
CASE-BASED MOBILE MANIPULATION

by

Tekin Meriçli

B.S., Computer Engineering, Marmara University, 2005

M.S., Computer Science, The University of Texas at Austin, 2007

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2014

ii

CASE-BASED MOBILE MANIPULATION

APPROVED BY:

Prof. H. Levent Akın

(Thesis Supervisor)

Prof. Manuela Veloso

(Thesis Co-supervisor)

Prof. Ethem Alpaydın

Assist. Prof. Hatice Köse

Assoc. Prof. Olcay Kurşun

Assist. Prof. Albert Ali Salah

DATE OF APPROVAL: 30.06.2014

iii

ACKNOWLEDGEMENTS

Completing this thesis has been a long journey made possible by the unconditional

help of many people to whom I owe my sincere thanks.

First and foremost, I am grateful to my advisors Levent Akın and Manuela Veloso

for their guidance and support; this thesis would not have been possible without them.

Levent Akın has played a key role in my becoming a roboticist by letting me be a part of

the “Cerberus” RoboCup team as a junior undergraduate student. Him encouraging me

to explore various research ideas and directions helped me build my broad experience

in all aspects of intelligent robotics. Manuela Veloso deserves special thanks as she has

been absolutely wonderful in giving me brilliant ideas, setting the boundaries of my

research, keeping me on track, and helping me complete my thesis in a finite amount

of time. I owe a lot to Manuela.

I would also like to thank the members of my committee, Ethem Alpaydın, Olcay

Kurşun, Albert Ali Salah, and Hatice Köse for their constructive criticism and valuable

feedback throughout the progression of this thesis.

I thank all my friends from CmpE of Boğaziçi University, who made my time

there extremely fun and fruitful. CmpE has a unique atmosphere and I am very proud

to be affiliated with it. Being a member of the Robotics Research Group at the AI Lab

of CmpE in general and the Cerberus team in particular has been truly rewarding in

all aspects.

I would also like to thank all my friends from the CORAL research group at

Carnegie Mellon University, who made my brief visit to Carnegie Mellon a very pleasant

and intellectually satisfying experience. Their invaluable feedback helped me improve

both the content of my work and the way I present it.

iv

My brother has been a spectacular role model for me and I have always followed

his footsteps. Neither this thesis nor any of my other significant achievements would

have been possible without his support and encouragement. “2 Meriçli” shall prevail.

My parents, Birgül Meriçli and İsmet Meriçli, deserve the greatest thanks of

all. They have made so many sacrifices and supported me and my brother in every

possible way throughout our education. My father, in particular, was the main source of

inspiration for both me and my brother to choose and pursue a science and technology

oriented career path. We miss him greatly.

Finally, I would like to thank my lovely wife Andrea for being extremely patient

and supporting through the ups and downs of graduate school. I appreciate everything

she has done for me.

Parts of this thesis study were supported by The Scientific and Technological

Research Council of Turkey Programme 2214 and the Turkish State Planning Organi-

zation (DPT) under the TAM Project, number 2007K120610.

v

ABSTRACT

CASE-BASED MOBILE MANIPULATION

The ability to manipulate the environment is one of the primary skills that au-

tonomous mobile service robots are expected to have, considering that the daily lives

of humans heavily rely on this skill. There are various ways for a mobile robot to per-

form manipulation, the exact form of which is determined by the requirements of the

task and the constraints imposed by the physical properties of the environment, the

object, and the robot itself. Anecdotal evidence suggests that humans mostly reuse

their manipulation experiences, acquired through interaction and observation, espe-

cially in recurring everyday manipulation tasks, both in prehensile and non-prehensile

manipulation contexts. With this motivation, this thesis contributes a case-based ap-

proach to achieving practical and efficient mobile manipulation through the utilization

of past experience, stored as object-specific, distinct, and potentially probabilistic cases.

In scenarios where prehensile manipulation is possible, this guidance combined with

sampling-based generative planners helps reduce planning time by deliberately biasing

the planning process towards the feasible cases while increasing the overall robustness

and repeatability of the method. When non-prehensile manipulation techniques, such

as push-manipulation, need to be utilized, these probabilistic cases can be used as

building blocks for constructing safe and achievable push plans to navigate the ob-

ject of interest to the desired goal pose as well as to potentially push the movable

obstacles out of the way in cluttered task environments. Additionally, incremental ac-

quisition and tuning of the probabilistic cases allows the robot to adapt to the changes

in the environment, such as increased mass due to loading of the object of interest

for transportation purposes. The purely interaction and observation driven nature of

our method makes it robot, object, and environment (real or simulated) independent,

as we demonstrate through extensive testing and experimentation. We also verify the

validity of our push-manipulation method in preliminary real world tests.

vi

ÖZET

DURUM TABANLI HAREKETLİ MANİPÜLASYON

Ortamı manipüle edebilme, insanların günlük yaşamlarının önemli ölçüde bu

yetiye dayandığı düşünülürse, özerk hareketli servis robotlarının sahip olması beklenen

özelliklerin başında gelmektedir. Tam formu görevin gereksinimleri ile ortamın, nes-

nenin, ve robotun fiziksel özelliklerinden kaynaklanan kısıtlarca belirlenmekle birlikte,

hareketli bir robot pek çok şekilde manipülasyon yapabilir. Çeşitli incelemeler in-

sanların günlük manipülasyon görevlerinde çoğunlukla etkileşim ve gözlem sonucu elde

ettikleri manipülasyon tecrübelerinden faydalandıklarını göstermektedir. Bu motivasy-

onla, bu tez çalışması, pratik ve etkili hareketli manipülasyonun nesneye özgü, ayrık,

ve potansiyel olarak olasılıksal durumlar şeklinde saklanan geçmiş tecrübelerin yeniden

kullanılması ile başarıldığı durum temelli bir yaklaşım sunmaktadır. İlgilenilen nes-

nenin kavranabildiği senaryolarda, bu kılavuzluk, örnekleme tabanlı planlama algorit-

malarıyla birleştirildiğinde yöntemin gürbüzlüğünü ve tekrarlanabilirliğini arttırırken,

planlama sürecini kasıtlı olarak uygulanabilir durumlara doğru yönlendirerek planlama

zamanını azaltmaya yardımcı olmaktadır. İterek-manipülasyon gibi, nesnenin kavran-

madan manipüle edilmesini gerektiren tekniklere ihtiyaç duyulduğunda, bu olasılıksal

durumlar, ilgilenilen nesneyi istenen hedef konuma taşıyabilmek ve sıkışık görev or-

tamlarında potansiyel olarak karşılaşılabilecek engelleri yoldan çekebilmek için gereken

güvenli ve başarılabilir itme planlarının yapıtaşları olarak kullanılabilirler. Buna ek

olarak, olasılıksal durumların artımsal olarak edinilip iyileştiriliyor olmaları, robo-

tun ilgilenilen nesnelerin nakliye amacıyla yüklenmeleri ya da boşaltılmaları sonucu

kütlelerinin değişmesi gibi durumlara uyum sağlayabilmesine imkan tanımaktadır. Çok

geniş kapsamlı deneylerle gösterdiğimiz üzere, tamamen etkileşim ve gözleme dayalı

doğası, sunduğumuz yöntemi robottan, nesneden, ve ortamdan (gerçek ya da benzetim)

bağımsız hale getirmektedir. Ayrıca geliştirdiğimiz iterek-manipülasyon yönteminin

geçerliliğini bir takım öncü gerçek dünya deneyleriyle de doğrulamaktayız.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . ix

LIST OF TABLES . xiv

LIST OF SYMBOLS . xvi

LIST OF ACRONYMS/ABBREVIATIONS . xviii

1. INTRODUCTION . 1

1.1. Approach . 3

1.1.1. Case-based Pick and Place Manipulation 4

1.1.2. Case-based Push Manipulation 5

1.2. Contributions . 7

1.3. Evaluation . 7

1.4. Thesis Outline . 8

2. MOBILE PICK AND PLACE MANIPULATION 9

2.1. Motivation . 9

2.2. Background . 11

2.3. Related Work . 13

2.4. Case-Based Mobile Pick and Place . 15

2.4.1. Cases for Delicate Reaching and Manipulation 16

2.4.2. Generative Planner . 20

2.4.3. Execution Monitoring . 24

2.5. Experimental Evaluation . 25

2.6. Discussion . 36

3. MOBILE PUSH-MANIPULATION . 38

3.1. Motivation . 38

3.2. Related Work . 40

3.3. Case-based Mobile Push-Manipulation 43

3.3.1. Probabilistic Cases for Push-Manipulation 44

viii

3.3.2. Building Experimental Interaction Models 46

3.4. Case-Based Reactive Push-Manipulation 49

3.4.1. Experimental Evaluation . 51

3.5. Case-Based Achievable Push-Manipulation 54

3.5.1. Execution Monitoring . 57

3.5.2. Experimental Evaluation . 59

3.5.3. Mobile Push-Manipulation in Real World 65

3.6. Discussion . 67

4. ADAPTING PAST EXPERIENCE TO NOVEL SITUATIONS 69

4.1. Motivation . 69

4.2. Related Work . 70

4.3. Approach . 70

4.4. Experimental Evaluation . 71

4.5. Discussion . 73

5. MOBILE PUSH-MANIPULATION AMONG MOVABLE OBSTACLES . . . 74

5.1. Motivation . 74

5.2. Related Work . 75

5.3. Push-Manipulation Among Movable Obstacles 75

5.4. Experimental Evaluation . 76

5.5. Discussion . 79

6. CONCLUSIONS AND FUTURE WORK . 80

6.1. Case-Based Mobile Pick and Place . 80

6.2. Case-Based Mobile Push-Manipulation 81

6.3. Contributions . 82

6.4. Future Research Directions . 83

APPENDIX A: BUILDING REALISTIC SIMULATION ENVIRONMENTS . 84

A.1. Simulated Robot and Object Models 84

A.2. Robot Kinematics and Control . 86

APPENDIX B: REAL WORLD TEST SETUP 89

APPENDIX C: ADDITIONAL EXPERIMENTAL RESULTS 92

C.1. Experience-based Mobile Pick and Place 92

REFERENCES . 108

ix

LIST OF FIGURES

Figure 1.1. Carnegie Mellon’s CoBot-2 robot and its simulated model. 3

Figure 2.1. The simulated mobile manipulator, several office and hospital ob-

jects, and a randomly populated cluttered task environment. . . . 10

Figure 2.2. Tree construction process of the RRT algorithm. 11

Figure 2.3. The basic RRT algorithm. 12

Figure 2.4. Visualization of pick and place sequences associated with the utility

cart object and its potential destination. 17

Figure 2.5. Visualization of the sequences around the chair object and their

entry points depicted as scaled-down ghost robot figures. 19

Figure 2.6. Reiteration of a collision-free sequence. 20

Figure 2.7. Configuration sampling function that utilizes the sequences. 23

Figure 2.8. Reiteration of an obstructed sequence. 24

Figure 2.9. Different ways of combining the RRT generative planner and the

sequences to achieve the task. 27

Figure 2.10. The statistics for the number of generated nodes during planning

for picking up the chair object. 29

Figure 2.11. Planning time statistics for picking up the chair object. 30

x

Figure 2.12. The statistics for the number of generated nodes during planning

for placing the chair object. 31

Figure 2.13. Planning time statistics for placing the chair object. 32

Figure 2.14. The effect of fragmented segment utilization on task completion time. 34

