose traversability is unknown. Their boundaries are visualized
in blue.

Algorithm Time (s) Expected cost Iterations
unk. = 20; α = 1.3
Optimised FAST-PPCP 194.77 ± 170.9 2763.7 ± 388.80 4.58 ± 2.81

Optimised PPCP 417.75 ± 173.05 2576.6 ± 374.2 231 ± 101.49

Table 6.3: Performance comparison of optimized FAST-PPCP with optimized PPCP.

optimal expected cost computed by optimized PPCP. Optimized FAST-PPCP reduces the

planning times by a factor of 2.07 as compared with optimized PPCP. The number of

optimized FAST-PPCP iterations is much lower (51.3 times) than the number of iterations

of optimized PPCP. However, planning time reduces only by a factor of 2.07 because the

time taken per iteration in optimized FAST-PPCP is higher than that of optimized PPCP.

An interesting future research direction would be to reduce the time taken per iteration in

optimized FAST-PPCP, and consequently in FAST-PPCP).

We also compare with the original FAST-PPCP algorithm without the optimization

introduced in this chapter. FAST-PPCP without optimization is unable to plan within a
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timeout of 15 minutes for 4
5 of the instances. For the remaining 1

5 of the instances, as

expected, it performs the same as optimized Fast-PPCP in all three metrics. This is because

we do not encounter the Policy Correction mode in any of the instances which trigger the

optimization. When the invalid-solution-found case does not arise, which occurs

during Policy Correction, optimized FAST-PPCP is essentially the same as the original

FAST-PPCP.

6.6 Robot experiments

In this section, we illustrate an example run of the optimized version of FAST-PPCP on a

physical robot—Husarion ROSbot 2.0 PRO—in an indoor space with a large carpet whose

traversability is unknown at the time of planning.

6.6.1 Husarion ROSbot 2.0 PRO

Overview. ROSbot (Figure 6.6) is a ROS powered 4x4 drive autonomous mobile robot

platform equipped with LIDAR, RGB-D camera, IMU, encoders, and distance sensors. It

is available in three version: "2" and "2 PRO" and "2R". In this thesis we use the 2 PRO

version. ROSbot is an affordable robot platform for rapid development of autonomous

robots. It can be a base for custom service robots, inspection robots and robots working in

swarms. We chose ROSbot 2.0 PRO because of the following reasons:

• It runs an Ubuntu-based OS, customized to use ROS. This makes it easy to transfer

implementations from simulation to real world experiments.

• It is affordable, lightweight and portable.

• There is an already available Gazebo simulation model for ROSbot which gives the

flexibility to also test its performance in the Gazebo environment.
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Figure 6.6: Husarion ROSbot 2.0 PRO.

Onboard sensors and components. The ROSbot 2.0 PRO is a 4-wheels mobile plat-

form containing DC motors with encoders and an aluminum frame. It has the following

components:

• an Orbbec Astra RGBD camera with RGB image of size 640×480 and depth image

of size 640×480.

• an IMU sensor: a powerful 9-Axis MPU 9250 inertial sensor.

• a real-time CORE2 controller based on STM32F407 microcontroller.

• RPLIDAR A3 laser scanner, 360 degree and up to 25 meters range.

Software. Software for ROSbot can be divided into 2 parts:
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• A low-level firmware that works on the real-time controller (CORE2).

• An OS based on Ubuntu 18.04 which runs on the SBC (UpBoard with 4 GB RAM,

Quad-Core Intel Atom Z8350 1,92 GHz as CPU, a Intel® HD 400 Graphics as a

GPU and 32GB eMMC.). The SBC runs on Ubuntu-based OS, customized to use

ROS. The microSD card or MMC memory with OS is included with each ROSbot.

The OS has been modified to make the file system insensitive to sudden power cuts.

6.6.2 Experimental setup

Consider an example environment in Figure 6.7. The rosbot has to navigate from the start

Figure 6.7: Experimental setup showing the carpet whose traversability is unknown at the
time of planning, the start and the goal location.

location to the goal in the room environment represented by a 2D grid. Our experimental

arena has dimensions 3 meters × 3 meters. With a map resolution of 0.1, the grid size

for our experimental run is 30 × 30. The environment has regions whose traversability is

known: the wooden floor is known to be traversable, and walls and furniture are known to

be obstacles. The robot can move between the traversable cells using eight move actions

that move the robot in the cardinal and inter-cardinal directions by one cell. However, there
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is a region whose traversability status is unknown at the time of planning, which affects

the outcomes of sensing actions. This region is the carpet, as shown in Figure 6.7 whose

friction properties, thickness, and other characteristics are unknown to the robot. Because

of the unknown carpet properties, it is unknown at the time of planning if the robot can

successfully climb on top of the carpet and follow a path over the carpet. The robot can

execute a stochastic sense-and-move action at any state adjacent to the boundary of the

carpet. The cost of a move action is equal to the Euclidean distance between two adjacent

cells (1.4 for diagonal, 1 for others). The cost of a sense-and-move action follows the cost

of a move action if the unknown region is free, else the cost is 2. We assume that the robot

has a static map of the environment where the free cells and obstacles cells are known. The

location and 2D dimensions of the carpet are known in the map, and only the traversability

status of the carpet is unknown.

6.6.3 Implementation details

In this section, we describe the implementation details of the localization, planning, and

execution modules implemented to run FAST-PPCP on ROSbot. We use C++11 for all

implementions and compile using the same optimization flag -03.

Localization. We use localization using sensor fusion via Extended Kalman Filter. The

Extended Kalman Filter based odometry system fuses odometry sensor inputs from various

sources into a locally accurate estimate of the robot’s pose and velocity based on its motion.

For the size of our experimental arena, localization using sensor fusion via Extended

Kalman Filter produces reasonably accurate state estimates. The odometry sources could

be IMU, LIDAR, RADAR, VIO, and wheel encoders. IMUs drift over time, while wheel

encoders drift over distance traveled. Thus, they are often used together to counter each

other’s negative characteristics. In our experiments, the onboard IMU and wheel encoders
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are used to localize the robot. The Robot Localization ROS package is a useful package to

fuse information from arbitrary number of sensors using the Extended Kalman Filter (EKF)

or the Unscented Kalman Filter (UKF).

Planner implementation. We implement FAST-PPCP as a global planner with the ROS

navigation stack. The ROS navigation stack links together a global planner and a local

controller to accomplish a global navigation task. It can support any global planner and any

controller. Since ROSbot runs Ubuntu customized with ROS, we do not have to modify the

implementation of FAST-PPCP used in the Gazebo simulation environment.

Implementing the perfect sensing assumption in this domain. We implement the perfect

sensing assumption in the execution of a sensing action as follows. The sensing action is

valid only at a periphery of 0.1 meters from the carpet boundary, following our assumption

that a sensing action can be executed only at a state adjacent to the carpet boundary. If

the robot position does not change beyond a very small threshold δ of 2 centimeters for

K execution steps, and the robot yaw does not change by more than dθ = 1 degree, then

the sensing action infers that the robot is stuck at the boundary of the carpet and is unable

to climb on it. Therefore, the carpet is deemed to be non-traversable. Here, K is a tunable

parameter. Note that the implementation can support more complex sensing actions.

Implementation of the Policy Executor module. We have introduced and implemented a

new module in the ROS navigation stack: the Policy Executor module. The Policy Executor

module provides a provision to execute a policy tree in the ROS navigation stack. This

module connects the planner with the controller. The basic idea of our Policy Executor

module is as follows. Once FAST-PPCP computes a full policy, the Policy Executor starts

executing the primary branch from the start state in the full policy, using the local trajectory

planners or controllers. Once the robot is in a cell adjacent to the unknown region r, the

Policy Executor begins the execution of the sensing action, as described in the previous
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paragraph. If the sensing action senses the region r as non-traversable, then the Policy

Executor implements a failure recovery behavior of moving back for N steps and then

latching onto the nearest point on the detour branch. This detour branch is the branch in the

full policy from the belief state that corresponds to the non-preferred outcome of sensing

the unknown region r. In our example scenario, a value of 8 for N produces smoooth

controller trajectories. N is also a tunable parameter. The Policy Executor then continues

executing the detour branch unless the robot either reaches the goal or is at a state adjacent

to an unknown region. In the case when the sensing action senses the region r as traversable,

then the Policy Executor continues the execution of the current branch.

Controller implementation We have made modifications in the implementation of the

local trajectory planner (controller) provided in the ROS navigation stack. The controller

package in the ROS navigation stack provides implementations of the Trajectory Rollout

and Dynamic Window approaches to local robot navigation on a plane. Given a plan to

follow, the controller produces velocity commands (dx,dy,dθ ) to send to a mobile base.

The controller package supports both holonomic and non-holonomic robots, and any robot

footprint that can be represented as a convex polygon or circle.

The basic idea of both the Trajectory Rollout and Dynamic Window Approach (DWA)

algorithms is as follows:

1. Discretely sample in the robot’s control space (dx,dy,dθ )

2. For each sampled velocity, perform forward simulation from the robot’s current state

to predict what would happen if the sampled velocity were applied for some short

period of time.

3. Score each trajectory resulting from the forward simulation, using a metric that

incorporates characteristics such as: proximity to obstacles, proximity to the goal,

proximity to the global path, and speed.
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4. Pick the highest-scoring trajectory and send the associated velocity to the mobile

base.

5. Rinse and repeat.

DWA differs from Trajectory Rollout in the way the control space of the robot is sampled.

Trajectory Rollout samples from the set of achievable velocities over the entire forward

simulation period given the acceleration limits of the robot, while DWA samples from the

set of achievable velocities for just one simulation step given the acceleration limits of the

robot. This means that DWA is a more efficient algorithm because it samples a smaller

space, but may be outperformed by Trajectory Rollout for robots with low acceleration

limits because DWA does not forward simulate constant accelerations. We conducted our

example run in the Gazebo simulation environment as well as on the real robot. In our

experiments, the Trajectory Rollout and the Dynamic Window controllers produced similar

results. We finally used the Trajectory Rollout controller.

Tackling rotate-in-place behavior produced by the controller. In our experiments we

observed that the controller in some cases causes the robot to start rotating-in-place after

the controller latches on to the detour path. We identified that this issue is caused when the

slope of the detour path is numeric zero at some places. We solve this issue by nominally

perturbing the slope, i.e., setting the slope to a nominal numeric non-zero value of 0.03

instead of 0.

6.6.4 Results

Here is a video of an example run of the ROSbot 2.0 PRO navigating using the optimized

version of FAST-PPCP as the planner. Figure 6.7 shows the snapshots of the video.

The full policy computed by FAST-PPCP is visualized in Figure 6.8. The ROSbot

starts by following the path to goal assuming that the carpet is traversable (blue path in
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Figure 6.8: Full policy computed by FAST-PPCP for our experimental setup.

Figure 6.8). Upon reaching the boundary of the carpet, it executes the sensing action that

now starts monitoring the robot position and orientation. When the robot tries to execute

a forward motion to move onto the carpet, it is unable to do so and starts rotating about

its pitch axis. When the pitch angle goes beyond ∼ 20 degrees while the robot position

does not change beyond a very small threshold of 2 centimeters for 4 execution steps, and

the robot yaw does not change by more than 1 degree, then the sensing action deems the

region to be non-traversable. ROSbot then starts executing the failure recovery controller

that moves back and then latches onto the nearest point on the detour branch (green path in

Figure 6.8). It then sticks to this detour branch all the way until it reaches the goal. We
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(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 6.7: Snapshots of an example run of FAST-PPCP in our experimental setup. (a) to
(f) are in the order of increasing timestamps during the policy execution.
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have used a goal tolerance of 0.4 meters—execution stops when the robot position is within

0.4 meters of the goal location.

6.7 Conclusions, Discussion, and Lessons Learned

In this work, we present an optimized version of FAST-PPCP—a novel approach to

probabilistic planning in domains with clear preferences over missing information. We

achieve substantial decrease in run-time while incurring little loss in solution quality

compared to the original version of FAST-PPCP as well as PPCP used in domains with

clear preferences over missing information.

One limitation of optimized FAST-PPCP is that it may be possible to construct worst-

case scenarios in which optimized FAST-PPCP performs computationally the same as the

original version of FAST-PPCP. It is also possible to construct worst-case scenarios in

which optimized FAST-PPCP performs computationally worse than PPCP. Future work

could involve aiming to modify optimized FAST-PPCP. Another limitation of FAST-PPCP

is the perfect sensing assumption, which narrows the scope of the problem more than typical

POMDP planning without this assumption. A future research direction for relaxing this

assumption is discussed in chapter 8.

The search time complexity of a FAST-PPCP search is a function of the number of

sense locations per unknown region. The number of sense locations per unknown region

can be pretty high for large unknown regions like the ones considered in this chapter. This

increases the branching factor and the belief tree’s size, resulting in a high search time.