Figure 2.15. Visualization of the stretcher placement scenario where the direct

path to the actual goal pose is blocked. 35

Figure 2.16. Statistics for the number of plan tree nodes in the scenario where

the direct path to the goal is blocked. 36

Figure 2.17. Planning time statistics for the scenario where the direct path to

the goal is blocked. 36

Figure 3.1. Our simulated CoBot model together with a set of realistically sim-

ulated passively-mobile objects. 39

Figure 3.2. Various contacts between the robot and the object of interest. . . 43

Figure 3.3. Depictions of the reference frames used during sequence acquisition

and reiteration, and the sequences acquired for the chair object. . 45

Figure 3.4. Actual distribution of the object’s relative final pose (location and

orientation) when one of the sequences is reiterated several times. 48

Figure 3.5. Approximation of the object trajectories with vectors. 50

Figure 3.6. The four different sets of sequences used in the reactive push-

manipulation experiments. 53

xi

Figure 3.7. The Exp-RRT algorithm. 55

Figure 3.8. Illustration of the Exp-RRT construction process. The sequences

resulting in the most similar poses are highlighted. 56

Figure 3.9. Illustration of the sigma points. 57

Figure 3.10. Collision-free and achievable push-plans generated for various push-

able objects using their corresponding probabilistic cases. 60

Figure 3.11. The effects of the growing variety of the available sequences for the

chair object on the path length and its consistency. 62

Figure 3.12. The tendency towards a decreasing number of re-plans during task

execution with the increasing number of practices per individual

case of a particular object of interest. 63

Figure 3.13. The tendency towards an increasing plan success rate with the in-

creasing number of cases. 63

Figure 3.14. The number of cases versus the number of expanded Exp-RRT nodes. 64

Figure 3.15. A snapshot from one of the real world tests, where the task of the

robot is to arrange the chairs around the round table. 66

Figure 3.16. Snapshots from the case-based push-manipulation planning and ex-

ecution test in a real world setup. 67

Figure 4.1. The effect of the changes in the dynamics of the object on the its

behavior. 69

xii

Figure 4.2. The effect of continuous adaptation to the observed changes on the

robust execution of the generated plans. 72

Figure 5.1. The effect of movable obstacle utilization during planning. 74

Figure 5.2. State lattice construction for the movable obstacle. 76

Figure 5.3. Clearing movable obstacles along the path of the stretcher. 77

Figure 5.4. Planning performance in the presence of movable obstacles. 78

Figure A.1. Realistically simulated models of some common office and service

objects, such as a chair, an overbed table, and a utility cart. . . . 85

Figure A.2. A standard generic caster wheel and its simulated counterpart. . . 85

Figure A.3. Simulated model of the omni-directional wheel with a lower reso-

lution of rollers compared to the wheels of the physical platform. . 86

Figure A.4. Simulated CoBot base and its kinematics. 87

Figure B.1. The visualization of the AR Tag tracking process. 89

Figure B.2. Various reference frames used in computing the location of the ob-

ject’s center with respect to the robot. 90

Figure B.3. Visualizations of the Fast Sampling Plane Filtering based planar

feature detection and Corrective Gradient Refinement based local-

ization algorithms. 91

Figure C.1. The statistics for the number of generated nodes during planning

for picking up the overbed table object. 93

xiii

Figure C.2. Planning time statistics for picking up the overbed table object. . 94

Figure C.3. The statistics for the number of generated nodes during planning

for placing the overbed table object. 95

Figure C.4. Planning time statistics for placing the overbed table object. . . . 96

Figure C.5. The statistics for the number of generated nodes during planning

for picking up the utility cart object. 98

Figure C.6. Planning time statistics for picking up the utility cart object. . . . 99

Figure C.7. The statistics for the number of generated nodes during planning

for placing the utility cart object. 100

Figure C.8. Planning time statistics for placing the utility cart object. 101

Figure C.9. The statistics for the number of generated nodes during planning

for picking up the stretcher object. 103

Figure C.10. Planning time statistics for picking up the stretcher object. 104

Figure C.11. The statistics for the number of generated nodes during planning

for placing the stretcher object. 105

Figure C.12. Planning time statistics for placing the stretcher object. 106

xiv

LIST OF TABLES

Table 2.1. RRT planning statistics for various subgoal utilization methods. . . 27

Table 2.2. Sequence utilization while planning and executing pick task for the

chair object in ten different environments. 33

Table 2.3. Sequence utilization while planning and executing place task for the

chair object in ten different environments. 33

Table 2.4. Number of entry points used when partial sequence segments are

utilized versus when they are discarded. 34

Table 3.1. Performances of different sets of motion sequences. 52

Table 5.1. Task completion statistics for stationary and movable obstacle con-

figurations. 79

Table C.1. Sequence utilization while planning and executing pick task for the

overbed table object in ten different environments. 97

Table C.2. Sequence utilization while planning and executing place task for the

overbed table object in ten different environments. 97

Table C.3. Sequence utilization while planning and executing pick task for the

utility cart object in ten different environments. 102

Table C.4. Sequence utilization while planning and executing place task for the

utility cart object in ten different environments. 102

xv

Table C.5. Sequence utilization while planning and executing pick task for the

stretcher object in ten different environments. 107

Table C.6. Sequence utilization while planning and executing place task for the

stretcher object in ten different environments. 107

xvi

LIST OF SYMBOLS

aj∈[0,n) Motion command component of a sequences of length n.

dmax The maximum distance in the task environment.

E Set of all feasible entry points.

ESi Set of feasible entry points that belong to sequence Si.

k Keyframe/entry point frequency along a sequence.

K Scaling factor used for adjusting the weight of the past expe-

rience over the newly observed outcome.

L Dimensionality of the state space.

M Total number of cases stored for a particular object of interest.

p Probability of picking the goal configuration as a sample.

pep Probability of sampling an individual entry point.

pg Probability of sampling the actual goal configuration.

pg∗ Probability of picking the actual goal after deciding to sample

a goal configuration.

ps Probability of sampling a sequence.

qinit Initial configuration before planning.

qnear Nearest configuration on the plan tree to the picked sample.

qnew New configuration added to the plan tree.

qrand Random configuration picked during planning.

S Set of sequences.

Si∈[0,M) Set of M sequences.

Snew Set of newly acquired sequences.

δ Length of the extension towards the sample configuration

from the nearest node of the plan tree.

δmax The threshold for the maximum allowed final distance to the

goal pose.

ε Maximum allowed difference between the expected and the

actual pose during sequence reiteration.

ζ The scalar scaling factor that determines the spread of the

sigma points around the mean.

xvii

G Direction vector defining the next waypoint along the guide-

line path.

ι Set of index increments used for picking sequences during the

push uncertainty modeling process.

℘O Pose of the object relative to its last stationary pose.

℘Og The goal pose for the object.

℘Oo The observed final pose of the object.

℘R Pose of the robot relative to the target.

℘̄O The expected final pose of the object.

℘̄Of The mean of the final object poses observed so far for a par-

ticular sequence.

ϕG Global reference frame.

ϕO Object’s reference frame, defining its global pose.

ϕR Robot’s reference frame, defining its global pose.

ϕS Auxiliary reference frame, defining the last stationary pose of

the object before it starts being pushed.

ϕT Target’s reference frame, defining its global pose.

ς A push configuration defining the push initiation pose of the

robot and the duration of the pushing action.

Σ℘O The expected final pose covariance of the object.

Σ℘
Oit

Covariance of the observed object pose after reiterating push

sequence i for a total of t times.

τi Direction vector used for approximating the object’s trajec-

tory resulting from sequence i.

χ2
k(p) The quantile function for probability p of the chi-squared dis-

tribution with k degrees of freedom.

ωmax The threshold for the maximum allowed final orientation dif-

ference with the goal pose.

vx Translational velocity in x direction.

vy Translational velocity in y direction.

vθ Rotational velocity.

xviii

LIST OF ACRONYMS/ABBREVIATIONS

CBP Case-based Planning

CBR Case-based Reasoning

ERRT Execution Extended Rapidly-exploring Random Tree

Exp-RRT Experience-based Rapidly-exploring Random Tree

hRRT Heuristically-guided Rapidly-exploring Random Tree

LfD Learning from Demonstration

NAMO Navigation Among Movable Obstacles

ODE Open Dynamics Engine

OOI Object of Interest

RRT Rapidly-exploring Random Tree

TSR Task Space Region

1

1. INTRODUCTION

Mobile manipulation constitutes a significant portion of the daily activities that

humans perform in potentially unstructured, dynamic, and cluttered environments. As

a result, the majority of the tasks that people expect their service robots to be able to

handle involve some form of manipulation in environments with similar characteristics.

There are several ways for a robot to manipulate the objects in its task environment.

The requirements of the task and the constraints imposed by the physical properties of

the environment, the object, and the robot determine which of the two main modalities

of manipulation is more suitable for a given scenario:

• If the robot is equipped with a grasping mechanism and the object satisfies the

payload constraints of the manipulator in terms of its weight and dimensions,

prehensile manipulation could be the better option, as grasping the object first

and unifying with it would provide more control over the object. The most

common application of this type of manipulation is pick and place tasks.

• In cases where the object is too large or heavy, the robot is not equipped with

a manipulator arm and/or a grasping unit, or it is more convenient to transport

the object that way, non-prehensile manipulation, that is manipulating objects

without grasping them, could be the better option. Examples of non-prehensile

manipulation include sliding, rolling, throwing, and pushing.

If the robot is equipped with a grasping mechanism, the object needs to be ap-

proached in a certain and delicate way to obtain a reliable grasp so that the rest of

the manipulation task can be executed successfully. In theory, there may exist an in-

finite number of such fine manipulation trajectories. However, in practice, we observe

that humans repetitively utilize only a small set of these object-specific pre-grasp ap-

proach trajectories during everyday manipulation tasks [1]. Analogously, in robotic

manipulation, these moves can be acquired only once either through demonstration or

self-exploration and stored for future reuse instead of generating them from scratch

every time the object needs to be manipulated. Considering that the majority of the

2

complexity in motion planning stems from trying to satisfy the tight constraints that

define those delicate moves, storing and reusing them could help reduce the load on the

generative motion planner, resulting in faster solutions and more reliable executions.

If, on the other hand, the robot is not equipped with a grasping mechanism, the

objects in the task environment may still be manipulated through some other forms

of interaction, such as pushing. In that case, a separate path should be planned and

tracked for the object as it does not become a part of the robot during transportation.

Planning such paths requires knowledge about how the object of interest moves in

response to various pushes. The object’s exact behaviors in response to these interac-

tions are defined by several physical properties such as the object’s mass distribution,

its passive-mobility configuration, ground friction characteristics, and how and where

the robot contacts the object during the push. While, in theory, it is possible to pre-

cisely measure all these properties and derive an analytical model of the effects of the

pushes on the object, in practice, it is often non-trivial to obtain these measurements

with enough accuracy to be able to deterministically predict the outcome of a partic-

ular push. Also, it is not feasible to provide such analytical models for every possible

object, robot, and environment combination. Humans handle such problems flexibly

due to their abilities to build observation-driven experimental interaction models and

use them for predictive planning purposes. Robots can follow a similar approach to

acquire that knowledge by observing the outcomes of various interactions with the ob-

jects of interest, and utilize those experimental models together with their associated

uncertainties for push-manipulation planning and execution in their task environments.

Given these motivations, this thesis explores the following principal questions:

• Can we reuse fine pre-grasp trajectories from successful past attempts to improve

manipulation planning and execution performance in mobile pick and place tasks?

• Can we reuse experimentally acquired observation-driven probabilistic interaction

models as push primitives during the construction and execution of mobile whole-

body push-manipulation plans?

3

1.1. Approach

Motivated by the aforementioned anecdotal evidence on how humans manipulate

objects, this thesis contributes case-based methods to achieve practical and efficient mo-

bile manipulation through the utilization of past experience, stored as object-specific,

distinct, and potentially probabilistic cases. The presented concepts are independent

of the actual setup; hence, can be applied to various prehensile and non-prehensile ma-

nipulation scenarios with even higher dimensional state spaces. However, in the scope

of this thesis, we concentrate on mobile manipulation in indoor environments, such

as offices and hospitals, where bulky objects need to be transported safely over long

distances. For that purpose, we employ our CoBot [2] service robot as the whole-body

manipulator in both real and simulated task environments, as shown in Figure 1.1.

Figure 1.1. Carnegie Mellon’s CoBot-2 robot and its simulated model.

By definition, case-based reasoning (CBR) and planning (CBP) systems handle

new problems by reusing plans and solutions applied to similar cases in the past instead

of planning from scratch [3, 4]. A traditional CBR/P cycle consists of four stages:

• Retrieve: Given a new problem, similar cases are retrieved from the memory.

• Reuse: Retrieved solution for the most similar case is adapted for the new case.

• Revise: Adapted solution is tested against the new case and revised as needed.

• Retain: The new solution is potentially added to the case base of solutions.

4

Getting inspiration from the controllable state features concept presented by Ros et

al. [5], when applying the case-based paradigm to robotic manipulation, we acknowl-

edge and utilize the fact that the robot can, to some extent, alter the state of the

environment to fit its needs. For instance, it can reposition itself around the target of

interest such that the available cases can be directly applied. This flexibility enables

us to define the cases relative to the targets of interest (i.e. the object and/or the

destination), making them invariant to the global poses of the robot and the targets.

1.1.1. Case-based Pick and Place Manipulation

In pick and place manipulation scenarios, we define a case as a successful fine

approaching trajectory that the robot executes within close proximities of the object

(for pick up) or the destination (for placement). This representation aligns very well

with our observation of humans repeatedly using a finite number of alternatives for

approaching a particular object and/or its destination, and allows us to store a small

set of frequently reused local solutions. These stored cases serve mainly two purposes;

• implicitly forming a critical manipulation region around the target that can be

used to guide the generative planning process to reach that region as roughly and

directly as possible, hence alleviating the computational load of trying to satisfy

fine reaching constraints, which is already handled by the stored cases.

• providing a way to reiterate previously experienced and known-to-be-successful

fine approaching solutions, increasing the reliability of the execution.

Our extensive experimental analyses demonstrate that this approach reduces the

overall computational demand for generative planning, hence improving efficiency com-

pared to planning from scratch every time the objects of interest need to be manipu-

lated. Also, reiterating the moves that have been executed in the past and are known-

to-be-successful improves execution reliability.

5

1.1.2. Case-based Push Manipulation

In our push-manipulation scenarios, we define a case by the active push trajectory

executed by the robot and the corresponding passive trajectory that the object follows.

However, usually the passive object trajectories are not exactly repeatable; that is, even

if the action performed by the robot remains the same, the object may trace a slightly

different trajectory and end up at a different pose after every interaction, mainly due

to the following reasons.

• Due to the complex 3D structures of the robot and the object, it is not easy to

formulate a deterministic model for the outcomes of their potential interactions.

• Our objects move on passive caster wheels, which contribute to the motion un-

certainty as the objects continue moving for some time even after the push is

ceased and their trajectories are affected by the initial wheel orientations.

Therefore, it becomes critical to incorporate that uncertainty into the case definition.

We address this problem by introducing the probabilistic case concept, where the out-

come of a robot-object interaction is associated with a probability distribution. These

distributions are formed incrementally as the robot interacts with the objects, through

either human demonstration or self-exploration. They are mainly utilized for collision

checking purposes to guarantee the safety and the achievability of the plan from both

the robot’s and the object’s perspective.

An object can be push-manipulated through the utilization of these experimen-

tally acquired probabilistic cases by following one of the strategies described below.

(i) A collision-free path is planned for the object without taking the actual interac-

tion models into account, and the robot tries to track this path by reiterating the

best locally-matching object trajectories until the goal is reached.

(ii) The push plan is constructed directly out of the experimentally acquired proba-

bilistic interaction models such that its achievability and safety are guaranteed.

6

The first strategy follows the traditional case-based approach where the robot

tries to solve the given (local) problem by picking the best matching case from its case

base. However, since there are only a small number of available cases for the object,

there is no guarantee that the path will be tracked successfully all the way to the

goal. The second strategy, on the other hand, provides such guarantee as the cases

themselves constitute the individual building blocks of the constructed push-plan. Our

extensive experimental evaluation demonstrate the successful application of the second

strategy in various challenging push-manipulation problems in simulated large scale,

cluttered environments as well as in a real world setup.

The objects of interest in our manipulation scenarios are mainly office and hospital

service objects and furnitures; therefore, it is very likely for their occupancy states to

change from time to time by loading them with additional objects for transportation

purposes. We demonstrate the advantage of having a purely interaction and observation

driven case acquisition and tuning approach in adapting the past experience to the

novel situations, such as changes in the dynamics of the manipulated objects due to

loading/unloading, instead of having to go through the learning process all over for

each such novelty. Our experimental results show that, after adaptation, the cases

acquired for unloaded objects of interest could be successfully used for manipulating

loaded ones, which have substantially different dynamics.

Finally, we investigate ways of utilizing the available manipulation experience for

the objects other than the primary object of interest for relaxing the planning process,

as the accumulation of push-manipulation experience for various objects enables the

robot to modify and rearrange the task environment according to its needs. Every

movable object that the robot has experience about can be treated as “permeable”

during the construction of push plans for the primary object of interest. That way,

the complexity of the constraints imposed by the task environments can be reduced

considerably. Also, some problems that are unsolvable when all the obstacles in the

environment are treated as static can be solved by repositioning the movable obstacles

accordingly. Our experimental evaluation demonstrate the positive effects of this ability

on the push-manipulation planning and execution performance.

7

1.2. Contributions

This thesis makes several contributions to the field of mobile manipulation:

• Formalization of mobile manipulation as a case-based planning problem, where

the robot retains manipulation experiences as cases, reuses them for plan con-

struction (non-prehensile) and guidance (prehensile), and revises them to match

the slight differences observed in the manipulated object’s behavior (loaded ob-

jects) to improve planning and execution performance.

• A mobile pick and place manipulation algorithm that defines target-specific fine

reaching trajectories as cases and reuses them to guide the robot through manip-

ulation plan construction and execution processes [6, 7].

• A mobile whole-body push-manipulation algorithm that incrementally acquires

object-specific interaction models and stores them as distinct probabilistic cases

to be reused as building blocks for achievable push planning and execution [8–10].

• A state lattice-based push-manipulation algorithm that is used for treating mov-

able obstacles as “permeable” to reduce the complexity of planning during push-

plan construction for the primary object of interest [11].

• An online algorithm that adapts the probabilistic cases to the changes in the

object’s behavior based on the observed deviation from the expected outcome [11].

• Extensive experimental evaluation of the presented case-based prehensile and

non-prehensile mobile manipulation methods in simulated and real setups.

1.3. Evaluation

We extensively tested our contributed case-based mobile manipulation methods

in large scale, cluttered task environments modeled in a realistic 3D simulator (AP-

PENDIX A), where a variety of passively-mobile service objects needed to be safely

transported to their desired poses either through pick and place or push-manipulation.

Additionally, we verified the validity of the our experience-driven push-manipulation

method through a set of preliminary tests in a real world setup with the physical CoBot

robot in both static and movable obstacle scenarios (APPENDIX B).

8

1.4. Thesis Outline

The thesis is organized as follows:

• In Chapter 2, we describe our case-based approach to addressing some of the

planning and execution challenges of mobile pick and place tasks in large scale,

cluttered environments. We show, through extensive experimentation, the posi-

tive effects of guiding sampling-based planners through memorization and reuse

of critical yet recurring object-specific fine reaching moves on the efficiency of the

generated plans as well as the reliability of their executions.

• In Chapter 3, we present our approach to case-based push-manipulation, where

the robot experimentally acquires discrete interaction models for the objects,

stores them as probabilistic cases, and uses them as building blocks to construct

safe and achievable push-manipulation plans. Our experiments in simulation

and real world demonstrate successful application of the contributed method to

various challenging push-manipulation problems in cluttered environments.

• In Chapter 4, we extend our push-manipulation method to equip the robot

with the capability of adapting to the changes in object dynamics due to load-

ing/unloading, so that the stored cases can still be utilized for manipulation. We

show in our experiment results that, through a weighting mechanism, the robot

can adapt the previously learned cases on the fly to the novel problem with dif-

ferent dynamics and use them to their full extent throughout the task execution.

• In Chapter 5, we demonstrate how the ability to rearrange the task environ-

ment through manipulating movable obstacles improves planning and execution

performance when push-manipulating the primary object of interest.

• In Chapter 6, we summarize our major contributions and findings, and conclude

the thesis with a discussion of potential directions for future work.

9

2. MOBILE PICK AND PLACE MANIPULATION

2.1. Motivation

Majority of the manipulation activities that are performed in everyday living con-

texts are instances of pick and place tasks. This type of tasks usually require careful

planning and delicate execution as the manipulator has to be finely aligned with the

object of interest (OOI) during pick up and the destination during placement. Depend-

ing on the constraints of the tasks and the complexity of the task environments, even

the state-of-the-art planners may require significant amount of time and computational

resources to generate trajectories that will yield successful and robust executions.