We assume in FAST-PPCP that the traversability status of a large unknown region

is represented by one unknown variable. Thus, if any part of the region is sensed, its

traversability becomes known. This is typically true for homogeneous regions. However,

in reality, traversability might differ within an unknown region. In that case, suppose the
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agent is sensing the traversability of a region from one part of the region. In that case, the

agent should decide whether or not to sense the region from more parts before inferring its

traversability.
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Chapter 7

Search-based Planning with Learned

Behaviors for Navigation among

Pedestrians

In addition to the primary contributions of this thesis as enumerated in chapter 1, we have

also investigated the application of PPCP in the context of navigation among pedestrians.

Agent control among pedestrians is often approached in one of the three following

ways: using predefined behaviors for agent navigation, learning navigation behaviors from

data, or search-based planning on a graph where each edge is a feasible action chosen

from a set of predefined actions. While the first approach often produces natural looking

motions and the second learns and utilizes complex interactions with pedestrians, both

lack global reasoning about how to sequence these behaviors to achieve the overall goal.

The third approach, namely search-based planning, does incorporate global reasoning

but relies on predefined actions that do not involve any interactions with pedestrians or

assume predefined interactions that cannot model complex interactions. This is a significant
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drawback since many situations such as going through a doorway blocked by other people

require complex interactions in order to avoid highly suboptimal behaviors or not being able

to get to the goal at all. To this end, we propose a search-based planning framework that

constructs and searches a graph wherein each edge can be either a predefined action or a

learned behavior. We further extend it to deal with the uncertainty arising from introducing

learned behaviors. We present the algorithm, go over its theoretical analysis, and present

experimental results.

7.1 Motivation

One goal of autonomous agents is to be able to navigate among pedestrians in places such

as airports, shopping malls, etc. In such places, in addition to motion planning, the agent

needs to seamlessly interact with pedestrians. For example, the agent needs to understand

non-verbal cues presented by the nearby pedestrians—when to let people through, when to

go through when someone clears the way, and how to move in a way that does not present

a danger to the nearby people. In order to interact with pedestrians, the agent needs to

model these interactions. While there exists hard-coded models of interaction—such as

the Social Forces Model [Helbing and Molnar, 1995], [Ferrer et al., 2013], potential field

based methods [Rimon and Koditschek, 1992] and fluid flow simulations [Helbing et al.,

2005],—it is infeasible to have accurate hard-coded models of complex behaviors such as

how to move in order to encourage pedestrians to clear a passage that they are blocking. In

such cases, learning a model of interaction from pedestrian trajectories data can provide

more generalization than hard-coded models. While there exists a body of literature that

performs agent control in this domain by solely predicting trajectories using a learnt model,

this approach typically requires a large amount of training data to generalize and also lacks

global reasoning about how to sequence learned behaviors to achieve the overall goal.
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For agent control, the advantage of search based planning (compared to control using

hard-coded or learnt models) is that it incorporates global reasoning about sequencing

actions to achieve the overall goal. Previous work has focused on search-based planning

using predefined actions. We hypothesize that for agent control among pedestrians via

search-based planning, solution quality can be improved if, in each step of planning, the

agent is given access to learnt models of interaction as additional actions along with

predefined actions.

We now summarize our contributions in this domain.

• We train an ensemble of LSTM-based models that produce the behavior of barge-in—

a learnt behavior that aims to controls the robot to signal a group of pedestrians to

move away from the exit of a passage they have been blocking.

We observe that the predicted outcome of learned models is typically a distribution over the

agent’s states. Therefore, we need to address the problem of incorporating this uncertainty

into the search-based planning framework.

• We have addressed the problem of incorporating this uncertainty into the search-based

planning framework: we have shown how to construct a graph with learned models

as actions in addition to predefined actions. To construct a graph, we have (1) come

up with a state representation to represent the uncertainty in outcomes, and (2) given

this state representation, we have developed a successor generation method such that

the final solution can be computed in real-time for this domain while adequately

representing the uncertainty in successors.

We also observe that the learned model may fail to be executed when the agent encoun-

ters novel scenarios—those which are very different from the ones used for training this

model.

• We have come up with an approach to estimate of the probability of failure in
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execution of a learnt model.

• Note that a successful execution of a learned model is clearly preferred over a failed

execution. Given this preferences, and our estimate of the probability of failure, we

have shown that the planning problem in this domain can be formulated as finding a

policy in a CP-PS belief MDP. We have investigated the use of PPCP to solve the

CP-PS belief MDP in this context.

We now explain the details of this work.

7.2 Background: Planning in state-lattice with predefined

behaviors (SLB)

The agent is in an environment that has moving pedestrians and static obstacles. We

represent position of the agent, pedestrians, and obstacles by projecting their centers on

a x-y plane. We assume the agent can perfectly sense its position and that of pedestrians

and obstacles. The agent has a prediction model that for each pedestrian generates a time-

parameterized path, an ordered set {Xp|Xp = (xp,yp, t)} where (xp,yp, t) denotes position

of a pedestrian p at time t. There is a goal position in the environment, reachable within T

time-steps. The agent has to navigate from a given start position to the goal position within

T time-steps.

7.2.1 SLB formulation

Our formulation builds upon the existing state-lattice based planning with predefined

controllers/behaviors [Butzke et. al 2014], which we refer to as SLB. In motion planning,

a state-lattice is a graph G = {S,Ea} consisting of a set of states S and edges Ea which

are feasible actions generated by taking the kino-dynamic constraints of the agent into
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account, often called motion primitives. In our case, a state st ∈ S is a tuple representing the

(x,y) position of the agent at time-step t, i.e., st = (xt ,yt , t). We refer to actions generating

Ea as predefined actions. [Butzke et. al 2014] introduced set of edges Eb in G formed

by executing predefined behaviors to get the graph Gslb = {S,Eslb} where Eslb = Ea∪Eb.

Unlike edges in Ea, an edge in Eb is computed by forward-simulating the execution of

the behavior till a stopping condition is satisfied. Not all behaviors are available at all

states. For a state s ∈ S, let Bp(s) be the set of available behaviors. For example, let

followWall(w) and followPedestrian(p) be two applicable behaviors available to the agent

at s. followWall(w) and followPedestrian(p) forward-simulate moving parallel to a wall

w and tailgating pedestrian p respectively. Bp = {followWall(w), followPedestrian(p)}.

For each bp ∈ Bp, there is a set T (bp) of stopping conditions. In our example, for

bp = followWall(w), T (bp) = {endOfWall,nSteps} is the set of two applicable stopping

conditions to forward-simulate the execution of followWall(w) (1) till end of wall w is

observed, or (2) after simulating n steps respectively. We define Eb = {(bp,τ)}∀bp ∈

Bp,τ ∈T .

7.3 Our approach: Introducing learned behaviors in

state-lattice based planning

With SLB, a motion planning problem is converted to a graph search problem and a path can

be found on Gslb with a heuristic search planner like A*. Our insight is that in addition to

predefined behaviors, successful navigation among pedestrians requires complex behaviors

that may be difficult to predefine and should be learned from data. We introduce State-

Lattice with Predefined and learned Behaviors (SLB-L), a novel framework for planning

under uncertainty with learned behaviors as edges. To plan using SLB-L, we first compute
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an additional set of edges Elrn formed by learned behaviors, to get a modified edge-set

Eslb−l = {Eslb∪Elrn}. We then modify the deterministic SLB formulation to incorporate

uncertainty due to execution of learned behavior edges. We extend SLB-L to introduce

planning with SLB-CSL (State-Lattice with Predefined Behaviors and Confidence of Success

of Learned Behaviors), a framework to incorporate uncertainty in the outcomes of a learned

behavior due to chances of failure in its execution. This section gives details of our

approach.

7.3.1 Learning behavior models

We define an agent behavior model as a function that takes a feature representation of

the environment as an input from time t − h through t for some h > 0, and predicts a

distribution of the agent’s position at t ′ = t +∆t,∆t > 0. We represent a learned behavior by

an ensemble EN = {Mi|i ∈ N, i≤ L} of L models. Similar to a predefined behavior edge,

we represent a learned behavior edge, elrn as a pair (EN,τ) of ensemble EN and stopping

condition τ , where τ is defined in the same way as in section 7.2 for predefined behaviors.

We now describe how the ensemble EN is learnt.

For a state st , we approximate the distribution of positions at t ′ (successor positions) with

a Gaussian density, i.e., st ′ = (xt ′,yt ′)∼N (µ t ′,Σt ′). We want to learn a behavior model

that predicts µ t ′,Σt ′ . We combine the crowd-agent interaction network model of [25] that

explicitly models pairwise interaction of each pedestrian with the agent, with social-LSTMs

[3]. For each pedestrian [25] builds an L×L occupancy gridmap M having velocities for

occupied cells and get the fixed size pairwise interaction vectors ep = λ (st ,M,Wi), where

λ is the interaction network which is an MLP with weights Wi. ep for all pedestrians is

combined to form a fixed size interaction vector c. We introduce c as an additional input to

the social LSTM model. The outputs of this model are the mean and covariance (µ t ′,Σt ′)
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of the posterior position Gaussian distribution, computed through the following recurrence

relations:

(µ t ′,Σt ′) = MLP(ht ′;Wm)

ht ′ = LSTM(ht ,st ,ct ;Wl)
(7.1)

where Wl,Wm are model parameters for the LSTM and Multi-Layer Perceptron (MLP) net-

works respectively. Model parameters are learned by minimizing the negative log-likelihood

loss

− log(P(xt ′,yt ′|µ t ′ ,Σt ′,xt ,yt)). Σt ′ represents uncertainty in successor positions in data (data

uncertainty). [39] has shown that total prediction uncertainty of a model is the sum of data

uncertainty and model uncertainty, which is uncertainty in model parameters due to lack of

infinite training data. To account for model uncertainty, we initialize every model parameter

with a random value and activate layer-wise dropouts while training, that sets each parame-

ter in a layer to zero with probability pdrop. This generates EN = {Mi|i ∈ N, i≤ L} of L

models, where models Mi,M j ∈ EN for i ̸= j differ in model parameters due to dropouts.

7.3.2 SLB-L formulation: Introducing prediction uncertainty of

models into SLB

Since we have assumed that successor positions have a Gaussian distribution, the state-space

of SLB-L should be a Gaussian belief-space. To keep a tractable graph-size for planning

efficiency, we represent state-space of SLB-L by the parameters of a normal distribution

instead of a non-parametric representation with particles. Specifically, Ψ = (µ,Σ, t)∀µ ∈

Rn,Σ ∈ Rn×n, where n is the dimension of position of the agent which in our formulation

is two. The successor for a predefined behavior edge (b,τ) applied on a deterministic state
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st ∈ Sslb is generated as st ′ = φb(st ,b,τ), where φb simulates the execution of b starting

at st until τ . Similarly st ′ = φa(st ,ea) generates successor for a predefined action ea.

To generate successor ψ t ′ ∈ Ψ for ψ t = (µ t ,Σt , t) for (b,τ) and ea, we propagate the

mean of ψ t ′ as µ t ′ = φb(µ
t ,b,τ) and φa(µ

t ,ea) respectively. For propagating covariance

for predefined behaviors and actions, we assume a linearly decreasing model with time:

Σt ′ = Σt − [αi jK],∀i, j ∈ N, i, j ≤ n after K time-steps, αi j is a tunable parameter. This

mimics system-level implementation of the execution of predefined edges. For st ∼ ψ t , a

predefined edge eslb is typically a PID controllers that follows the trajectory generated by

eslb consisting of the set Peslb = {µ t |t ∈ N, t ≤ K}, which is in global frame of reference

and thus results in the shrinking of uncertainty per execution step.