Despite the intimidating complexity and delicacy of mobile manipulation, careful

observation of recurring pick and place tasks performed in everyday scenarios helped

us draw the following conclusions, which motivated the ideas behind our contribution:

(i) Reaching for the OOI and/or the destination is usually done as directly, roughly,

and quickly as possible. The most critical parts of a manipulation task are the

moves performed within close proximities of the OOI prior to pick up or the

destination prior to placement, and those need to be executed delicately.

(ii) Even though there could be infinitely many ways of picking up or placing an ob-

ject, the general tendency is to repeat a finite and discrete number of alternatives

for approaching a particular OOI and/or its destination. For example, a bottle

is approached and grasped from the side or on its cap, a mug is grasped from the

side or on its handle, or a chair is usually grabbed from its back.

Building on these observations and conclusions, we contribute a case/experience-

based mobile manipulation planning and execution method that allows the robot to

memorize and later reuse the critical reaching moves performed within close proximities

of the OOIs and their destinations. We show that this approach reduces the overall

computational demand for planning, hence improving efficiency compared to planning

10

a) The simulated mobile whole-body manipulator modeled after our

omni-directional mobile service robot CoBot [2] (Figure 1.1) and several

manipulable hospital and office objects used in the experiments.

b) The robot (top right) is transporting the utility cart to its desired

destination represented as a pale green ghost figure of the cart (middle

left) in a cluttered task environment.

Figure 2.1. (a) The simulated mobile manipulator is capable of manipulating several

office and hospital objects. (b) A random task environment cluttered with various

manipulable objects, stationary obstacles, and furnitures.

from scratch every time the OOIs need to be manipulated. We also observe that reit-

erating the moves that have been executed in the past and are known-to-be-successful

improves execution reliability. We run our experiments in a simulated setup where our

mobile service robot has to pick up and transport several office and hospital objects,

such as chairs, overbed tables, various utility carts, and stretchers, to their desired

destinations while avoiding collisions in cluttered task environments (Figure 2.1).

11

The rest of the chapter is organized as follows. Section 2.2 provides some brief

background information on the Rapidly-exploring Random Tree (RRT) variant gen-

erative motion planning algorithms while Section 2.3 gives an overview of the related

work. The contributed method is explained thoroughly in Section 2.4. The results of

our extensive experimental evaluation are presented in Section 2.5. Finally, Section 2.6

summarizes and concludes the chapter while pointing out some potential future work.

2.2. Background

In this work, we utilize a set of RRT variant algorithms, namely the original RRT

itself [12,13], RRT-Connect [14], and RRT∗ [15], as the generative planner component

of our proposed approach. In addition to their simplicity, practicality, and probabilistic

completeness property, the sampling-based nature of these algorithms aligns very well

with the way we define and store the robot’s manipulation experiences.

Figure 2.2. Tree construction process of the RRT algorithm [14].

The basic version of the RRT algorithm is given in Figure 2.3. Starting from the

initial configuration qinit, RRT-based algorithms incrementally build a tree composed

of random configurations that could potentially be bounded by certain constraints.

At each iteration, a random configuration qrand is picked by uniformly sampling the

configuration space, the “nearest” node to the sample (qnear) is computed, the tree is

extended a δ amount from qnear towards qrand, and a new node qnew is added to the tree

if that configuration is collision-free (Figure 2.2). This process ends when the newly

added node reaches the goal configuration within some similarity boundaries. It is also

possible to bias the tree growth towards the goal by using the goal itself as a sample

with probability p, and sampling randomly with probability 1− p.

12

1: function BuildRRT(qinit, qgoal)

2: Tree← qinit; . set the root of the tree as the initial configuration

3: qnew ← qinit;

4: while dist(qnew, qgoal) > THRESHOLD do . while the goal is not reached

5: qrand ← Sample(); . sample a random configuration

6: qnear ← Nearest(Tree, qrand); . compute the nearest configuration

7: qnew ← Extend(qnear, qrand); . extend the tree towards the sample

8: if CollisionFree(qnew) then . if the extension is not in collision

9: Tree.add(qnew); . add the new configuration to the tree

10: end if

11: end while

12: return Trajectory(Tree, qnew); . return solution

13: end function

Figure 2.3. The basic RRT algorithm.

As the number of nodes in the tree increases, however, finding the closest node

to the randomly sampled configuration takes longer as this operation requires the

entire tree to be traversed. There has been attempts to use more efficient data struc-

tures for faster nearest neighbor computation as well as heuristics to speed up the

algorithm. Yershova and LaValle [16] presented significant speed ups in the nearest

neighbor search by utilizing a kd-tree for partitioning the configuration space and per-

forming the nearest neighbor search on the kd-tree, which is the approach we adopt in

our implementation of the RRT variants. As a promising step towards reusing previ-

ously generated plans, Bruce and Veloso [17] contributed the execution extended RRT

(ERRT) algorithm, where the plan generated in the previous iteration is used to guide

the progress of the plan in the current iteration by keeping a waypoint cache with the

assumption that the environment did not change significantly between the two itera-

tions. This approach proves very useful when used in highly dynamic environments

that require intensive re-planning, such as robot soccer. Urmson and Simmons [18]

proposed heuristically-guided RRT (hRRT), where they shape the probability distri-

bution to make the likelihood of selecting any particular node based on the node’s

potential exploratory or lower cost path contributions.

13

In an attempt to move over larger distances during tree expansion, Kuffner and

LaValle proposed the RRT-Connect [14] algorithm. Instead of performing a single step

that extends the tree some δ amount towards the sample, the Connect heuristic iterates

the extension operation until the sample is reached or an obstacle is encountered. The

solutions generated via the RRT-Connect algorithm can be quicker and shorter as the

distances between the configurations are traversed more directly. This property of the

algorithm aligns with our motivating idea (1) about reaching the critical manipulation

region as quickly and directly as possible.

Even though RRT rapidly explores the configuration space and eventually reaches

the goal, it does not guarantee the optimality of the solution. A recent study that

focuses on the optimality of the paths generated by RRT was contributed by Karaman

and Frazzoli [15], in which they present the RRT∗ algorithm. Each RRT∗ tree node

stores its distance from the start node in terms of path length, and instead of looking

for the closest single node to the sampled configuration, RRT∗ looks for a set of near

nodes. Therefore, when a new configuration is sampled, not the closest node but the

node with the lowest cost among the near nodes is extended towards the sample. Also,

the near nodes neighborhood is restructured by modifying the parents and children of

the nodes in order to end up with lowest cost paths. The optimality and directness

property of the RRT∗-generated solutions also align well with our motivating idea (1).

In Section 2.4.2, we elaborate on how we utilize these sampling-based planning

algorithms as the generative planning component of our framework to be used for

bridging gaps of various sizes and types between the robot and where it needs to be,

and how we improve their performances via experience guidance and reuse.

2.3. Related Work

Reusing previously constructed paths, trajectories, or motion segments has been

investigated in various forms in the literature. Here we review the most recent related

studies, and compare them against the relevant components of our contribution.

14

Cohen et al. [19] proposed constructing a graph with predefined motion primitives

and performing a search on that graph to plan a path while satisfying the desired

constraints via the solutions provided by the primitives that are generated on the fly

by various analytical solvers. Planning efficiency is improved by initially planning for

only 4 out of 7 degrees of freedom (DoF) of the manipulator, and then switching to full

7 DoF planning towards the end. That, in a sense, resembles our approach, where the

robot reaches the delicate manipulation region roughly and then performs the critical

motions delicately within that region.

Berenson et al. [20] contributed a framework that utilizes stored end-to-end paths

in addition to a generative planner while seeking a solution for a given manipulation

problem. The processes of planning from scratch and looking for a similar stored path

that can be repaired and reused for the given problem are run simultaneously and the

first solution that is returned by either process is used. The similarity of a stored path

to the given situation is determined by comparing the start and end configurations.

BiRRT is used to repair infeasible paths by filling in the gaps caused by the obstructions

along the path. We also utilize the generative planner component of our contributed

method to bridge the gaps along the blocked sequences in a similar manner.

Skoglund et al. [21] follow a Learning from Demonstration (LfD) [22] approach to

demonstrate static trajectories to an industrial manipulator equipped with a vacuum

gripper to pick and place objects with certain shape constraints in a tabletop manip-

ulation scenario. Using a magnetic tracker, they capture the trajectories followed by

the index finger of the human demonstrator, transform them to the robot’s frame of

reference, segment them to extract task primitives, and translate those primitives into

robot-specific codes to be executed to replicate the demonstrated trajectory. Their

approach may be suitable for factory environments, where the robot performs pick

and place from/to the same object/destination location; however, it does not provide

enough flexibility as it would require new demonstrations for each new task environ-

ment configuration that could potentially include static obstacles. Our method works

independent of the global poses of the targets as the fine reaching trajectories are stored

relative to the targets they are defined for.

15

Ye and Alterovitz [23] proposed a method that combines LfD with motion plan-

ning, where the demonstrated motions are recorded relative to the robot’s torso as well

as the OOIs in the task environment. Dynamic time warping [24] is used for aligning

multiple demonstration sequences. Implicitly encoded constraints, such as keeping a

full spoon level to avoid spilling, are automatically extracted from the task execution

sequences by looking at the low variance portions of the data. Recorded and processed

trajectories are reused in scenarios relatively similar to the ones used for learning. Gen-

erative planning is utilized to bridge the gaps when obstacles fragment the trajectories.

As in the work of Berenson et al. [20], they also store full, end-to-end paths.

In order for the full length paths to be meaningful for reuse, a large number of

them covering various situations should be stored. This is one of the aspects where

our proposed approach differs from the presented methods in the literature. Instead of

storing a large set of complete end-to-end solutions, we store only a few partial relative

trajectories that cover the critical regions around the OOIs and the destinations so

that these partial executions can be reused in any scenario independent of the actual

configuration of the environment. Analogous to the endgame tablebases in board games

like chess [25], these partial relative trajectories are also used for easing the load on

the generative planner component, as we present in the following sections.

2.4. Case-Based Mobile Pick and Place

Pick and place tasks require planning and execution of delicate reaching moves.

Especially as the manipulator approaches the OOI and/or the destination, these moves

become more important and critical to the success of the manipulation task. Likely

due to that criticality, humans exploit a small set of those target-specific delicate

reaching and manipulation moves when performing everyday pick and place tasks, even

though there are infinitely many ways of reaching for and manipulating objects. This

kind of experience utilization potentially speeds up planning and improves execution

robustness as those moves have been performed before and are known to be successful.

Inspired by these observations, we develop the following components and bring them

together harmoniously to achieve case-based prehensile mobile manipulation:

16

• A set of local reaching moves, represented as sequences of state-action pairs, that

have been successfully performed in the past, hence can be treated as the “cases”

that the robot knows how to handle.

• A generative planner to bridge the gaps at various stages of planning and ex-

ecution, such as the initial reaching for the sequences and hopping among the

fragmented ones due to obstruction.

• An execution monitoring system that ensures accurate reiteration of the memo-

rized sequences by triggering corrective local motions when needed.

In the remainder of this section, we elaborate on how we define and acquire

the target-specific local reaching moves (i.e. cases), how we ensure that these motion

sequences are reiterated in such a way to re-obtain the previously experienced outcomes,

and how we merge the solutions provided by the generative planner with the partial

solutions provided by the available cases so that they complement each other effectively

to yield faster and more reliable executions.

2.4.1. Cases for Delicate Reaching and Manipulation

Having observed the critical yet repetitive nature of the finite sets of target-

specific delicate reaching and manipulation moves, we let our mobile manipulator robot

simply memorize them and store them as cases that it knows how to handle. That way,

they could be reused for planning and performing mobile manipulation for the same

objects in the future instead of trying to come up with plans that will achieve similar

delicate moves from scratch each and every time the OOIs need to be manipulated.

It is necessary to come up with a compact yet extensive representation for these

moves in order to address several issues simultaneously. For instance, in some cases,

as in our problem domain, these moves may also have additional pose and dynamics

constraints; that is, a chair, a utility cart, or a stretcher can only be reached and

grabbed when approached from behind within certain orientation and velocity limits,

otherwise get bumped into and pushed away without a successful grasp. Therefore, it

is important for the robot to capture the velocity profile of the motion as it memorizes

17

a) Three pick sequences obtained relative to the OOI.

b) Three place sequences obtained relative to the destination.

Figure 2.4. Visualization of (a) pick and (b) place sequences associated with the

utility cart object and its potential destination.

those delicate moves. In other words, the robot needs to be storing its trajectory

rather than simply the path that it needs to follow with an arbitrary velocity profile.

Another important point is to make these fine trajectories independent of the target’s

global pose in order to maximize their utilization through potential reuse in various

environment configurations. This is achieved by defining and recording the trajectories

with respect to the target’s frame of reference; that is, if the robot is to pick up the

OOI, then the trajectories are in the OOI’s frame of reference, and if it is to place the

OOI, then the trajectories are in the destination’s frame of reference.

18

Formally, we attach a static global frame of reference, ϕG, to the environment

and separate frames of reference to the robot and the target (either the OOI or the

destination), denoted as ϕR and ϕT , respectively, to define their poses within ϕG. Let

℘R, denoted as 〈x, y, θ〉, be ϕR w.r.t. ϕT . Invariance to ϕT is achieved by storing

℘R instead of ϕR together with the motion command being executed at that pose.

Therefore, a “case” describing a local delicate reaching and fine manipulation move,

represented as a sequence of state-action pairs of length n takes the form

Si∈[0,M) : ((℘R0 , a0), (℘R1 , a1), . . . , (℘Rn−1 , an−1)),

where aj∈[0,n) is the action associated with ℘Rj∈[0,n) , denoted as 〈vx, vy, vθ〉, indicating

the omni-directional motion command composed of the translational and rotational

velocity components of the robot, and M is total number of cases stored for a particular

OOI. Figure 2.4 illustrates the visualization of the pick up (relative to the object)

and placement (relative to the destination) sequences originating from poses located

immediately around the target and leading the robot to the relative pose where it can

pick up or drop off the OOI.

As the number and the lengths of the stored sequences grow, processing efficiency

and scalability suffers, especially if they are being recorded at each step of the robot’s

perception cycle, which, in our case, corresponds to 30Hz. To address this problem,

we sparsify the sequences by granting access to them at every kth frame, called an

entry point. That is, the robot can merge into a sequence or leave it only at the entry

points. Figure 2.5 provides a close-up look at the visualization of the pick up sequences

memorized for the chair object. The entry points are visualized as scaled-down robot

figures that indicate the robot’s relative pose at every kth frame of the sequence. The

value of k can be adjusted depending on the dimensions of the OOIs and the obstacles in

the task environment as well as the motion precision requirements of the task. Sparser

sequences with larger k values could be used in environments with larger obstacles and

denser sequences with smaller k values could be used for checking and correcting for

diversions from the sequences more frequently to meet precise movement requirements.

19

Figure 2.5. Visualization of the sequences around the chair object and their entry

points depicted as scaled-down ghost robot figures.

Since the sequences are defined relative to the target, some of the entry points

may not be reachable due to direct obstruction or potential collisions depending on the

target’s global pose and the state of its immediate surrounding within the task envi-

ronment. One important role of the entry points is to provide a way to sparsely (hence

quickly) check for collisions along the sequences to figure out which portions of them

are usable for any given environment configuration. For that purpose, each entry point

features a binary flag indicating its feasibility, the value of which is determined based

on the collision reports provided by our custom-developed collision checker. Depending

on the type of a sequence, the collision checker tries to determine for each of the entry

points whether there would be any collisions if the robot would have passed through it

by itself (for pick sequences) or while carrying the OOI (for place sequences). In case

the collision checker reports an obstruction or a potential collision on an entry point,

it is marked as infeasible and excluded from the set of entry points to be utilized for

planning and execution. An example visualization of the feasible (green) and infeasible

(red) entry points can be seen in Figure 2.4b where an obstacle in the environment

results in potential collisions although not directly obstructing the sequence.

Once reached (explained in Section 2.4.2) and merged into through an entry point

with index βk, β ∈ N0, the robot can start reiterating a sequence simply by executing

aj∈[βk,n) that correspond to ℘Rj∈[βk,n) along the sequence. In order to guarantee suc-

cessful completion of the task, the robot monitors the execution during the reiteration

20

process (explained in Section 2.4.3) to detect divergences from the expected outcome

and compensate for them. It also checks for the feasibilities of the upcoming entry

points to avoid potential collisions by planning an auxiliary path that would route the

robot around the obstacle and merge it back into a feasible portion of one of the se-

quences (explained in Section 2.4.2). Infinite loops during planning and execution are

prevented by marking each traversed entry point as infeasible to remove them from the

set of entry points to be considered for reuse during potential re-planning. Figure 2.6

depicts the process of reiterating a collision-free sequence.

2.4.2. Generative Planner

As previously stated, in our proposed method, the sequences representing local

fine manipulation solutions are used analogously to “cases” in a Case-Based Reason-

ing/Planning (CBR/P) system [26–28]; that is, the robot knows how to handle the rest

of the problem when it recalls the case. However, since our cases (i.e. sequences) are

already fine-tuned solutions, we do not attempt to adapt them to the current prob-

lem configuration at hand as would be done in the reuse step of the original CBR/P

approach. Instead, exploiting the fact that we can control the state of the robot, we

simply move the robot towards the cases that it can recall and apply directly. This

is similar to what was done by Ros et al. [5] with the introduction of the controllable

state features concept, which was used to transform the currently perceived state to a

familiar one rather than trying to adapt the case to the current state.

Figure 2.6. The robot reiterates a collision-free sequence simply by executing the

motion commands associated with each frame in order. Traversed entry points are

marked as infeasible (red) to prevent infinite loops in planning and execution.

21

As the sequences take care of the delicate moves that need to be performed within

the close proximity of the target to achieve the task, we only need to create plans from

scratch to navigate the robot along a collision-free path towards the sequences so that it

can merge into one of them and reiterate it. For that purpose, we utilize sampling-based

generative planning, as the underlying representation aligns well with our definition of

the robot’s fine reaching and manipulation trajectories. We specifically use a set of

RRT variant algorithms, namely the original RRT itself [12, 13], RRT-Connect [14],

and RRT∗ [15], the working principles of which are provided in Section 2.2.

As mentioned in Section 2.2, it is possible to bias the growth of the RRT towards

the goal by sampling the goal pose with probability p while sampling a random config-

uration with probability 1−p. We extend this concept to bias the tree growth towards

the delicate manipulation region immediately around the target so that the robot can

reach there as roughly and directly as possible and hand over the rest of the execution

to the fine-tuned sequences to complete the task. That is, in the process of generating

plans for the robot to reach the target, each feasible entry point on any sequence can

potentially be considered as a (sub)goal to be reached, since merging into a sequence

through any of those entry points would lead the robot to where it eventually wants

to go. Our use of the set of feasible entry points to create a bigger region around the

target to ease the task of the generative planner resembles the Task Space Regions

(TSRs) concept presented by Berenson et al. [29], where a tolerance region around

the target pose is created and sampled to be fed into the sampling based planner as

acceptable goal poses to be reached. However, TSRs only represent the distribution

of acceptable final configurations, whereas our representation encode a fine-tuned tra-

jectory for reaching the target from its close proximity. Also, our approach addresses

indirectly yet elegantly one of the major problems of RRT-based algorithms, which is

the increasing computational cost of the nearest neighbor search with the increasing

number of nodes in the tree. Even though we represent the configuration space using

a kd-tree and perform the nearest neighbor computations on the kd-tree in logarith-

mic time, keeping the number of generated RRT nodes as small as possible via proper

biasing in sampling reduces computation and execution times considerably.

22

For that purpose, we define the following modes to utilize the feasible entry points

to guide the generative planning process.

• Sampling individual subgoals : Let pg be the probability of sampling the actual

goal pose that the sequences lead to. Additionally, let pep be the probability of

sampling an individual entry point from the set of all feasible entry points E.

Provided that there are a small number of relatively sparse sequences, we can

randomly sample an entry point (i.e. a subgoal) from E with probability (|E|pep)

while sampling the goal with probability pg, and a random configuration with

probability (1− (|E|pep)− pg).

• Sampling sequences : Instead of sampling individual feasible entry points within

sequences, in this mode, we sample with probability ps a sequence Si from the set

of sequences S associated with the target. Then we randomly sample an entry

point from the set of feasible entry points ESi that belong to Si. This gives us

(|S|ps) as the total probability of sampling an entry point. Similar to the previous

mode, a random configuration is sampled with probability (1− (|S|ps)− pg).

• Sampling subgoals within goal probability : In this mode, we combine the actual

goal with the set of subgoals and obtain a total of (|E|+ 1) (sub)goals. After we

decide with probability pg to use any goal as a sample, we either pick the actual

goal with probability pg∗ = 1/(|E| + 1) or randomly pick one of the feasible

subgoals with probability (1− pg∗).

• Coincidental termination: Instead of deliberately biasing the RRT growth to-

wards the sequences, the feasible entry points can also be used for early-terminating

the search process of the generative planner in case one of the entry points is co-

incidentally reached within some pose difference tolerance. Considering that the

feasible entry points provide a region of many subgoals to be reached as opposed

to the single actual goal pose, it becomes likely to arrive at one of those subgoals

first while trying to reach the actual goal pose.