Successor generation for ψ t using (EN,τ) ∈ Eslb−l is described in pseudocode 3. We

now describe pseudocode 3. We go for a sample-based approach: Starting from st , at each

step we sample N i.i.d particles and propagate each of them through each model in the

ensemble EN. If L be the total number of models in the ensemble, we get N×L output

distributions after each step. We assume that the true population at the end of each step

is a single bivariate gaussian density, therefore we sample M particles from each of N×L

distributions and use them to find the Maximum Likelihood Estimate (MLE) of the output

density parameters µ t ′ and Σt ′ . This is repeated till a stopping trigger is reached. The

number N is derived from how tight we want our sample convergence bounds to be, as will

be shown in our theoretical analysis in Section 7.4. Since uncertainty propagation models

for both predefined and learned behaviors deterministically produce a single successor

belief state, i.e.,

p(ψ t ′|ψ t ,e) = 1∀e ∈ Eslb−l (7.2)

we can formulate SLB-L as a deterministic graph GSLB−L = {Ψ,Eslb−l}.
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Pseudocode 3 Successor Generation in SLB-L for a learned behavior
Input state ψ t = N (µ t ,Σt , t)
learned behavior ensemble EN = {M1,M2..ML}
number of samples N = 1

2ε2 ln 4
δ

(refer sec. 4)
stopping condition τ

Output successor ψ t ′ = N(µ t ′ ,Σt ′ , t ′), t ′ = t + k
1: vt = vector of N i.i.d particles sampled from ψ t = N(µ t ,Σt)
2: Csum = 0, k = 0, t ′ = t
3: vt+(k−1) = vt

4: while τ not satisfied do
5: k = k + 1
6: vt+k = {}
7: for each particle Pn

k in vt+(k−1) do
8: while Pn

k not in collision do
9: {N(µ1,Σ1), .....N(µL,ΣL)}= EN(Pn

k )
10: v′ = N×L particles (N i.i.d samples each from {N(µ1,Σ1), ...N(µL,ΣL)}
11: vt+k = Concatenate(vt+k,v′)
12: end while
13: end for
14: Compute P̄t+k = Sample mean of particles in vt+k
15: Compute St+k = Sample covariance of particles in vt+k
16: µ t ′ = µ̂ = P̄t+k

17: Σt ′ = Σ̂ = |vt+k|−1
|vt+k| St+k ▷ µ̂, Σ̂ are MLE for µ and Σ of a multivariate Gaussian

18: Sample set vMLE of N particles from N(µ t+k,Σt+k)
19: vt+k = vMLE , |vMLE |= N
20: Csum =Csum +C(|vk|× |vk+t |)
21: vt+(k−1) = vt+k, t ′ = t ′+ k
22: end while

7.3.3 SLB with Confidence of Success of Learned Behaviors

(SLB-CSL)

In this subsection, we present how to incorporate the confidence of success of learned

behaviors in the SLB formulation to get the SLB-CSL formulation and how to plan in

SLB-CSL.
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SLB-CSL formulation as a belief MDP

Consider a learned behavior elrn executed at agent position st to get a successor state ψ t ′ .

We assume that elrn has a set SC of success conditions that are evaluated on an agent

position. We define the execution of elrn at st as a success, if every sampled position

st ′ ∼ ψ t ′ satisfies each success condition in SC. For example, consider the learned behavior

BargeIn shown in Figure 7.1, that is executed at st to signal a group of pedestrians to move

away from the exit of a passage they have been blocking. SC for this behavior has only

one success condition: if the agent position lies within the defined success region marked

by the blue oval near the exit. Executing BargeIn at st is considered a success, if every

agent position st ′ sampled from the successor state ψ t ′—for example the position labelled

as success outcome in Figure 7.1(a)—lies within the blue oval. We use only those scenarios

as training data for learning elrn, in which pedestrians responds to agent trajectories such

that the agent position produced as outcome upon completing execution of a trajectory,

satisfies all success conditions in SC corresponding to elrn. However, during the execution

of elrn, when the scenario is novel because it was not seen in the training data for elrn, its

execution may not necessarily produce agent positions that satisfy all success conditions,

or may even produce potentially unsafe agent positions. For example, in Figure 7.1 (a)

pedestrians move away from the exit as seen in training data when BargeIn is executed, but

in Figure 7.1 (b) they do not, which is a novel scenario. Thus, in Figure 7.1 (b), executing

BargeIn does not produce an outcome lying within the blue oval. We define this case as

failure in execution of elrn. Upon failure we assume that the agent returns to ψ t . This case

necessitates estimation and reasoning about the probability of success in executing elrn,

which we refer to as Confidence of Success.

Specifically, let hψt

elrn be the variable that represents the outcome (success/failure denoted

by su/f) of executing elrn at ψ t . hψt

elrn is unknown (denoted by u) until the execution of
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(a)

(b)

Figure 7.1: Example of a learned behavior BargeIn to generate an agent trajectory to
make pedestrians clear a passage exit defined by walls (grey rectangles). BargeIn when
applied to an st generates st ′.(a) shows an st ′ that lies in a success region (blue oval) defined
near the passage exit because pedestrians have reacted to the agent and cleared the exit. (b)
shows failure when pedestrians don’t clear the exit and agent returns to st .
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elrn is completed from ψ t , and is equal to either su or f after execution. We define the

probability p(hψt

elrn = su|ψ t ,elrn) as the Confidence of Success in executing elrn at ψ t .

We first describe how we extend the SLB-L framework to the SLB-CSL (SLB with Confi-

dence of Success of Learned Behaviors) framework that incorporates this probability. We

augment Ψ with a set H of variables representing the outcome of each elrn ∈ Elrn executed

on each ψ t ∈Ψ to get the belief-space B = [Ψ,H]. To keep the dimension of H tractable,

we use a coarse discretization function fC : Ψ→ΨC that maps Ψ to a smaller space ΨC

formed by coarsely discretizing µ,Σ and t. Then H = {hψC
elrn |∀elrn ∈ Elrn,∀ψC ∈ ΨC},

where each hψC
elrn represents the outcome of executing elrn on ψ t , for all ψ t that map to ψC.

Predefined edges do not affect any variable in H. We state some assumptions:

• A1: All variables in H are independent of each other, and

• A2: We assume hψC
elrn becomes known immediately after execution of elrn from ψ t is

completed.

Given A1, a belief-state bt = [ψ t ,H(bt)] concisely represents the joint probability distribu-

tion or belief over all possible instantiations of bt . This is because (1) ψ t is always known,

and (2) each hψC
elrn in H(bt) concisely represents the probability p(hψt

elrn = su|ψ t ,elrn): the

distribution over possible values of all hψC
elrn can be represented as the product of the dis-

tribution of each hψC
elrn ∈ H. For a bt = [ψ t ,H(bt)], if executing elrn on ψ t leads to ψ t ′ and

the outcome hψC
elrn is a success, A2 formally means that p(hψC

elrn = su|ψ t ′,elrn) = 1. Given

A2, to get the updated belief-state bt ′ as a result of executing elrn on ψ t and effectively

on bt , we set the variable hψC
elrn which was u before the execution, to whatever outcome is

observed: either su or f. This represents the belief-update step. As a small example, let

ψ0 be the Gaussian distribution at t = 0, elrn = {elrn}, and ΨC = {ψCi|i ∈ N, i ≤ 4}. ∴

H = {hψCi
elrn |i ∈ N, i ≤ 4}. Every ψ t ∈ Ψ maps to a state in ΨC. Let fC(ψ0) = ψC1. The

belief-state at t = 0 is b0 = [ψ0,{u,u,u,u}]. If elrn executed on ψ0 leads to ψ1 and a
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Figure 7.2: Construction of the belief tree. A learned behavior edge can lead to either a
success (su) or a failure (f) distribution. Predefined edges do not make any hidden variable
known.

success is observed, then hψC1
elrn = su, and the updated belief b1 = [ψ1,{s,u,u,u}]. Figure

7.2 shows a belief-tree rooted at b0 with NH number of variables in H having one predefined

and one learned behavior edge.

The agent knows precisely the belief state it is in after every edge execution. Thus,

SLB-CSL is formulated as a belief-MDP M = {B,Eslb−csl,C,T}, where Eslb−csl = Eslb−l ,

C: B×Eslb−csl×B→ R+ is the cost function, and T(bt ,a,bt ′) = p(bt ′|bt ,e). If e ∈ Eslb,

then p(bt ′|bt ,e) = 1. Given A2 and equation 7.2, for e ∈ elrn we can write:

p(bt ′|bt ,elrn) = p(hψC
elrn
|bt ,elrn) = p(hψC

elrn
|ψ t ,elrn) (7.3)

Let bt ′
su and bt ′

f be the corresponding successor belief-states for success, failure outcomes

of executing elrn at bt , and c(bt ′
su,elrn,bt) and c(bt ′

f ,elrn,bt) are the costs. We use ct
su and ct

f

to represent the corresponding costs concisely, and pt
su and pt

f for p(hψC
elrn = su|bt ,elrn) and

p(hψC
elrn = f|bt ,elrn) respectively.

We are now ready to define the planning problem. We are given a start state s0 and a goal
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state sg. We define ψ0 and ψg as zero-variance Gaussians with means s0 and sg respectively.

The start belief-state b0 is [ψ0,H0], with all variables in H = u. We define a goal belief set

as Bg = [ψg,H]. For a bt , we define a policy π as a tree rooted at bt having all leaf nodes

bg in Bg The value of a policy π in M rooted at bt is defined as:

V π
M(bt) = pt

su(c
t
su +V π

M(bt
su))+ pt

f (c
t
f +V π

M(bt
f)) (7.4)

The planning problem is to find an optimal policy π∗ in M rooted at a start belief-state b0

that minimizes 7.4. V ∗(bt) is the value of π∗ rooted at bt .

Efficient Belief-Space planning in SLB-CSL

We clearly prefer a success outcome compared to a failure.

c(bt ′
su,elrn,bt)+V ∗(bt ′

su)≤ c(bt ′
f ,elrn,bt)+V ∗(bt ′

f ) (7.5)

Given equations 7.3, 7.5, A1, A2, we can use Probabilistic Planning with Clear Preferences

(PPCP) [79], an existing belief-space planner that uses these assumptions to efficiently

compute the optimal policy in the belief-space. PPCP performs a series of fast backward

and forward searches in the the low-dimensional deterministic space ( {µ t ,Σt , t} in our

case) instead of searching in the belief-space. In case of learned behaviors, let EN f w be the

ensemble of models that generate the chronological successor ψ t ′ when applied on ψ t .

To run a backward search from goal, we need to produce the chronological predecessor

ψ t from ψ t ′ . Thus, we also train an ensemble of models ENbw for predecessor generation.

However, we observe that EN f w and ENbw can be used to robustly estimate the confidence

of success, which we describe next.
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Estimating confidence of success in SLB-CSL

Since we are running a backward search, for a ψ t ′ we get a predecessor ψbw using Algorithm

1 with input EN =Ebw. We then re-apply Algorithm 1 on ψbw with EN =E f w to reconstruct

ψ t ′ . We denote this reconstructed state by ψ f w. With the introduction of this reconstruction,

we modify our definition of successful execution of elrn at ψ t as two conditions being true:

C1: st ′ sampled from the reconstructed state ψ f w lies in the 95% confidence ellipse (error

ellipse) of ψ t ′ , and

C2: st ′ from the reconstructed state ψ f w satisfies all conditions in the set SC of success

conditions of elrn.

Let p̂t
su and ĉt

su be an estimate of pt
su and ĉt

su. To compute them, we sample N states from

ψ f w and check if it satisfies all success conditions of elrn. Let us denote the event where

C1 and C2 are true by Xi, which is a random bernoulli variable with value =1 if state meets

C1 and C2, 0 otherwise. The observed (estimated) mean p̂t
su of this bernoulli distribution

becomes p̂t
su =

∑n Xi
N .

We recognize that if a state st ′ ∼ ψ t ′ is from the train distribution, then st ′ will have a non-

zero probability in the reconstructed distribution ψ f w. Success condition C1 approximates

verification of this condition. Enforcing C1 as a success condition makes p̂t
su high for

familiar scenarios in which ψ t ′ and ψ f w have similar sized error ellipses and similar means.

Let Ĉ and T̂ be the estimated C and T in the estimated belief-MDP M̂ = {B,Eslb−csl,Ĉ, T̂}.

The planner (PPCP in our case) finds an optimal policy π̂∗ in the estimated belief MDP M̂.

7.4 Theoretical analysis

We are given εp,δp,εc and δc. The cost-function in M is bounded by 0 ≤ c(bt ′,e,bt) =

c(ψ t ′,e,ψ t)≤ cmax ∀bt ′,bt ,e in M.
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Theorem 4. For a state bt , learned behavior edge elrn and a successor bt ′ that has a success

outcome of hψC
elrn , let pt

su and p̂t be the true and the estimated probability of success. Then,

the following bound holds true with probability at least (1−δp)

pt
su ≥ p̂t

su− εp, where εp =
√

1
2N ln 4

δp

Proof. This holds true using Hoeffding’s inequality [53]. For practical implementation,

this bound is used to compute N.

Theorem 5. For ψ t , that leads a successor state ψ t ′ , that leads to a success outcome and

learned behavior edge el , let ct
su and ĉt

su be the true and the estimated cost of the transition

(ψ t ′,elrn,ψ
t). Then, the following bound holds with probability at least (1−δc)

ct
su ≥ ĉt

su− εc, where εc =
√

1
2N ln 2

δc

Proof. This holds true using Hoeffding’s inequality [53].

Theorem 6. For any policy π of K time-steps rooted at b0 having all leaf nodes bg ∈Bg,

let V π
M(b0) and V π

M̂
(b0) be its value in M and M̂. Then, the following bound holds with

probability at least 1-δp-δc:

|V π
M(bt)−V π

M̂(bt)| ≤ εK (7.6)

where εK = 2εpK
(

1+ cmax(K−1)
2

)
+ εc

Proof. Starting from leaf nodes with V π
M(bg) = 0, for any tth step node bt ∈ π we get

V π
M(bt)≤ (K− t)cmax. Using bellman equations for V π

M(bg) and V π

M̂
(bg) and error-bounds

from Theorems 4 and 5, we get the recurrence:

|V π
M(bt)−V π

M̂(bt)| ≤ 2εp|cmax(K− (t−1)|+ εc

+|V π
M(bt+1)−V π

M̂(bt+1)|
(7.7)
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Using induction on t, we finally get Equation 7.6.