Instead of just sampling random configurations as in the original RRT algorithm (Fig-

ure 2.3), our modified Sample function, described in Figure 2.7, utilizes the sequences

when sampling robot configurations in the task environment. When these various guid-

23

1: function Sample(SamplingMode)

2: r ← rand();

3: if SamplingMode == WITHIN GOAL PROBABILITY then

4: if r ≤ pg then . get a goal from the set of all (sub)goals

5: r ← rand()

6: if r ≤ 1.0/(|E|+ 1) then

7: qrand ← qgoal; . get the actual goal

8: else

9: qrand ← GetRandomEntryPoint(); . get an entry point

10: end if

11: else

12: qrand ← GetRandomConfiguration(); . get a random configuration

13: end if

14: else

15: if SamplingMode == INDIV IDUAL SUBGOALS then

16: ptotal ← pg + |E|pep;

17: else if SamplingMode == SEQUENCES then

18: ptotal ← pg + |S|ps;

19: end if

20: if r ≤ pg then

21: qrand ← qgoal;

22: else if r ≤ ptotal then

23: qrand ← GetRandomEntryPoint();

24: else

25: qrand ← GetRandomConfiguration();

26: end if

27: end if

28: return qrand; . return sampled configuration

29: end function

Figure 2.7. Configuration sampling function that utilizes the sequences.

24

ance modes are enabled, we observe considerable reduction in the number of generated

RRT nodes and more direct paths towards the fine manipulation regions around the

targets, as we show in Section 2.5 as part of our extensive experimental evaluation.

Navigating the robot towards the sequences when they are far away is not the only

purpose the generative planner is used for. When the robot is reiterating a sequence

and the upcoming entry point is observed to be infeasible (i.e. obstructed), generative

planning is used to help the robot hop onto another feasible entry point and proceed

with the execution of the corresponding sequence. This resembles the methods used

by Berenson et al. [20] and Ye and Alterovitz [23] to bridge the gaps along the stored

trajectories. Figure 2.8 illustrates how the fragmented sequences are bridged via the

use of the generative planner for maximizing experience reuse. As mentioned before

and shown in the figure, infinite planning and execution loops are prevented by marking

the visited entry points as infeasible (shown as red).

Figure 2.8. Reiteration of a sequence that is blocked by an obstacle. When the robot

detects the upcoming entry point along the path to be infeasible (red), it uses the

generative planner to hop to a feasible portion of either the same sequence or another

one and proceed.

2.4.3. Execution Monitoring

Uncertainty is abundant in the world of a robot. Due to the uncertainty in

sensing and actuation, there may be discrepancies between the expected outcome of

a particular action and the actually observed one. Therefore, it is important for the

robot to be actively monitoring itself and its task execution in order to detect and

handle problems caused by various sources of uncertainty that may be rooted in the

task environment as well as the robot itself [30].

25

In order to achieve the task, we need to ensure that the sequences are reiterated

as originally provided, mainly because those delicate reaching and manipulation moves

are acquired and stored without any generalization. For that purpose, the robot keeps

track of its execution by comparing its currently observed state to the expected one

as it passes through each entry point while reiterating a sequence. The sequences

provide the robot with the information that the observed state should be ℘Rj+1
after

executing aj when in state ℘Rj . If it ends up in an unexpected state; that is, if the

currently visited entry point suggests that the robot’s relative pose at that moment

should be ℘ but it is actually ℘′ and ||℘− ℘′|| > ε, then the robot ceases reiteration,

computes a linear interpolation between ℘ and ℘′, moves accordingly to get back to the

expected state, and resumes reiteration. Execution monitoring increases the chance of

successfully completing the task as opposed to open-loop reiteration.

2.5. Experimental Evaluation

We conducted extensive experiments in the Webots 1 mobile robot simulation en-

vironment [31], where we modeled our omni-directional mobile manipulator robot and

several passively-mobile, manipulable office and hospital objects shown in Figure 2.1

(described in APPENDIX A). Even though the physical CoBot lacks a manipulator

arm and a gripper, in our experiments we assume a hypothetical gripper that makes

the manipulated objects get “attached” to the robot when approached within certain

relative pose limits. The robot has a footprint of roughly 0.27m in radius and it can

navigate with a maximum translational velocity of 0.6m/s and a rotational velocity of

π/2rad/s in the simulated environments with dimensions 15m×15m. Considering the

dimensions of the task environments and the δ value used in the RRT expansion process

(see Figure 2.2), which is set to be equal to the robot’s radius, we placed a practical

limit on the maximum number of nodes as 40000 for all of our generative planners,

although we never observed the planners fail by exceeding that limit. RRT search

process is terminated when the pose of the most recently added tree node gets within

0.05m distance and π/36rad orientation difference limits to the pose of a (sub)goal.

1http://www.cyberbotics.com

26

For the acquisition of the cases representing fine reaching moves, we followed

a LfD approach to joystick the robot to demonstrate it how to pick up and place

the manipulable objects available in the simulated environment, although it would

also be possible for the robot to acquire that experience through self exploration and

experimentation. Through these demonstrations, we provided the robot with four pick

and four place sequences per OOI. Given the dimensions of the objects in our task

environments and our motion precision requirements from the robot, we empirically

decided to sparsify these sequences by defining entry points at every 30th frame (i.e.

k = 30). Pick up and placement of an OOI through the potential utilization of the

sequences is considered successful if the robot (for pick up) or the OOI (for placement)

gets within 0.05m distance and π/36rad orientation difference limits to the target.

The same tolerance values as the OOI pick up and placement are used for execution

monitoring as we want to guarantee the robot to be within tolerable pose difference

limits by the time it arrives at the target.

In utilizing the sequences for guiding the generative planning process, we set the

bias for the entry points and the sequences to be pep = ps = 0.01, which is smaller than

the actual goal bias of pg = 0.05, as the entry points and the sequences being greater

in quantity provides the desired attraction to the fine manipulation region. Since there

are only a few and relatively sparse sequences used for each OOI in our experiments, the

total attraction probability of the feasible entry points, that is |E|pep, never exceeds 0.5;

hence, the exploratory nature of the sampling-based generative planners is maintained.

Figure 2.9 provides a visual overview of the effects of various subgoal utilization

methods explained in Section 2.4.2 on the generated RRT branches (orange) as well

as the solution paths (blue) for navigating the utility cart from the upper right corner

of the environment to the desired destination located at the bottom left corner. In

these preliminary runs, the spread of the branches, hence the number of nodes, seem

to decrease while the directness of the solution paths increase with the increased uti-

lization of the sequences. This kind of effect is expected as the attraction of a critical

fine manipulation region increases with the incorporation of more of the individual

entry points into the planning guidance process. The numerical details of these five

27

a) No subgoals used. b) Coincidental reach. c) Sampling within goal.

d) Sampling sequences. e) Sampling subgoals.

Figure 2.9. Different ways of combining the RRT generative planner and the

sequences to achieve the task; (a) using none of the keyframes as subgoals, (b) early

termination by coincidental reaching, (c) sampling subgoals within goal probability,

(d) sampling sequences, and (e) sampling individual subgoals.

Table 2.1. RRT planning statistics for various subgoal utilization methods

(corresponding to Figure 2.9). 38 out of 41 subgoals were feasible. There is an almost

linear correlation between the number of nodes and planning time.

Subgoal Use Nodes Planning time (ms)

None 1196 84.108

Coincidental 632 42.851

Within goals 343 25.425

Sequences 216 17.208

Individual subgoals 119 11.977

preliminary runs are provided in Table 2.1, where an almost linear correlation between

the number of nodes and planning time can be observed.

28

In order to thoroughly investigate how our experience-guided mobile manipula-

tion approach performs under various conditions, we ran separate pick up and place-

ment planning tests in 10 randomly configured task environments with four manipula-

ble objects; namely a chair, an overbed table, a utility cart, and a stretcher (shown in

Figure 2.1a). Due to the inherently random nature of the RRT-based algorithms, each

of these tests were run 30 times for each combination of the three generative planners

and the four subgoal utilization methods as well as the base case of planning only for

reaching the actual goal (the “none” case) without taking the existence of the fine

manipulation moves into account. 2

The box plots shown in Figure 2.10 and Figure 2.12 present the planning perfor-

mance statistics, measured in number of nodes, obtained with each of these combina-

tions for picking up and placing the chair object, respectively. The box plots shown in

Figure 2.11 and Figure 2.13 provide the corresponding time statistics. Similar relative

performances were observed in the experiments run with the other manipulable objects,

the detailed results of which are given in APPENDIX C. Even though we present the

number of nodes generated in the planning process as the measured metric, it is an

implicit indicator of the relative time requirements of each of those combinations as the

planning time decreases with the decreasing number of generated nodes in RRT-based

planners, as previously shown in Table 2.1.

Looking at the plots in Figure 2.10 and Figure 2.12, we see that sampling in-

dividual subgoals and sampling sequences result in the best performances (i.e. least

number of nodes), in that order, in all environments for all planners. On the other

hand, sampling subgoals within goal probability has a varying relative performance de-

pending on the environment and the planner. It performs the poorest in the majority

of the task environments for the RRT and RRT∗ planners. Considering its definition,

we see that this method actually decreases the probability of individual entry points

being sampled since it essentially involves a two stage process, where the rarely occur-

ring decision of sampling a goal is followed by which (sub)goal to sample. Therefore,

2Visualizations of the planning process with each planner and subgoal utilization method combi-
nation, where the shrinking effect of increased subgoal utilization on the spread of the generated trees
and the solution paths can be seen in http://youtu.be/ePZYq41uTrA

29

a)

b)

c)

Figure 2.10. The statistics for the number of generated nodes by (a) the RRT, (b) the

RRT-Connect, and (c) the RRT∗ generative planners during planning for picking up

the chair object in 10 different task environments.

instead of consistently directing the planner towards a (sub)goal in each rare occasion

of deciding to sample a goal, this method distracts the focus of the generative plan-

ner, diminishing the attractive properties of the fine manipulation region. In case the

RRT-Connect planner is used, however, this method performs the third best in the

majority of the task environments, though not significantly better than the base case.

This effect can be explained by the working principles of the RRT-Connect algorithm,

which is about direct extension towards the sample unless an obstacle is encountered.

Therefore, once a (sub)goal is sampled, the algorithm tries to reach it along a straight

30

a)

b)

c)

Figure 2.11. Time statistics for (a) the RRT, (b) the RRT-Connect, and (c) the

RRT∗ planners to generate plans for picking up the chair object in 10 different task

environments.

line without any distraction or divergence. Coincidental termination has a comparable

performance to the base case due to the very few number of sparse sequences, hence

only a few alternative goals to reach coincidentally. Better performances with this

method are observed when the number of sequences and their densities are increased.

The corresponding time statistics given in Figure 2.11 and Figure 2.13 reflect similar

profiles, as the number of nodes and the planning time are correlated almost linearly

as shown in Table 2.1.

Table 2.2 and Table 2.3 provide sequence utilization statistics of the tests pre-

31

a)

b)

c)

Figure 2.12. The statistics for the number of generated nodes by (a) the RRT, (b) the

RRT-Connect, and (c) the RRT∗ generative planners during planning for placing the

chair object in 10 different task environments.

sented in Figure 2.10 and Figure 2.12, respectively. These numbers indicate in what

percentage of the 30 planning trials with each combination the planner eventually ended

up reaching an entry point. We see that sampling individual subgoals and sampling

sequences have very high sequence utilization percentages, which is expected due to the

increased total bias towards the delicate manipulation region. Even the coincidental

termination method seems to be making decent use of the sequences, which helps re-

duce the load on the generative planner, as is reflected in the corresponding box plots.

Although the percentages reported for the method of sampling subgoals within goal

32

a)

b)

c)

Figure 2.13. Time statistics for (a) the RRT, (b) the RRT-Connect, and (c) the

RRT∗ planners to generate plans for placing the chair object in 10 different task

environments.

probability seems to be unexpectedly high, this situation has a perfect explanation.

Since this method combines the actual goal with the set of subgoals and picks it with

a probability of pg∗ = 1/(|E|+ 1), which is much smaller compared to the probability

of picking any subgoal with probability (1 − pg∗), it is highly likely that the planner

will end up reaching a subgoal rather than the actual goal.

Another experiment we conducted was to compare the effectiveness of utilizing

every feasible segment of the sequences and hopping among them during reiteration

to discarding the segments from the beginning of the sequences all the way to the last

33

Table 2.2. Sequence utilization while planning and executing pick task for the chair

object in ten different environments.

Planner Subgoal Use Method

Sequence Utilization (%)

Pick

Env 1 Env 2 Env 3 Env 4 Env 5 Env 6 Env 7 Env 8 Env 9 Env 10

RRT

Coincidental 13.33 13.33 20.0 3.33 6.67 20.0 20.0 13.33 6.67 20.0

Within goals 80.0 56.67 50.0 66.67 80.0 73.33 73.33 86.67 60.0 80.0

Sequences 36.67 53.33 33.33 36.67 33.33 30.0 50.0 36.67 26.67 30.0

Individual subgoals 80.0 66.67 90.0 93.33 83.33 50.0 70.0 96.67 53.33 83.33

RRT-Connect

Coincidental 30.0 33.33 36.67 13.33 33.33 6.67 20.0 20.0 16.67 16.67

Withing goals 76.67 90.0 93.33 100.0 80.0 83.33 90.0 90.0 80.0 86.67

Sequences 73.33 53.33 63.33 76.67 70.0 46.67 80.0 86.67 40.0 53.33

Individual subgoals 93.33 90.0 96.67 96.67 96.67 56.67 96.67 90.0 66.67 93.33

RRT∗

Coincidental 10.0 10.0 6.67 10.0 23.33 3.33 33.33 23.33 6.67 13.33

Within goals 73.33 73.33 76.67 60.0 73.33 66.67 86.67 73.33 70.0 80.0

Sequences 33.33 26.67 40.0 50.0 26.67 30.0 43.33 66.67 16.67 43.33

Individual subgoals 83.33 70.0 83.33 90.0 86.67 46.67 73.33 93.33 43.33 90.0

Table 2.3. Sequence utilization while planning and executing place task for the chair

object in ten different environments.

Planner Subgoal Use Method

Sequence Utilization (%)

Place

Env 1 Env 2 Env 3 Env 4 Env 5 Env 6 Env 7 Env 8 Env 9 Env 10

RRT

Coincidental 26.67 16.67 10.0 6.67 23.33 10.0 13.33 10.0 6.67 13.33

Within goals 90.0 80.0 76.67 80.0 86.67 90.0 86.67 93.33 86.67 90.0

Sequences 20.0 23.33 36.67 26.67 50.0 20.0 20.0 23.33 20.0 26.67

Individual subgoals 60.0 63.33 63.33 63.33 90.0 56.67 53.33 83.33 60.0 70.0

RRT-Connect

Coincidental 13.33 16.67 3.33 16.67 23.33 13.33 6.67 26.67 6.67 13.33

Withing goals 90.0 93.33 86.67 86.67 93.33 90.0 93.33 93.33 100.0 93.33

Sequences 46.67 33.33 33.33 43.33 73.33 46.67 60.0 50.0 43.33 56.67

Individual subgoals 86.67 83.33 86.67 80.0 83.33 86.67 93.33 90.0 86.67 73.33

RRT∗

Coincidental 20.0 20.0 13.33 3.33 20.0 20.0 16.67 3.33 13.33 6.67

Within goals 83.33 86.67 80.0 80.0 83.33 86.67 80.0 90.0 83.33 66.67

Sequences 33.33 23.33 33.33 30.0 50.0 26.67 16.67 36.67 23.33 43.33

Individual subgoals 76.67 70.0 60.0 53.33 83.33 56.67 66.67 70.0 53.33 63.33

occluded part and utilizing only the remaining segments for planning and reiteration.

We ran the complete task of picking up, navigating, and placing a particular OOI 10

times with each of the three generative planners for both cases, and measured the task

completion times for each run. Table 2.4 provides the total number of entry points on

the pick and the place sequences of the particular OOI used in this experiment as well

as the amount utilized in different stages of the manipulation task, from where it can

be inferred that the sequences were severely obstructed. Figure 2.14 illustrates task

completion time statistics obtained for both scenarios. Looking at the mean values,

34

Table 2.4. Number of entry points used when partial sequence segments are utilized

versus when they are discarded.

Operation
Entry points (Used / Total)

Segments utilized Segments discarded

Pick 34 / 48 23 / 48

Place 18 / 39 13 / 39

marked as stars, we see that utilizing all feasible segments of the available sequences

helps the robot perform better. The reason for greater variance is that sometimes

the robot merges into a segment that is obstructed along the way to the goal and

it has to hop to other feasible segments to proceed, whereas sometimes it ends up

on an unobstructed segment of a sequence that leads it directly to the goal. On the

other hand, when the blocked segments are discarded, the robot can only end up on a

segment unobstructed all the way to the goal if the planner does not take it directly to

the actual goal. When all feasible segments are utilized, due to the greater attraction

of greater number of entry points, the robot plans a more direct path quicker, hence

gets to the fine manipulation region earlier, and completes the task in less time.

Figure 2.14. Pick and place task completion times when the feasible segments of the

partially occluded sequences are utilized in planning and execution versus when the

all fragments prior to the last collision-free segment are discarded.

The last experiment we conducted was to demonstrate the advantage of utilizing

the attraction of a fine manipulation region over merely increasing the sampling prob-

ability of the single actual goal. For that purpose, we prepared a placement planning

and execution scenario for the stretcher object where the direct path (i.e. line of sight)

35

to the actual goal was blocked, as shown in Figure 2.15.

Figure 2.15. Visualization of the stretcher placement scenario where the direct path

to the actual goal pose is blocked. 42 out of 48 entry points were feasible.

We experimented with each combination of the three generative planners and the

four subgoal utilization methods as well as the base case with an increased goal bias.

We ran 30 tests for each of these combinations. The sampling probability of the single

actual goal used in the base case was set to be equal to the highest sampling probability

of the fine manipulation region obtained with the individual subgoal sampling method

through adding the sampling probabilities of individual subgoals pep on top of the sam-

pling probability of the actual goal pg, that is (|E|pep+pg). In our experiment scenario

where 42 feasible entry points are present, this value equals to (42×0.01+0.05 = 0.47);

therefore, pg = 0.47 for the base planning case. Figure 2.16 and Figure 2.17 illustrates

the relative performances of each of the combinations measured in terms of the number

of generated nodes and planning time, respectively. Even in this challenging scenario,

all of our experience-guided methods performed better than the base case planning

method, sampling individual subgoals resulting in the best performance. The entry

points being distributed around the target helps the planner find its way around the

obstacles quicker compared to a single goal with the same amount of total attraction.

Sampling subgoals within goal probability takes slightly longer than the base case

with higher goal sampling bias for RRT∗ even though the former performs better in

terms of the number of nodes metric. The potential reason is the rewiring of the tree

for the goals on the opposing sides of the line of sight due to random sampling among

36

Figure 2.16. Statistics for the number of plan tree nodes when various subgoal

utilization methods are used versus when the goal bias of the base planner is merely

increased in the scenario where the direct path to the goal is blocked.

Figure 2.17. Time statistics of the analysis presented in Figure 2.16.

them, causing the tree to take longer to go around the barrier to reach the sequences.

In general, since RRT∗ has to keep track of a set of near neighbors instead of the single

nearest neighbor and rewire the tree accordingly during construction, which is a time

consuming process, it results in an overall larger time footprint compared to the other

planners, as can be seen in Figure 2.17. This effect can also be observed in all the time

statistics plots of our pick and place experiments.

2.6. Discussion

Pick and place tasks, which constitute the majority of the manipulation activ-

ities that are performed in everyday living contexts, usually require careful planning

and delicate execution. However, depending on the constraints of the tasks and the

37

complexity of the task environments, even the state-of-the-art planners may require

significant amount of time and computational resources to generate trajectories that

will yield successful and robust executions. On the other hand, careful observation of

these tasks shows us that usually a small set of target-specific fine reaching moves are

repetitively reused instead of planning for those parts from scratch.

In this chapter, we present an experience/case-based mobile prehensile manipu-

lation method where the robot memorizes a few number of those critical yet recurring

target-specific fine reaching and manipulation moves as state-action sequences, and

reuses them whenever possible to guide manipulation planning and execution. We

show through extensive experimentation in a realistic 3D simulation environment that

this guidance helps reduce task completion times considerably when combined with a

sampling-based generative planner, while increasing the chance of successful task com-

pletion by carefully reiterating previously executed and known-to-be-successful fine

moves. Our contributed approach harmoniously combines the already available partial

plans and executions with the ones generated from scratch, yielding to fast, reliable,

and repeatable solutions. 3

3An example video showing the robot performing experience-guided pick and place can be seen
here: http://youtu.be/IUzffcQ15WU

38

3. MOBILE PUSH-MANIPULATION

3.1. Motivation

Pushing is one of the many modalities of non-prehensile manipulation [32], which

may be the most suitable option depending on the requirements of the manipulation

task and the constraints imposed by the physical properties of both the object and

the robot. For instance, the object may be too large or heavy, the robot may not be

equipped with a manipulator arm, or the utilization of some properties of the object

may make its transportation more efficient and convenient that way. The objective of

push-manipulation is to come up with and execute a sequence of pushing actions to

maneuver an object incapable of moving by itself from an initial configuration to a goal

configuration. In this study, we expect our omni-directional mobile robot CoBot [2]

(Figure 1.1), which is not equipped with a manipulator arm and/or a grasping mecha-

nism, to push-manipulate a set of passive mobile objects (Figure 3.1) in such a way to

transport them to their desired poses while avoiding collisions in the task environment

cluttered with both stationary and potentially movable obstacles. This is not a trivial

problem and it gets even more challenging in our case due to the following facts:

• Our manipulable objects move on passive caster wheels, which introduce addi-

tional motion uncertainty as the objects continue moving for some time even after

the push is ceased. Objects with these kinds of properties are inherently more

difficult to push-manipulate compared to objects that slide quasi-statically on

high-friction surfaces.