Let |p̂t
su− pt

su| ≤ εp be event A, |ĉt
su− ct

su| ≤ εc be event B. By union bounds, we get

p(A∩B)≥ 1− p(¬A)− p(¬B). Equation (6) holds when both A and B are true, hence:

p(|V π
M(bt)−V π

M̂(bt)|) = p(A∩B)≥ 1−δp−δc (7.8)

Using Theorem 6 we derive the error bound for V π∗
M .

Theorem 7. Let π∗ and π̂∗ be optimal policies in M and M̂ rooted at b0 having all leaf

nodes bg ∈Bg. π∗ and π̂∗ have Tπ∗ and Tπ̂∗ time-steps respectively, Tπ∗,Tπ̂∗ ≤ T . Let V π∗
M

and V π̂∗
M be the value of π∗ in M and π̂∗ in M̂ respectively. The following bound holds with

probability at least 1-δp-δc:

V π̂∗
M −V π∗

M ≤ 2εT (7.9)

where εT = 2εpT
(

1+ cmax(T−1)
2

)
+ εc

Proof. For π∗, using Theorem 5.3 we can write:

V π∗

M̂
− εT ≤V π∗

M ≤V π∗

M̂
+ εT ,

where εT is defined in Equation (8). We can write a similar inequality for V π̂∗
M . Now,

V π̂∗
M −V π∗

M ≤ max(V π̂∗
M )−min(V π∗

M ).

Since π̂∗ is the optimal policy in M̂, V π̂∗

M̂
−V π∗

M̂
≤ 0 =⇒ V π̂∗

M −V π∗
M ≤ 2εT . Using union

bounds as shown for Theorem 6, we can state that

p(V π̂∗
M −V π∗

M ≤ 2εT )≥ 1−δp−δc

7.5 Implementation and experimental analysis

In this section, we present our experimental setup and the experimental evaluation of the

different formulations described in section 7.3.
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Table 7.1: Performance comparison of SL-CSL with baselines SL and SL-L as described in
the experimental setup in section 7.5

Scenario Planner Planning Solution # Emergency
type type time(s) execution time(s) stops

Familiar
(clear
exit)

SL 5.81±0.32 62.90±0.87 0±0
SL-L 47.4±23.5 6±2.3 0±0

SL-CSL 37.16±18.70 8.4±2.83 0±0
Novel
(Move
Towards)

SL 1.8±1.4 22.00±5.62 1
SL-L 40.28±6.11 12±10.03 7

SL-CSL 44.52±3.33 19.6±6.56 3

Move
Away

SL 5.74±0.19 63±0.84 0±0
SL-L 40.3±0.20 6.7±2.86 0 ± 0

SL-CSL 23.35±12.47 7.11±2.61 0 ± 0

7.5.1 Experimental setup

We perform evaluations in simulation. We represent the environment as an 8-connected

50×50 grid with 8 predefined actions for moving in directions: E, W, N, S, NE, NW, SE

and SW. We have one learned behavior Barge-In, that produces successor positions to

make pedestrians clear a passage exit as described in figure 7.1. For Barge-In, we use the

termination condition: terminate after K steps with K = 5, and success condition:

successor position lies in exit region (blue ellipse in figure 7.3).

Dataset collection and training: We use the RVO2 simulator [111] to generate training

samples. A Barge-In scenario is created as follows: pedestrians are placed to block the

exit of a passage, and an agent serving as an oracle is placed inside the passage with its

goal in the exit region. Pedestrians clear the block for the oracle agent to reach the exit

region: we record time-parameterized trajectories and velocities of the pedestrians and

oracle agent to get one training instance. We introduce random perturbations in the start

and goal positions to generate the training dataset. We follow the network parameters of

[25] and [3] for the crowd-agent interaction network and LSTM network respectively. We

train using dropout probability pdrop = 0.4 an ensemble EN of five social-attention based
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learned BargeIn models.

Evaluation scenarios: We create an environment with narrow passages and long corridors

to represent a typical indoor environment. Our evaluation scenarios can be classified into

three types: (1) Familiar: similar to training instances, i.e., people are initially static but

move away from the exit of the passage once the agent moves towards them with a specific

speed range, (2) Move-Towards: where people are moving at a random speed in a direction

towards the agent. Since the velocity direction of people is reversed compared to the

training scenarios, we classify them as novel scenarios, and (3) Move-Away: where people

start moving inside the passage right from the start, away from the agent. The velocity

direction is similar to train scenarios, but people are initially not static unlike train scenarios.

This can be interpreted as a scenario somewhere in between a familiar and a novel scenario.

We compare SLB-CSL with two baselines: (1) Planning with state-lattice with predefined

actions (SL), and (2) Planning with state-lattice with learned behaviors (SLB-L), but no

estimate of confidence of success.

7.5.2 Results and discussion

Qualitative results: Figure 7.3 shows the performance of SL and SLB-CSL on a familiar

scenario. In a familiar scenario, initially, no feasible path exists to the goal. However,

SLB-CSL has the Barge-In behavior that creates a feasible path-to-goal through the passage

for the agent. Also, SLB-CSL correctly estimates a high confidence of succes. Thus,

planning with SLB-CSL produces an optimal policy consisting of executing predefined

actions for initial time-steps followed by Barge-In (Figure 7.3 center and right), resulting

in a shorter path ( execution time = 5 seconds). Whereas, planning with SL lacks the learned

behavior models and incorrectly assumes that pedestrians will keep blocking the exit. Thus,

it is finds a longer path around it (execution time = 62 seconds).
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Figure 7.3: center and right: Our approach SLB-CSL in a familiar scene (people moving
away from exit), is able to come up with a much shorter path compared to SL (left). left:
since SL does not have an interaction model, the agent goes around the passage.

Figure 7.4 shows the performance of SLB-L and SLB-CSL on a novel scenario. Pedes-

trians are initially blocking the passage exit but start moving towards the agent. SLB-CSL

estimates low confidence of success and and finds a path around the passage to generate

a longer but less riskier path (Figure 7.4 (a)). Optimal policy generated by SLB-L has

BargeIn as an action because it does not estimate confidence of success. Upon the execu-

tion of this policy, the agent enters into the passage and approaches pedestrians head-on

and comes dangerously close, triggering an emergency stop.

Quantitative results: Quantitative results are summarized in Table 7.1 for the three

scenario-types. For all scenarios, the agent is assigned random start and goal locations near

the entry and exit of the passage respectively. We generate 10 (start,goal) pairs for scenarios

of each type for averaging the results, resulting in a total of 30 different scenarios. Table 7.1

reports the mean and standard deviations of the following performance metrics: (1) Planning

time (secs): time required to compute a solution. Note that planning with SL and SLB-L

run (A∗) search while SLB-CSL runs PPCP to compute an executable policy, (2) Solution

Execution Time (secs): time taken to execute the solution to reach from start to goal, (3) #

Emergency Stops: number of times emergency stop was triggered during execution (when

the agent comes closer than 0.5m to a pedestrian). Learned behavior edges are expensive

to generate: hence planning times are higher and similar for both SLB-CSL and SLB-L,
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(a)

(b)

Figure 7.4: (a) SLB-CSL in a novel scene (people moving towards agent) estimates low
probability of success and goes around the passage. (b) SLB-L executes BargeIn and
comes dangerously close to pedestrians, triggering an emergency stop.

and lower for SL. For familiar scenarios, SLB-CSL on average correctly identifies them by

producing high confidence estimates and executes the shorter path that consists of executing

one Barge-In behavior. SLB-L being analogous to SLB-CSL with probability of success =

1 always, also behaves similarly. However, SL assumes that the passage is blocked for all

time-steps, and plans a path with execution time 10X that of SLB-CSL. We observe that our

approach is very useful in scenarios with long corridors and detours, as it provides a 30%

improvement over SL in terms of total time from the start of planning till the completion

of execution. For novel scenarios, both SLB-CSL and SL find longer paths with similar
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execution times, as compared to SLB-L. However, SLB-L exhibits risky behavior leading to

emergency stops in more than double the number of such behaviors for SLB-CSL. Results

for the Move-Away scenario are similar to that of familiar.

7.6 Conclusions, Discussion, and Lessons Learned

In this work we have demonstrated how to construct a graph using learned behaviors as

edges in addition to predefined behaviors and actions, and estimate confidence of success

of executing learned behaviors, for the problem of agent navigation among pedestrians.

Experimental results indicate that using learned behaviors, the agent can interact with

pedestrians to produce better paths.

One limitation of this approach is that every time we want to add a new learned

behavior, we must train a new ensemble model for that learned behavior. This can render

our approach potentially hard to scale up to complex navigation scenarios that need many

learned behaviors.

Our approach divides pedestrian navigation behavior into easily learnable simple be-

haviors that can be trained from very little data. More training data will be required if

we want complicated behaviors that combine two or more simple behaviors. On the other

hand, combining multiple simple behaviors into one complex behavior would decrease the

branching factor of the graph, which can ultimately reduce planning times. Thus, reducing

the branching factor to increase planning speed might require increasing training data to

learn complex behaviors.
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Chapter 8

Conclusions and Future work

In this chapter, we summarize the contributions of this thesis. We then discuss future

directions of research.

8.1 Contributions

Introduction of Conservative Heuristics to reduce search efforts in Search-Based

Motion Planning, its theoretical and experimental analysis. We define the notion of

conservative edges in the abstract space [22]. We propose a heuristic computation algorithm

in the abstract space that minimizes the number of non-conservative edges. We perform

the theoretical analysis of our algorithm and show that conservative heuristics reduce state

expansions by weighted A* under certain conditions. We evaluate conservative heuristics

in several motion planning domains and observe significant reductions in expansions and

planning times compared to a popular baseline heuristic.

Introduction of Fast-PPCP: a novel algorithm that minimizes anticipated search

efforts in probabilistic planning, its theoretical and empirical evaluation. We focus on
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the problem of planning under uncertainty over missing information about the environment.

We develop FAST-PPCP—a novel approach to planning under uncertainty for problems

wherein a clear preference exists over the actual values of missing information and the

assumption of perfect sensing holds [23]. FAST-PPCP plans by a series of searches, where

each search explicitly minimizes the amount of missing information it relies upon to reach

the goal. FAST-PPCP uses novel search scheduling strategies and guarantees completeness

and bounded-suboptimality of the final solution. We achieve a substantial decrease in run-

time while incurring little loss in solution quality compared to popular baseline methods

for planning under uncertainty.

Adaptation and experimental evaluation of algorithms that achieve speedup by min-

imizing anticipated search-effort in real-world robotics problems. We implement a

footstep planner that uses weighted A* search combined with Conservative heuristics on

a physical NAO robot. We show the utility of using Conservative Heuristics for quickly

computing footstep plans for the NAO robot in a real-world setting. We demonstrate the

benefits of FAST-PPCP in real-world robot navigation problems in which the environment

has large unknown regions. We develop an optimized version of Fast-PPCP for applica-

tion in environments with large unknown regions. We evaluate it in both simulation on a

real-world map and a physical robotic system—Husarion ROSbot 2.0 PRO.

Application of PPCP in the context of navigation among pedestrians. Additionally,

we have explored the application of the PPCP planner in the context of navigation among

pedestrians [24]. We start with the key idea of incorporating learned behaviors into

traditional graph search-based planning for agent navigation among pedestrians. We then

demonstrate how to construct a graph with learned behaviors as edges, in addition to

predefined actions typically used in search-based planning. We estimate the probability of

successful execution of a learned behavior and incorporate this probability while planning
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using the PPCP planner. We perform theoretical analysis and experimental evaluation in

simulation.

8.2 Future Work

In this section, we present exciting directions for future research.

8.2.1 Application of FAST-PPCP in the domain of navigation among

pedestrians

We have shown in chapter 5 that FAST-PPCP can efficiently compute a policy in CP-PS

belief MDP faster than the following baselines: PPCP, weighted RTDP-bel, and HSVI2

in the domain of robot navigation in partially known environments. We have also applied

an optimized version of Fast-PPCP in environments with large unknown regions. An

interesting future research direction is to adapt the optimized version of FAST-PPCP in

the domain of navigation among pedestrians and experimentally evaluate the utility of

FAST-PPCP over the stated baselines.

Benefit. By using optimized FAST-PPCP instead of PPCP to plan for navigation among

pedestrians, we aim to further reduce planning times which would be quite useful in this

challenging dynamic domain. We can perform the evaluations across multiple environments

created in the PedSim simulator used in our experiments in chapter 7. This research direction

would consequentially also involve applying weighted RTDP-bel and HSVI2 in the domain

of navigation among pedestrians, which has not been investigated before.

Challenges. Since we want to achieve real-time planning speeds, the main challenge is

to decrease the time per iteration of FAST-PPCP. Also, there must be optimizations at the

implementation level to achieve planning times in milliseconds. Training more complex
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learned behaviors is also a non-trivial task.

8.2.2 Accounting for a change in the status of an unknown variable

after it is sensed

We assume that once the true state of a hidden variable is sensed, it remains unchanged

during a planning and execution episode. This assumption is generally true for the domains

discussed in chapter 6, i.e., off-road environments and indoor environments with carpets or

mats on the floor. In the case of off-road environments, terrain characteristics determine

the traversability of a region. Natural terrain characteristics do not change frequently: for

example, a large sandy region remains so for an extended period. Because of this, once

an unknown region is sensed as traversable or non-traversable during execution, its status

typically remains the same throughout planning and execution. Similarly, this assumption

holds for carpets because their material and thickness will not change. However, this

assumption may not hold for the indoor navigation domain of chapter 5, where the status of

a door is unknown. Once a door is sensed as open, someone might close the door, and as a

result, its status may change during the execution.

Benefit. Future work could involve modifying the FAST-PPCP framework to account for

a change in the status of an unknown variable after it is sensed. This modification would

broaden the range of domains where FAST-PPCP can be applied.

Challenge. Since FAST-PPCP is currently equipped to handle only such cases where the

status of a hidden variable does not change, we may need to make non-trivial changes at

the algorithmic level.
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8.2.3 Introducing actions in the FAST-PPCP framework that do not

exhibit perfect sensing

Another significant future research direction is to introduce sense-from-far actions

for long-range sensing. By definition, a sense-from-far action ahi(s) would sense

the unknown region represented by the hidden variable hi from the cell s that is not

necessarily adjacent to the hidden variable hi. Sense-from-far would typically use visual

observations from a visual sensor. It is unrealistic to assume that there is no sensing noise

in a visual sensor. In other words, long-range sensing using a sense-from-far action

is imperfect: a sense-from-far action ahi(s) senses the unknown region represented by

hi from state s but instead of returning its true status, it returns a noisy observation from

the set {traversable,non− traversable}. We can assume that an observation noise model

P(O|hi = O,s) is available that gives the probability of getting the observation O after

executing the sense-from-far action at s when the true status of hi is O.

We will now explain the benefit and challenges of this research direction.

Benefit. A Sense-from-far action would let the robot sense the status of an unknown

region without having to move all the way to that region in order to find out its status.

Such an action is beneficial when the cost of moving to the hidden region, sensing it as

non-traversable and taking the detour path is higher than the cost of sensing it from far and

preemptively avoiding the hidden region.

Challenges. We now explain how the size of the belief tree is affected by the introduction

of sense-from-far actions. Firstly, multiple hidden variables can be within the sensing range

of a sense-from-far action, as opposed to a single hidden variable being sensed by the

sense-and-move action considered in this thesis. For k hidden variables within the sensing

range, the branching factor in the belief state space increases by 2k because there are k

sensing actions and each action can produce two possible observations. Additionally, with
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the perfect sensing assumption, for N states in the graph representing the environment

and |H| total number of hidden variables, the size of the belief state space is N times the

number of possible beliefs over a hidden variable. In a CP-PS belief-MDP, because of the

perfect sensing assumption, there are only 3 possible beliefs–unknown, 1, or 0, and the

size of the belief state space is N ·3|H|. With the introduction of sense-from-far actions,

the belief over the status of an unknown hidden variable can be any value between 0 to

1, as opposed to only 3 possible values as is in the case of a CP-PS belief-MDP. Thus,

the size of the belief state-space is infinite: a CP-PS belief-MDP is much narrower than

a belief-MDP with sense actions that have imperfect sensing. To deal with the infinite

belief space, point-based methods ([92]) use a vector set of sampled points to represent the

value function and restrict value function updates to a subset of the belief space. There are

other approaches that discretize the belief space. With a reasonably fine discretization the

size of belief states now becomes significantly larger than N ·3|H|, the size of belief space

in CP-PS belief MDPs. In our experiments we have shown that FAST-PPCP gives ∼ 5

seconds planning times in the CP-PS belief-MDP with ∼ 100 hidden variables and 30 m

× 30 m environment. With the increase in the size of the belief state-space and branching

factor, Fast-PPCP as it is may not be able to provide the few seconds planning time in

environments as large as our experimental ones. Future work is to either make algorithmic

modifications to FAST-PPCP or devise a novel algorithm that: (1) computes a policy in this

larger belief MDP by reducing the amount of missing information the policy relies upon to

reach goal, and (2) ensures bounded-suboptimality of this policy.
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8.2.4 Interleaving planning and execution in the FAST-PPCP

framework

If we want to use FAST-PPCP for more challenging real-world robotics planning problems

compared to the problems considered in this thesis—such as navigation among pedestrians–

then we must interleave planning with execution in the FAST-PPCP framework.

Benefit. The agent can start executing its current policy and the FAST-PPCP planner can

simulatenously work on improving this policy. This way the agent does not have to wait for

the planner to converge to a full policy before it can start execution.

One potential idea to interleave planning with execution is as follows. FAST-PPCP

computes whichever partial policy it can find within a given time-bound, and the robot

starts executing this partial policy. After a few seconds of execution, the current robot state

becomes the start state for the planner. FAST-PPCP can potentially try to find a better

partial policy from this updated start state, where the definition of better can be a metric

such as the one that has a higher probability of reaching the goal location. FAST-PPCP

then abandons the current partial policy and replaces it with the newly computed partial

policy only if the latter is better than the current partial policy. Also, if FAST-PPCP while

re-planning can re-use the already computed values of the states instead of planning from

scratch, this could be a much more efficient way of re-planning.

Challenges. We discuss a research challenge that might arise while interleaving planning

and execution in FAST-PPCP. FAST-PPCP starts with a lower bound optimal value from

the start belief state and aims to compute a full policy from the start belief-state whose

value is within α times the lower bound for a user-defined constant alpha. We term al pha

times the lower bound as the suboptimality bound. Starting from the start belief-state,

it iteratively develops a partial policy into a full policy by performing either (1) policy

growth by adding branches from policy-devoid outcomes in the current partial policy or
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(2) policy correction by replacing existing branches. In its current version, if the value

of the current partial policy exceeds the suboptimality bound, then FAST-PPCP removes

and replaces an existing branch such that the partial policy with the replaced branch is

bounded-suboptimal. However, suppose we aim for interleaving planning and execution. In

that case, a situation could arise when FAST-PPCP chooses a branch to replace, but the

robot has already committed to this branch and started executing this branch. In this case,

FAST-PPCP cannot remove the entire branch. The research challenge for future work in

this exciting direction is to determine the state on the current execution branch from which

FAST-PPCP starts the replacement. Also, while investigating this question, it is worthwhile

to consider if we need to use a different definition of bounded-suboptimality of a policy

compared to the one used in this thesis in chapter 5.
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Appendix A

Fast Bounded-Suboptimal Probabilistic

Planning with Clear Preferences on

Missing Information: Supplementary

Material

A.1 Appendix A: Proofs

In this section we present proofs of lemmas 7 and 8.

Lemma 7. Between two subpaths ρ2 and ρ1(s) from a state s ∈ Gs to Sg, if ρ2(s) is

dominated by ρ1(s), then for any path ψ2(S(Xp)) from S(Xst) to Sg passing through ρ2(s),

there exists a path ψ1(S(Xp)) from S(Xp) to Sg that dominates ψ2(S(Xp))

Proof. There are finite number of paths from S(Xp) to s. Consider any such path τ(S(Xp),s),

with {cτ
sto(S(Xp),s),V̂ τ(S(Xp),s)}. Let ψ2(S(Xp)) be the path from S(Xp) to Sg composed
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of τ from S(Xp) to s, and ρ2(s) from s to Sg, with path cost gψ2(S(Xp)). Similarly, let

ψ1(S(Xp)) be the path from S(Xp) to Sg composed of τ from S(Xp) to s, and ρ1(s) from s

to Sg, with path cost gψ1(S(Xp)). The following holds:

cψ1
sto(S(Xp)) = csto(ρ1)(s)+ cτ

sto(S(Xp),s)

csto(ψ2)(S(Xp)) = csto(ρ2)(s)+ cτ
sto(S(Xp),s)

(A.1)

Since ρ2(s) is dominated by ρ1(s),

csto(ρ1)(s)< csto(ρ2)(s) and gρ1
Q (s)< gρ2

Q (s)

Since the same quantity cτ
sto(S(Xp),s) is added to csto(ρ1)(s) and csto(ρ2)(s) in eq.A.1,

therefore the inequality relationship between csto(ψ1)(S(Xp)) and csto(ψ2)(S(Xp)) follows

the relationship between csto(ρ1)(s) and csto(ρ2)(s), i.e.,

csto(ψ1)(S(Xp))< csto(ψ2)(S(Xp))

Similarly, if τ had N stochastic transitions with probabilities of preferred outcomes being

P1,P2....,Pn, gQ values are of the form:

gψ1
Q (S(Xp)) =

N

∏
i=1

Pi.g
ρ1
Q (s)+K

gψ2
Q (S(Xp)) =

N

∏
i=1

Pi.g
ρ2
Q (s)+K

(A.2)

Where K is a positive quantity. Since gρ1
Q (s) and gρ2

Q (s) are multiplied by the same positive

quantity ∏
N
i=1 Pi and added by the same quantity K, using similar argument as before

the inequality relationship between gψ1
Q (S(Xp)) and gψ2

Q (S(Xp)) follows the relationship

160



A. Fast Bounded-Suboptimal Probabilistic Planning with Clear Preferences on Missing
Information: Supplementary Material

between gρ1
Q (s) and gρ2

Q (s), i.e.,

gψ1
Q (S(Xp))< gψ2

Q (S(Xp))

Since this relationship holds for any τ , if subpath ρ2(s) is dominated by ρ1(s), path

ψ2(S(Xp)) is also dominated by ψ1(S(Xp)) and Lemma 7 holds.

Let gQ(Xst) computed using gψ1
Q (S(Xp)) and gψ2

Q (S(Xp)) be denoted by V̂ ψ1(Xst) and

V̂ ψ2(Xst) respectively. Since gQ(Xst) is computed using current partial policy which does

not change in a given FAST-PPCP iteration, V̂ ψ1(Xst) and V̂ ψ2(Xst) are of the form:

V̂ ψ1(Xst) = βig
ψ1
Q (S(Xp))+ γi

V̂ ψ2(Xst) = βig
ψ2
Q (S(Xp))+ γi

(A.3)

where βi and γi are the remaining terms that appear in the expression of V̂ (Xst) which is the

v-value of Xst following the current partial policy in the ith FAST-PPCP iteration. Since

βi is positive and βi and γi are added to both gψ1
Q (S(Xp)) and gψ2

Q (S(Xp)) in eq. A.3, the

following conclusion can be drawn:

gψ1
Q (S(Xp))< gψ2

Q (S(Xp)) =⇒ V̂ ψ1(Xst)< V̂ ψ2(Xst)

.

Lemma 8. Pruning using dominance: Let P be the set of all paths in Gs from S(Xp) to Sg.

Let Pσ ⊂ P be a subset of paths from S(Xp) to Sg such that no two paths have the same

g-value and every path σ ∈Pσ satisfies

σ = argmin
p∈P

gp
sto(S(Xp) s.t using gp

Q(S(Xp)) V̂ p(Xst)≤ αV ∗L (Xst) (A.4)
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For a state s ∈ Gs, let ρ1(s) and ρ2(s) be two sub-paths from s to Sg that the search visits

with path costs gρ1(s) and gρ2(s). Let ρ2(s) be dominated by ρ1(s). For every state s ∈ Gs,

we prune all paths from S(Xp) to Sg that pass through ρ2(s). It is guaranteed that this

pruning method does not prune any path in Pσ .

Proof. Estimated value of Xst under the current fixed policy in ith FAST-PPCP iteration

computed using the gQ value of a path p from S(Xp) to Sg is given by:

V̂ p(Xst) = βig
p
Q(S(Xp))+ γi (A.5)

Using A.5, eq. A.4 can also be written as:

σ = argmin
p∈P

gp
sto(S(Xp) s.t gp

Q(S(Xp)) ≤
αV ∗L (Xst)− γi

βi

For brevity we will use κ in place of αV ∗L (Xst)−γi
βi

for the rest of this proof.

All paths in Pσ have the same cost cstos but may have different gQ-values. Let us consider

one path σ ∈Pσ , denote its gsto and gQ values by gσ
sto(S(Xp)) and gσ

Q(S(Xp)).

Let ψ1(S(Xp)), ρ1(s), ψ2(S(Xp)) and ρ2(s) be defined the same way as in lemma 7. As

shown in lemma 7, if ρ2(s) is dominated by ρ1(s), then ψ2(S(Xp)) is dominated by

ψ1(S(Xp)).

Now, consider the following cases that cover all possible inequality relationships between

gσ (S(Xp)) and gψ1(S(Xp)). For each case we will show that if ψ2(S(Xp)) is dominated

by ψ1(S(Xp)), gψ2(S(Xp)) can never be equal to gσ (S(Xp)), implying that ψ2(S(Xp)) can

never be in P .

• Case 1: gσ
sto(S(Xp))= gψ1

sto(S(Xp)) and gσ
Q(S(Xp))= gψ1

Q (S(Xp)): Since gψ1
sto(S(Xp))<

gψ2
sto(S(Xp)) and gψ1

Q (S(Xp))< gψ2
Q (S(Xp)), therefore gσ

sto(S(Xp))< gψ2
sto(S(Xp)) and

gσ
Q(S(Xp))< gψ2

Q (S(Xp)). Thus, gψ2(S(Xp)) ̸= gσ (S(Xp)).
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• Case 2: gσ
sto(S(Xp)) < gψ1

sto(S(Xp)) and gσ
Q(S(Xp)) < gψ1

Q (S(Xp)): Using the same

argument as Case 1, gψ2(S(Xp)) ̸= gσ (S(Xp)).

• Case 3: gσ
sto(S(Xp))> gψ1

sto(S(Xp)) and gσ
Q(S(Xp))> gψ1

Q (S(Xp)): gσ
Q(S(Xp)) satisfies

the condition: gσ
Q(S(Xp)) ≤ κ . Since σ is a solution of eq ?? and both gσ

Q(S(Xp))

and gψ1
Q (S(Xp)) are ≤ κ , this implies that gσ

sto(S(Xp)) ≤ gψ1
sto(S(Xp)). Therefore,

gσ
sto(S(Xp))> gψ1

sto(S(Xp)) is a contradiction and Case 3 can never happen.

• Case 4: gσ
sto(S(Xp)) > gψ1

sto(S(Xp)) and gσ
Q(S(Xp)) = gψ1

Q (S(Xp)): Using the same

argument as Case 4, gσ
sto(S(Xp)) > gψ1

sto(S(Xp)) is a contradiction and Case 4 can

never happen.

• Case 5: gσ
sto(S(Xp)) < gψ1

sto(S(Xp)) and gσ
Q(S(Xp)) = gψ1

Q (S(Xp)): Using the same

reasoning as in Case 1, gψ2(S(Xp)) ̸= gσ (S(Xp)).

• Case 6: gσ
sto(S(Xp))< gψ1

sto(S(Xp)) and gσ
Q(S(Xp))> gψ1

Q (S(Xp)): Since gσ
sto(S(Xp))<

gψ2
sto(S(Xp)), gψ2(S(Xp)) ̸= gσ (S(Xp)).

• Case 7: gσ
sto(S(Xp)) > gψ1

sto(S(Xp)) and gσ
Q(S(Xp)) < gψ1

Q (S(Xp)): This is possible

only if gψ1
Q (S(Xp))> κ . Since gψ2

Q (S(Xp))> gψ1
Q (S(Xp)), gψ2

Q (S(Xp)) is clearly > κ .

Thus, gψ2(S(Xp)) ̸= gσ (S(Xp)).

• Case 8: gσ
sto(S(Xp)) = gψ1

sto(S(Xp)) and gσ
Q(S(Xp)) < gψ1

Q (S(Xp)): Using the same

reason as Case 1, gψ2(S(Xp)) ̸= gσ (S(Xp)).

• Case 9: gσ
sto(S(Xp)) = gψ1

sto(S(Xp)) and gσ
Q(S(Xp))> gψ1

Q (S(Xp)): In this case, since

gσ
Q(S(Xp))≤ κ , gψ1

Q (S(Xp)) is also ≤ κ which means that ψ1 ∈Pσ . However, even

if gψ2
Q (S(Xp))≤ κ , gψ2(S(Xp)) ̸= gσ (S(Xp)) because gψ2

sto(S(Xp))> gψ1
sto(S(Xp)).

Thus we show that ψ2(S(Xp)) can’t be in Pσ . Since ψ2(S(Xp)) can be any path from

S(Xp) to Sg passing through ρ2(s), pruning ρ2(s) does not prune any path from Pσ . Also,

since all of the above statements hold true for any s ∈ Gs, pruning all paths from S(Xp) to

Sg passing through ρ2(s) ∀s ∈ Gs also does not prune any path from Pσ .
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A.2 Appendix B: Complete Pseudocode of FAST-PPCP

In this section of the appendix, we present the complete pseudocode of FAST-PPCP. We

first present pseudocode of the FAST-PPCP main function. We then present the pseudocode

of the each individual procedure that is a component of the main function.

Pseudocode 4 FAST-PPCP Main function
1: procedure MAIN()
2: N = 1; π̂i = /0
3: V ∗L (Xst)← run PPCP iterations till Xst is a PPCP pivot for the first N times;
4: Xp← Xst ; V̂ π̂i(Xst)←V ∗u (Xst);
5: while Xp ̸= NULL do
6: sol←COMPUTEBSPATH(Xp,α,V ∗L (Xst),P(Xp|Xst , π̂i));
7: UPDATEMDPREVERSE(Xp)
8: if ¬sol then
9: if Xp = Xst then

10: N← N +1 and Goto Line 3 to increase V ∗L (Xst);
11: else
12: Xp← COMPUTESAFEX(Xst)
13: end if
14: else
15: π̂bs

i ←UPDATEMDP(Xp)
16: Xp,P(Xp|Xst , π̂

bs
i )←COMPUTEPOLICYDEVOIDX()

17: π̂i← π̂bs
i

18: end if
19: end while
20: end procedure
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Pseudocode 5
1: procedure COMPUTEBSPATH(Xp,α,V ∗L (Xst),P(Xp|Xst , π̂i))
2: ng = [Sg,0]; besta(ng) = NULL;
3: gsto(ng) = 0;
4: V ∗u (Xp) = ∞; OPEN = /0
5: Insert ng in ∆dom(Sg)

1

6: Insert Sg in OPEN with priority gsto(Sg)+hc(S(Xp),Sg);
7: while 1 do
8: if OPEN is empty then ▷ Policy Growth failed
9: V̂ (Xp)← V ∗u (Xp) updated during this search, π̂i(Xp) = NULL

10: and return FALSE
11: end if
12: Remove search-state n with the smallest gsto(n)+hc(S(Xp),s(n))
13: in OPEN
14: if s(n) = S(Xp) then
15: V̂ ρbel

c (Xp)← V̂ ρc(S(Xp)), V̂ component of n =
16: [S(Xp),V̂ ρc(S(Xp))]

17: Update V ∗u (Xp)← V̂ ρbel
c (Xp)) if V̂ ρbel

c (Xp))<V ∗u (Xp)

18: Update V̂ π̂c
i (Xst) by replacing old V̂ (Xp) with V̂ ρbel

c (Xp), as
19: in Eq. 5.8
20: if V̂ π̂c

i (Xst)≤ αV ∗L (Xst) then ▷ Policy growth is successful
21: V̂ π̂bs

i (Xst)← V̂ π̂c
i (Xst)

22: V̂ (Xp)← V̂ ρbel
c (Xp)

23: return TRUE
24: end if
25: end if
26: s← s(n)
27: for each action a∈A(s′) and predecessor s′ s.t s= S(succ(X ′,a)b) where X ′ =

[s′,H(Xp)]
28: compute V̂ ρ ′(s′) using Eq. 5.1 with X ′ = [s′,H(Xp)]
29: search-predecessor n′ = [s′,V̂ ρ ′(s′)]
30: if a is a stochastic action then
31: gsto(n′) = gsto(n)+ |E|.cmax;
32: else
33: gsto(n′) = gsto(n)+ cmax;
34: end if
35: if n′ not visited before or¬ISDOMINATED(n′) then
36: Insert n′ in ∆dom(s′)
37: Insert n′ in OPEN with priority gsto(n′)+hc(S(Xp),s′)
38: and besta as a;
39: end if
40: end for
41: end while
42: end procedure

43: procedure ISDOMINATED(n′)
44: return (gsto(n)≥ gsto(n′) andV̂ (n)≥ V̂ (n′)) for any
45: n ∈ ∆dom(s(n′)) ▷ returns true if n′ is dominated by an n ∈ list of
46: ∆dom(s(n′)) undominated search-states of s(n′)
47: end procedure
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Pseudocode 6
1: procedure UPDATEMDP(Xp)
2: X ← Xp
3: while S(X) ̸= Sg do
4: V̂ (X)← V̂ ρbel

bs (S(X)), π̂bs
i (X)← besta(S(X))

5: X ← succ(X , π̂bs
i (X))b ▷ π̂bs

i (X) gives policy at X
6: end whilereturn π̂bs

i
7: end procedure
8: procedure UPDATEMDPREVERSE(Xp)
9: X ← Xp

10: while X has a predecessor do
11: X ′← predecessor(X) on current policy
12: V̂ (X ′)← EX∈succ(X ′,π̂bs

i (X ′))(c(S(X
′),a,S(X))+V̂ (X)

13: X ← X ′

14: end while
15: end procedure
16: procedure COMPUTEPOLICYDEVOIDX
17: Find X on current π̂bs

i s.t S(X) ̸= Sg andbesta(X) = NULL
18: If X not found then return NULLelse compute P(X |Xst , π̂

bs
i ) and return X

19: end procedure

Pseudocode 7
1: procedure COMPUTESAFEX
2: Xe← any non-preferred outcome on π̂i that has an existing primary
3: branch from it; X ← Xe
4: while ( do)
5: if π̂i(X) is deterministic or every non-preferred outcome of
6: succ(X , π̂i(X)) is policy-devoid then
7: X ← succ(X , π̂i(X))b ▷ move down on the primary branch
8: from X
9: if S(X) = Sg then

10: Xsa f e← Xe and return Xsa f e
11: end if
12: elseXe← another non-preferred outcome on π̂i having an existing
13: primary branch from it; X ← Xe
14: end if
15: end while
16: end procedure

166



Bibliography

[1] Sandip Aine, Siddharth Swaminathan, Venkatraman Narayanan, Victor Hwang,
and Maxim Likhachev. Multi-heuristic a. The International Journal of Robotics
Research, 35(1-3):224–243, 2016. 1.1, 2.2, 3.1.1

[2] Srinivas Akella and Matthew T Mason. Parts orienting with partial sensor infor-
mation. In Proceedings. 1998 IEEE International Conference on Robotics and
Automation (Cat. No. 98CH36146), volume 1, pages 557–564. IEEE, 1998. 3.2.5

[3] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-
Fei, and Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 961–971, 2016. 7.3.1, 7.5.1

[4] Alexandre Albore, Héctor Palacios, and Hector Geffner. A translation-based ap-
proach to contingent planning. In Twenty-First International Joint Conference on
Artificial Intelligence, 2009. 3.2.6

[5] Christopher Amato, George Konidaris, Gabriel Cruz, Christopher A Maynor,
Jonathan P How, and Leslie P Kaelbling. Planning for decentralized control of
multiple robots under uncertainty. In 2015 IEEE international conference on robotics
and automation (ICRA), pages 1241–1248. IEEE, 2015. 3.2.5

[6] Saeid Amiri, Suhua Wei, Shiqi Zhang, Jivko Sinapov, Jesse Thomason, and Peter
Stone. Multi-modal predicate identification using dynamically learned robot con-
trollers. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI-18), 2018. 3.2.5

[7] Nicholas Armstrong-Crews and Manuela Veloso. An approximate algorithm for
solving oracular pomdps. In 2008 IEEE International Conference on Robotics and
Automation, pages 3346–3352. IEEE, 2008. 3.2.4

[8] Alper Aydemir, Andrzej Pronobis, Moritz Göbelbecker, and Patric Jensfelt. Active
visual object search in unknown environments using uncertain semantics. IEEE
Transactions on Robotics, 29(4):986–1002, 2013. 3.2.5

[9] Fahiem Bacchus and Qiang Yang. The downward refinement property. In Proceed-
ings of the 12th International Joint Conference on Artificial Intelligence - Volume

167



Bibliography

1, IJCAI’91, pages 286–292, San Francisco, CA, USA, 1991. Morgan Kaufmann
Publishers Inc. ISBN 1-55860-160-0. URL http://dl.acm.org/citation.cfm?
id=1631171.1631214. 3.1.3, 4.1

[10] Christer Bäckström and Peter Jonsson. Bridging the gap between refinement and
heuristics in abstraction. In IJCAI, pages 2261–2267, 2013. 3.1.3, 4.1

[11] Marcel Ball and Robert C Holte. The compression power of symbolic pattern
databases. In ICAPS, pages 2–11, 2008. 2.3

[12] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning to act using
real-time dynamic programming. Artificial intelligence, 72(1-2):81–138, 1995. 3.2.1

[13] Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso. Planning
in nondeterministic domains under partial observability via symbolic model checking.
In IJCAI, volume 2001, pages 473–478, 2001. 3.2.6

[14] Blai Bonet. Solving large POMDPs using real time dynamic programming. In In
Proc. AAAI Fall Symp. on POMDPs. Citeseer, 1998. 3.2.1, 3.2.6

[15] Blai Bonet and Hector Geffner. Solving pomdps: Rtdp-bel vs. point-based algorithms.
In IJCAI, pages 1641–1646. Pasadena CA, 2009. 5.5

[16] Ronen I Brafman and Carmel Domshlak. Structure and complexity in planning with
unary operators. Journal of Artificial Intelligence Research, 18:315–349, 2003. 2.3,
3.2.6

[17] Adam Bry and Nicholas Roy. Rapidly-exploring random belief trees for motion
planning under uncertainty. In 2011 IEEE international conference on robotics and
automation, pages 723–730. IEEE, 2011. 3.2.5

[18] Matthew Budd, Paul Duckworth, Nick Hawes, and Bruno Lacerda. Mission planning
in unknown environments as bayesian reinforcement learning. 3.2.4

[19] Vadim Bulitko, Nathan R Sturtevant, Jieshan Lu, and Timothy Yau. Graph abstraction
in real-time heuristic search. J. Artif. Intell. Res.(JAIR), 30:51–100, 2007. 4.1

[20] Alberto Camacho, Christian Muise, and Sheila McIlraith. From fond to robust prob-
abilistic planning: Computing compact policies that bypass avoidable deadends. In
Proceedings of the International Conference on Automated Planning and Scheduling,
volume 26, 2016. 3.2.6

[21] Ishani Chatterjee, Maxim Likhachev, Ashwin Khadke, and Manuela Veloso. Speed-
ing up search-based motion planning via conservative heuristics. Tech. Report, The
Robotics Institute, Carnegie Mellon University., 2019. 4.2.2

[22] Ishani Chatterjee, Maxim Likhachev, Ashwin Khadke, and Manuela Veloso. Speed-
ing up search-based motion planning via conservative heuristics. In Proceedings of
the International Conference on Automated Planning and Scheduling, volume 29,
pages 674–679, 2019. 8.1

168

http://dl.acm.org/citation.cfm?id=1631171.1631214
http://dl.acm.org/citation.cfm?id=1631171.1631214


Bibliography

[23] Ishani Chatterjee, Tushar Kusnur, and Maxim Likhachev. Fast bounded suboptimal
probabilistic planning with clear preferences on missing information. In Proceedings
of the International Symposium on Combinatorial Search, volume 12, pages 37–45,
2021. 6.1, 8.1

[24] Ishani Chatterjee, Yash Oza, Maxim Likhachev, and Manuela Veloso. Search-
based planning with learned behaviors for navigation among pedestrians. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
7953–7960. IEEE, 2021. 8.1

[25] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre Alahi. Crowd-robot
interaction: Crowd-aware robot navigation with attention-based deep reinforcement
learning. In 2019 International Conference on Robotics and Automation (ICRA),
pages 6015–6022. IEEE, 2019. 7.3.1, 7.5.1

[26] Min Chen, Emilio Frazzoli, David Hsu, and Wee Sun Lee. Pomdp-lite for ro-
bust robot planning under uncertainty. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 5427–5433. IEEE, 2016. 3.2.4

[27] Joseph C Culberson and Jonathan Schaeffer. Searching with pattern databases. In
Conference of the Canadian Society for Computational Studies of Intelligence, pages
402–416. Springer, 1996. 2.3

[28] Joseph C Culberson and Jonathan Schaeffer. Pattern databases. Computational
Intelligence, 14(3):318–334, 1998. 2.3, 3.1.3, 4.1

[29] Nikhil Chavan Dafle, Alberto Rodriguez, Robert Paolini, Bowei Tang, Siddhartha S
Srinivasa, Michael Erdmann, Matthew T Mason, Ivan Lundberg, Harald Staab, and
Thomas Fuhlbrigge. Extrinsic dexterity: In-hand manipulation with external forces.
In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages
1578–1585. IEEE, 2014. 3.2.5

[30] Stefan Edelkamp. Automated creation of pattern database search heuristics. In
International Workshop on Model Checking and Artificial Intelligence, pages 35–50.
Springer, 2006. 2.3

[31] Stefan Edelkamp. Symbolic shortest path planning. Dekanat Informatik, Univ., 2007.
2.3

[32] Stefan Edelkamp. Planning with pattern databases. In Sixth European Conference
on Planning, 2014. 2.3

[33] Clemens Eppner, Raphael Deimel, José Alvarez-Ruiz, Marianne Maertens, and
Oliver Brock. Exploitation of environmental constraints in human and robotic
grasping. The International Journal of Robotics Research, 34(7):1021–1038, 2015.
3.2.5

[34] Ariel Felner, Uzi Zahavi, Jonathan Schaeffer, and Robert C Holte. Dual lookups in

169



Bibliography

pattern databases. In IJCAI, pages 103–108, 2005. 2.3

[35] Ariel Felner, Richard E Korf, Ram Meshulam, and Robert C Holte. Compressed
pattern databases. Journal of Artificial Intelligence Research, 30:213–247, 2007. 2.3

[36] Dave Ferguson, Anthony Stentz, and Sebastian Thrun. Pao for planning with
hidden state. In IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004, volume 3, pages 2840–2847. IEEE, 2004. 5.1

[37] Dave Ferguson, Maxim Likhachev, and Anthony Stentz. A guide to heuristic-
based path planning. In Proceedings of the international workshop on planning
under uncertainty for autonomous systems, international conference on automated
planning and scheduling (ICAPS), pages 9–18, 2005. 4.1

[38] Bernd Finkbeiner and A Podelski. Directed model checking with distance-preserving
abstractions. Proceedings of the 13th International SPIN, 2006. 2.3

[39] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In international conference on machine
learning, pages 1050–1059, 2016. 7.3.1

[40] Neha Priyadarshini Garg, David Hsu, and Wee Sun Lee. Despot-alpha: Online
pomdp planning with large state and observation spaces. In Robotics: Science and
Systems, 2019. 3.2.3, 3.2.5

[41] Kenneth Y Goldberg. Orienting polygonal parts without sensors. Algorithmica, 10
(2):201–225, 1993. 3.2.5

[42] Juan Pablo Gonzalez and Anthony Stentz. Planning with uncertainty in position
an optimal and efficient planner. In 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2435–2442. IEEE, 2005. 3.2.5

[43] Juan Pablo Gonzalez and Anthony Stentz. Planning with uncertainty in position
using high-resolution maps. In Proceedings 2007 IEEE International Conference on
Robotics and Automation, pages 1015–1022. IEEE, 2007. 3.2.5

[44] Eric A Hansen and Shlomo Zilberstein. LAO*: A heuristic search algorithm that
finds solutions with loops. Artificial Intelligence, 129(1-2):35–62, 2001. 3.2.1

[45] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968. 2.2, 2.4.2, 5.2

[46] Patrik Haslum, Blai Bonet, Héctor Geffner, et al. New admissible heuristics for
domain-independent planning. In AAAI, volume 5, pages 9–13, 2005. 2.3

[47] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, Sven Koenig, et al. Domain-
independent construction of pattern database heuristics for cost-optimal planning. In
AAAI, volume 7, pages 1007–1012, 2007. 2.3

[48] Patrik Haslum et al. Reducing accidental complexity in planning problems. In IJCAI,

170



Bibliography

pages 1898–1903, 2007. 3.1.3, 4.1

[49] Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence
Research, 26:191–246, 2006. 2.3, 3.1.3, 4.1

[50] Malte Helmert and Robert Mattmüller. Accuracy of admissible heuristic functions
in selected planning domains. In AAAI, pages 938–943, 2008. 2.3

[51] Malte Helmert, Patrik Haslum, Jörg Hoffmann, et al. Flexible abstraction heuristics
for optimal sequential planning. In ICAPS, pages 176–183, 2007. 2.3, 4.1

[52] István T Hernádvölgyi and Robert C Holte. Experiments with automatically created
memory-based heuristics. In International Symposium on Abstraction, Reformulation,
and Approximation, pages 281–290. Springer, 2000. 2.3

[53] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
In The collected works of Wassily Hoeffding, pages 409–426. Springer, 1994. 7.4, 5

[54] Jörg Hoffmann and Bernhard Nebel. The FF planning system: fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001. 3.1.3, 3.2.6, 4.1

[55] Robert C Holte and István T Hernádvölgyi. A space-time tradeoff for memory-based
heuristics. In AAAI/IAAI, pages 704–709. Citeseer, 1999. 2.3

[56] Robert C Holte, Taieb Mkadmi, Robert M Zimmer, and Alan J MacDonald. Speeding
up problem solving by abstraction: A graph oriented approach. Artificial Intelligence,
85(1-2):321–361, 1996. 3.1.3, 4.1

[57] Robert C Holte, Maria B Perez, Robert M Zimmer, and Alan J MacDonald. Hierar-
chical a*: Searching abstraction hierarchies efficiently. In AAAI/IAAI, Vol. 1, pages
530–535. Citeseer, 1996. 2.3

[58] Armin Hornung, Daniel Maier, and Maren Bennewitz. M.: Search-based footstep
planning. In In: ICRA Workshop Progress Open Problems in Motion Planning
Navigation for Humanoids, 2013. 1.1, 1.3.3, 4.1, 4.4.2

[59] Myung Hwangbo, James J. Kuffner, and Takeo Kanade. Efficient two-phase 3d
motion planning for small fixed-wing uavs. Proceedings 2007 IEEE International
Conference on Robotics and Automation, pages 1035–1041, 2007. 4.1

[60] Peter Jonsson and Christer Bäckström. State-variable planning under structural
restrictions: Algorithms and complexity. Artificial Intelligence, 100(1-2):125–176,
1998. 2.3

[61] Andreas Junghanns and Jonathan Schaeffer. Domain-dependent single-agent search
enhancements. In IJCAI, pages 570–577, 1999. 2.1

[62] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and
acting in partially observable stochastic domains. Artificial intelligence, 101(1-2):
99–134, 1998. 5.1, 6.1

171



Bibliography

[63] Michael Katz and Carmel Domshlak. Optimal additive composition of abstraction-
based admissible heuristics. In ICAPS, pages 174–181, 2008. 2.3

[64] Michael Katz and Carmel Domshlak. Implicit abstraction heuristics. Journal of
Artificial Intelligence Research, 39:51–126, 2010. 2.3

[65] Sung-Kyun Kim, Oren Salzman, and Maxim Likhachev. Pomhdp: Search-based
belief space planning using multiple heuristics. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 29, pages 734–744,
2019. 3.2.1, 3.2.5

[66] Craig A Knoblock. Learning abstraction hierarchies for problem solving. In AAAI,
pages 923–928, 1990. 3.1.3

[67] Craig A Knoblock. Search reduction in hierarchical problem solving. In AAAI,
volume 91, pages 686–691, 1991. 3.1.3

[68] Mykel J Kochenderfer. Decision making under uncertainty: theory and application.
MIT press, 2015. 5.1, 6.1

[69] Richard E Korf. Finding optimal solutions to rubik’s cube using pattern databases.
In AAAI/IAAI, pages 700–705, 1997. 2.1, 2.3

[70] Richard E Korf and Larry A Taylor. Finding optimal solutions to the twenty-four
puzzle. In Proceedings of the national conference on artificial intelligence, pages
1202–1207. Citeseer, 1996. 2.1

[71] Hanna Kurniawati and Vinay Yadav. An online pomdp solver for uncertainty planning
in dynamic environment. In Robotics Research, pages 611–629. Springer, 2016.
3.2.3

[72] Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces. In Robotics:
Science and systems, volume 2008. Zurich, Switzerland., 2008. 3.2.2, 5.5, 5.6

[73] Aleksandr Kushleyev and Maxim Likhachev. Time-bounded lattice for efficient
planning in dynamic environments. In 2009 IEEE International Conference on
Robotics and Automation, pages 1662–1668. IEEE, 2009. 3.2.5

[74] Tushar Kusnur, Shohin Mukherjee, Dhruv Mauria Saxena, Tomoya Fukami,
Takayuki Koyama, Oren Salzman, and Maxim Likhachev. A planning framework
for persistent, multi-uav coverage with global deconfliction. In Field and Service
Robotics, pages 459–474. Springer, 2021. 1.1

[75] Ugur Kuter, Dana Nau, Elnatan Reisner, and Robert Goldman. Conditionalization:
Adapting forward-chaining planners to partially observable environments. In ICAPS
2007—workshop on planning and execution for real-world systems, 2007. 3.2.6

[76] David Lenz, Markus Rickert, and Alois Knoll. Heuristic search in belief space for
motion planning under uncertainties. In 2015 IEEE/RSJ International Conference

172



Bibliography

on Intelligent Robots and Systems (IROS), pages 2659–2665. IEEE, 2015. 3.2.5

[77] Jue Kun Li, David Hsu, and Wee Sun Lee. Act to see and see to act: Pomdp
planning for objects search in clutter. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5701–5707. IEEE, 2016. 3.2.5

[78] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible maneu-
vers for autonomous vehicles. The International Journal of Robotics Research, 28
(8):933–945, 2009. 1.1

[79] Maxim Likhachev and Anthony Stentz. Ppcp: Efficient probabilistic planning
with clear preferences in partially-known environments. In Proceedings of the
National Conference on Artificial Intelligence, volume 21, page 860. Menlo Park,
CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006. 1.3.2, 2.4.2,
5.1, 7.3.3

[80] Maxim Likhachev and Anthony Stentz. Probabilistic planning with clear preferences
on missing information. Artificial Intelligence, 173(5-6):696–721, 2009. 1.1, 2.4,
2.4.1, 5.1, 5.2, 5.3.1, 6.1, 6.2

[81] Maxim Likhachev, Geoff Gordon, and Sebastian Thrun. Ara*: Anytime a* with
provable bounds on sub-optimality. sl: Advances in neural information processing
systems, 2004. 2.2, 3.1.1

[82] Carlos Linares López. Multi-valued pattern databases. In ECAI 2008, pages 540–544.
IOS Press, 2008. 2.3

[83] Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar. Search-based
motion planning for aggressive flight in se (3). IEEE Robotics and Automation
Letters, 3(3):2439–2446, 2018. 1.1, 4.1

[84] Brian MacAllister, Jonathan Butzke, Alex Kushleyev, Harsh Pandey, and Maxim
Likhachev. Path planning for non-circular micro aerial vehicles in constrained
environments. In 2013 ieee international conference on robotics and automation,
pages 3933–3940. IEEE, 2013. 1.1

[85] Christian Muise, Vaishak Belle, and Sheila McIlraith. Computing contingent plans
via fully observable non-deterministic planning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 28, 2014. 3.2.6

[86] Venkatraman Narayanan and Maxim Likhachev. Task-oriented planning for manipu-
lating articulated mechanisms under model uncertainty. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 3095–3101. IEEE, 2015.
3.2.5

[87] Nils J Nilsson. Problem-solving methods in. Artificial Intelligence, 1971. 3.1.1

[88] Sylvie CW Ong, Shao Wei Png, David Hsu, and Wee Sun Lee. Pomdps for robotic
tasks with mixed observability. In Robotics: Science and Systems, volume 5, page 4,

173



Bibliography

2009. 3.2.4

[89] Bo Pang and Robert C Holte. State-set search. In Fourth Annual Symposium on
Combinatorial Search, 2011. 3.1.3, 4.1

[90] Judea Pearl. Heuristics: intelligent search strategies for computer problem solving.
1984. 3.1.3, 4.1

[91] Mark A Peot and David E Smith. Conditional nonlinear planning. In Artificial
Intelligence Planning Systems, pages 189–197. Elsevier, 1992. 3.2.6

[92] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. Point-based value iteration: An
anytime algorithm for POMDPs. In IJCAI, volume 3, pages 1025–1032, 2003. 3.2.2,
8.2.3

[93] Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun. Anytime point-based approxi-
mations for large pomdps. Journal of Artificial Intelligence Research, 27:335–380,
2006. 3.2.2

[94] Ira Pohl. First results on the effect of error in heuristic search. Machine Intelligence,
5:219–236, 1970. 2.2, 3.1.1

[95] Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial intelligence, 1
(3-4):193–204, 1970. 4.1

[96] Samuel Prentice and Nicholas Roy. The belief roadmap: Efficient planning in belief
space by factoring the covariance. The International Journal of Robotics Research,
28(11-12):1448–1465, 2009. 3.2.5

[97] Armand E Prieditis. Machine discovery of effective admissible heuristics. Machine
learning, 12(1):117–141, 1993. 2.3

[98] Louise Pryor and Gregg Collins. Planning for contingencies: A decision-based
approach. Journal of Artificial Intelligence Research, 4:287–339, 1996. 3.2.6

[99] Jussi Rintanen. Complexity of planning with partial observability. In ICAPS,
volume 4, pages 345–354, 2004. 3.2.6

[100] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-Draa. Online
planning algorithms for pomdps. Journal of Artificial Intelligence Research, 32:
663–704, 2008. 3.2.2

[101] Earl D Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial intelligence,
5(2):115–135, 1974. 3.1.3

[102] Konstantin M Seiler, Hanna Kurniawati, and Surya PN Singh. An online and approx-
imate solver for pomdps with continuous action space. In 2015 IEEE international
conference on robotics and automation (ICRA), pages 2290–2297. IEEE, 2015. 3.2.3

[103] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP
solvers. Autonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013. 3.2.2

174



Bibliography

[104] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances
in neural information processing systems, pages 2164–2172, 2010. 3.2.2, 3.2.3

[105] Trey Smith and Reid Simmons. Heuristic search value iteration for POMDPs. arXiv
preprint arXiv:1207.4166, 2012. 3.2.2, 5.5, 5.6

[106] Trey Smith and Reid Simmons. Point-based POMDP algorithms: Improved analysis
and implementation. arXiv preprint arXiv:1207.1412, 2012. 3.2.2, 5.6

[107] Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. Despot: Online pomdp
planning with regularization. In Advances in neural information processing systems,
pages 1772–1780, 2013. 3.2.2, 3.2.3

[108] Zachary Sunberg and Mykel Kochenderfer. Online algorithms for pomdps with
continuous state, action, and observation spaces. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 28, 2018. 3.2.3

[109] Florent Teichteil-Königsbuch, Ugur Kuter, and Guillaume Infantes. Incremental plan
aggregation for generating policies in mdps. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1,
pages 1231–1238, 2010. 3.2.6

[110] Jordan Tyler Thayer and Wheeler Ruml. Bounded suboptimal search: A direct
approach using inadmissible estimates. In IJCAI, pages 674–679, 2011. URL
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-119. 3.1.2

[111] Jur van den Berg, Stephen J Guy, Jamie Snape, Ming C Lin, and Dinesh Manocha.
Rvo2 library: Reciprocal collision avoidance for real-time multi-agent simulation,
2011. 7.5.1

[112] William Vega-Brown and Nicholas Roy. Admissible abstractions for near-optimal
task and motion planning. arXiv preprint arXiv:1806.00805, 2018. 3.1.3, 4.1

[113] Arthur Wandzel, Yoonseon Oh, Michael Fishman, Nishanth Kumar, Lawson LS
Wong, and Stefanie Tellex. Multi-object search using object-oriented pomdps. In
2019 International Conference on Robotics and Automation (ICRA), pages 7194–
7200. IEEE, 2019. 3.2.5

[114] Daniel S Weld, Corin R Anderson, and David E Smith. Extending graphplan to
handle uncertainty & sensing actions. In Aaai/iaai, pages 897–904, 1998. 3.2.6

[115] Christopher Makoto Wilt and Wheeler Ruml. When does weighted a* fail? In SOCS,
pages 137–144, 2012. 4.1

[116] Yuchen Xiao, Sammie Katt, Andreas ten Pas, Shengjian Chen, and Christopher
Amato. Online planning for target object search in clutter under partial observability.
In 2019 International Conference on Robotics and Automation (ICRA), pages 8241–
8247. IEEE, 2019. 3.2.5

[117] Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. Despot: Online pomdp

175

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-119


Bibliography

planning with regularization. Journal of Artificial Intelligence Research, 58:231–266,
2017. 5.6

[118] Kaiyu Zheng, Yoonchang Sung, George Konidaris, and Stefanie Tellex. Multi-
resolution pomdp planning for multi-object search in 3d. In 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 2022–2029.
IEEE, 2021. 3.2.5

[119] Jiaji Zhou, Robert Paolini, Aaron M Johnson, J Andrew Bagnell, and Matthew T
Mason. A probabilistic planning framework for planar grasping under uncertainty.
IEEE Robotics and Automation Letters, 2(4):2111–2118, 2017. 3.2.5

176


	1 Introduction
	1.1 Motivation
	1.2 Key idea
	1.3 Contributions
	1.3.1 Introduction of Conservative Heuristics to reduce search efforts in search-based motion planning, its theoretical and experimental analysis
	1.3.2 Introduction of Fast-PPCP: a novel algorithm that minimizes anticipated search efforts in probabilistic planning, its theoretical and empirical evaluation
	1.3.3 Adaptation and experimental evaluation of algorithms that achieve speedup by minimizing anticipated search-effort in real-world robotics problems

	1.4 Thesis outline

	2 Background
	2.1 Search-based planning
	2.2 Search-based planning using A* search and its variants
	2.3 Abstraction heuristics in planning
	2.4 Probabilistic planning with clear preferences over missing information
	2.4.1 Problem setup
	2.4.2 PPCP overview


	3 Related Work
	3.1 Efficient search-based deterministic planning
	3.1.1 Bounded suboptimal heuristic search
	3.1.2 Using distance estimates in heuristic search
	3.1.3 Abstract-space based heuristics in bounded suboptimal search

	3.2 Efficient planning under uncertainty
	3.2.1 Heuristic-search based methods
	3.2.2 Point-based methods
	3.2.3 Monte-Carlo based methods
	3.2.4 Planning in special classes of belief-MDPs
	3.2.5 Planning under uncertainty in real-world robotics problems
	3.2.6 Fully and partially observable non-deterministic planning


	4 Speeding Up Search-Based Motion Planning via Conservative Heuristics
	4.1 Introduction
	4.2 Planning with conservative heuristics
	4.2.1 Definitions, notations and problem description
	4.2.2 Conservative heuristic computation

	4.3 Theoretical properties
	4.4 Implementation and experimental analysis
	4.4.1 Path planning for a UAV in (X,Y,Z)
	4.4.2 Humanoid footstep planning for bipedal walk

	4.5 Conclusions, Discussion, and Lessons Learned

	5 Speeding Up Planning under Uncertainty with Fast-PPCP
	5.1 Introduction
	5.2 Problem definition, assumptions and background
	5.3 Fast bounded suboptimal PPCP
	5.3.1 Operation and Intuition in a Nutshell
	5.3.2 Implementation details of some functions
	5.3.3 Working example
	5.3.4 Theoretical analysis

	5.4 Application to discounted reward-based belief-MDPs with clear preference and perfect sensing
	5.5 Experiments
	5.6 Conclusions, Discussion, and Lessons Learned

	6 Optimizing Fast-PPCP for Planning in Environments with Large Unknown Regions
	6.1 Motivation
	6.2 Problem Definition, Assumptions and Background
	6.3 Fast bounded suboptimal PPCP
	6.3.1 Overview of Fast-PPCP operation

	6.4 Optimizing Fast-PPCP
	6.4.1 Motivation for optimization in Fast-PPCP: 
	6.4.2 Optimization

	6.5 Simulation experiments
	6.5.1 Results

	6.6 Robot experiments
	6.6.1 Husarion ROSbot 2.0 PRO
	6.6.2 Experimental setup
	6.6.3 Implementation details
	6.6.4 Results

	6.7 Conclusions, Discussion, and Lessons Learned

	7 Search-based Planning with Learned Behaviors for Navigation among Pedestrians
	7.1 Motivation
	7.2 Background: Planning in state-lattice with predefined behaviors (SLB)
	7.2.1 SLB formulation

	7.3 Our approach: Introducing learned behaviors in state-lattice based planning
	7.3.1 Learning behavior models
	7.3.2 SLB-L formulation: Introducing prediction uncertainty of models into SLB
	7.3.3 SLB with Confidence of Success of Learned Behaviors (SLB-CSL)

	7.4 Theoretical analysis
	7.5 Implementation and experimental analysis
	7.5.1 Experimental setup
	7.5.2 Results and discussion

	7.6 Conclusions, Discussion, and Lessons Learned

	8 Conclusions and Future work
	8.1 Contributions
	8.2 Future Work
	8.2.1 Application of Fast-PPCP in the domain of navigation among pedestrians
	8.2.2 Accounting for a change in the status of an unknown variable after it is sensed
	8.2.3 Introducing actions in the Fast-PPCP framework that do not exhibit perfect sensing
	8.2.4 Interleaving planning and execution in the Fast-PPCP framework


	A Fast Bounded-Suboptimal Probabilistic Planning with Clear Preferences on Missing Information: Supplementary Material
	A.1 Appendix A: Proofs
	A.2 Appendix B: Complete Pseudocode of Fast-PPCP

	Bibliography