• Our objects have complex 3D structures. It is neither trivial nor feasible to write

down analytical interaction and motion models for each and every one of such

complex objects; hence, traditional model-based planning approaches will not

solve the problem in a flexible way.

39

Figure 3.1. Our omni-directional mobile push-manipulator robot, modeled after

CoBot, together with a set of realistically simulated passively-mobile objects.

As a promising solution to this problem, we develop a method that does not

require any explicit analytical models for neither the objects nor the robot [8,9], rather,

individual interactions with the objects are stored as cases similar to a case-based

planning approach [26, 33, 34]. The robot builds object-specific experimental motion

models by memorizing the observed effects of its pushing moves on various passively-

mobile objects and iteratively tuning them. The acquired experimental models are

then used for push-manipulating the object of interest (OOI) by following either a

reactive strategy or an informed and more cautious one, as described below.

(i) The robot can plan a collision-free path for the OOI without taking into account

whether the plan can actually be achieved with the available experimental models,

and then tries to make the object track the path by reiterating the memorized

pushing actions that result in the best locally-matching object trajectories until

the goal is reached.

(ii) The robot can utilize the acquired experimental models as building blocks for con-

structing safe and achievable push-manipulation plans via Exp-RRT, a Rapidly-

exploring Random Trees (RRT) variant planning algorithm we contribute [8, 9],

and then execute the constructed plans by reiterating the corresponding pushing

motions one after another while actively monitoring the execution.

The following sections elaborate on these two case-based push-manipulation ap-

proaches and present detailed experimental analyses.

40

3.2. Related Work

Pushing enables complex manipulation tasks to be performed with simple me-

chanics in cases where the object is too bulky or heavy to lift, or the robot simply

lacks a manipulator arm. As a result of being one of the most interesting methods

used within the non-prehensile manipulation domain [32, 35], push-manipulation has

attracted several robotics researchers.

An early work by Salganicoff et al. [36] presents a very simple, 1-nearest neighbor

based approximation method for the forward model of an object being pushed from a

single rotational contact point in an obstacle-free environment by controlling only one

degree of freedom. Their method is parallel to ours from the perspective of utilizing

observations on the effects of past pushing actions rather than trying to estimate the

parameters of the physical interactions between the object and the environment. How-

ever, they tackle the problem in a much lower dimensional space and utilize several

assumptions about the setup, such as the object being attached to the robot’s fingertip

and sliding quasi-statically on the tabletop surface.

Agarwal et al. [37] propose an algorithm for computing a contact-preserving push

plan for a point-sized pusher and a disk-shaped object. They use discrete angles at

which the object can be pushed and a finite number of potential intermediate positions

for the object. They assume that their pusher can place itself at any position around

the object since it does not occupy any space; however, this approach cannot be used

when real robots are considered as they have non-zero dimensions that can collide with

the obstacles in the environment.

Nieuwenhuisen et al. [38,39] utilize compliance of the manipulated object against

the obstacles rather than trying to avoid them, and make use of the obstacles with linear

surfaces in the environment to guide the object’s motion by allowing the object to slide

along the boundaries. de Berg and Gerrits [40] computationally improve this approach

and present both a contact preserving and an unrestricted push planning method in

which the pusher can occasionally let go of the object. In our task environments, we

41

particularly avoid collisions since our passively-mobile objects could potentially damage

the environment as well as themselves, both of which are undesired.

Similar to the potential field based motion planners [41], Igarashi et al. [42] pro-

pose a method that computes dipole-like vector fields around the object that guide

the motion of the robot to get behind the object and push it towards the target. Rel-

atively slow robot motions and high friction for the objects are assumed, and robots

with circular bumpers are used to push circular and rectangular objects of various sizes

in single and multi-robot scenarios.

As a promising step towards handling objects with more complex shapes, Lau et

al. [43] achieve pushing of irregular-shaped objects with a circular robot by collecting

hundreds of samples on how the object moves when pushed from different points in

different directions, and using a non-parametric regression method to build the cor-

responding mapping, similar to the approach proposed by Walker and Salisbury [44].

Their approach resembles ours in the sense that they also utilize the observations of

the object’s motion in response to various pushing actions. Even though they use

irregular-shaped objects in their experiments, those objects are flat ones with quasi-

static properties and the final placement orientation is ignored in their experiments,

which further simplifies the problem.

Zito et al. [45] present an algorithm that combines a global sampling-based plan-

ner with a local randomized push planner to explore various configurations of the

manipulated object and come up with a series of manipulator actions that will move

the object to the intermediate global plan states. Their experiment setup consists of a

simulated model of a tabletop robot manipulator with a single rigid spherical fingertip

and an L-shaped object (a polyflap) to be manipulated. The setup is obstacle-free and

the state space is limited to the reach of the robot arm, which is relatively small, as

they are using a stationary manipulator. The randomized local planner utilizes a real-

istic physics engine to predict the object’s pose after a certain pushing action, which

requires explicit object modeling.

42

Kopicki et al. [46] use the same problem setup and present an algorithm for

learning through interaction the behavior of the manipulated object that moves quasi-

statically in response to various pushes. However, the learned object behavior is not

used for push planning in their work.

Scholz and Stilman [47] use the observed outcomes of a set of four linear and two

rotational pushes for planning in a quasi-static tabletop setup where a manipulator arm

with a spherical rigid finger push-manipulates objects with simple geometric shapes,

ensuring single point of contact. Their use of the learned forward models to build

sampling-based push-plans resembles our achievable push-manipulation approach, ex-

cept that they handle the problem in a much lower dimensional space in terms of the

interactions between the robot, the object, and the environment as well as the scale of

their experiment setup.

Another recent study by Dogar and Srinivasa [48] uses push-manipulation in a

tabletop scenario as a way to reduce uncertainty prior to grasping by utilizing the

funneling effect of pushing instead of directly manipulating the OOI.

Along the lines of learning object kinematics and dynamics, Katz and Brock [49]

propose an interactive perception approach, where the robot interacts with the objects

in a tabletop scenario and identifies individual rigid bodies that compose the object

by tracking how the corresponding visual feature points move relative to each other.

Using that information, the robot is able to extract the kinematic properties of an

articulated OOI to be later utilized for manipulating the OOIs potentially as tools.

According to our survey of the literature, the most common push-manipulation

scenarios seem to involve pushing of objects with primitive geometric shapes using cir-

cular or point-sized robots, or rigid fingertips on a surface with relatively high friction

that makes the object stop immediately when the pushing motion is ceased. Even then,

relatively complex analytical models are used for contact modeling and motion esti-

mation, or physics engines of simulators are utilized for these purposes. Our approach

differs from many of these proposed ones in the sense that;

43

• we deal with real world objects of complex 3D structure that may contact the

robot on various points (Figure 3.2),

• the manipulated objects do not move in a quasi-static manner; they continue

moving freely for a while after the push, and their caster wheels contribute to

their motion uncertainty,

• mobile manipulation is performed in a large-scale environment cluttered with

obstacles, requiring construction and execution of safe and achievable plans,

• no explicit analytical model is used or learning based mapping is built; only the

pushing motions performed in the past and their corresponding observed effects

along with the associated variances are utilized for planning and execution.

a) b) c)

Figure 3.2. The object may contact (indicated by a red arrow) the robot at (a) its

body, (b) basket, or (c) base, or a combination of these depending on its 3D structure

and the pushing direction, making the interaction non-trivial to model explicitly.

3.3. Case-based Mobile Push-Manipulation

Humans learn and further sharpen their manipulation skills as well as their cor-

responding prediction-based planning abilities by interacting with their environments

and observing the outcomes. Ideally, robots should also learn from their experiences

as opposed to the unscalable and inefficient approach of providing them with detailed

mathematical models of each and every object that they are expected to interact with,

and utilizing physics engines to compute the outcomes of these interactions. In our

case, due to the complexity of the potential interactions between the robot, the objects,

and the floor surface as well as the resulting motion characteristics, it is neither trivial

44

nor efficient to try to define such models manually. For these reasons, we let our robot

interact with the pushable objects either through self-exploration or demonstration

via joysticking to observe how they move in response to various pushes. These obser-

vations are then turned into experimental models and stored as cases, analogous to a

Case-Based Reasoning/Planning (CBR/P) system [26–28], to be used for planning and

execution. When the robot is learning through self-exploration, the parameters of these

interactions, such as the pushing locations, directions, and durations, are determined

randomly. Our algorithm consists of the following components, which we explain in

detail in the rest of this section:

• A set of object-specific probabilistic cases represented as sequences composed of

the robot’s motion commands, its resulting active trajectory, and the object’s

corresponding observed passive trajectory,

• A generative planner that makes use of these probabilistic cases as building blocks

to construct achievable and collision-free push plans,

• An execution monitoring module to stop execution and trigger re-planning when-

ever there is a significant discrepancy between the expected and the actual motion

of the object during plan execution.

3.3.1. Probabilistic Cases for Push-Manipulation

Each distinct interaction of the robot with a pushable object constitutes an

object-specific case represented as a sequence of pose-action pairs for the robot and the

corresponding poses for the object, representing their active and passive trajectories,

respectively. These trajectories are defined with respect to various frames of reference.

A static global frame of reference, ϕG, is attached to the environment. We also attach

separate frames of reference to the robot and the object of interest, denoted as ϕR and

ϕO, respectively, to define their poses within ϕG. In addition, we define an auxiliary

frame of reference, ϕS, to indicate the last stationary pose of the object before it starts

being pushed. Figure 3.3a illustrates these reference frames in a sample scenario where

our mobile manipulator pushes a chair, causing it to get displaced.

45

a) b)

Figure 3.3. (a) Various reference frames used during case acquisition and reiteration

depicted before (t = ts) and after (t = te) a push. (b) Visualization that corresponds

to the scene shown in the upper left corner of the image. The robot trajectory and the

corresponding object trajectory components of 7 different sequences are illustrated.

Let ℘R be ϕR w.r.t. ϕO, and ℘O be ϕO w.r.t. ϕS, both of which are denoted

as 〈x, y, θ〉. Invariance to ϕO is achieved by recording ℘R together with the motion

command at that moment and the corresponding ℘O. Therefore, a sequence Si of

length n that is encapsulated by a case takes the form

Si∈[0,M) : ((℘R0 , a0, ℘O0), . . . , (℘Rn−1 , an−1, ℘On−1))

where aj is the action associated with ℘Rj, denoted as 〈vx, vy, vθ〉 indicating the omni-

directional motion command composed of the translational and rotational velocities of

the robot, and M is the total number of cases. Figure 3.3b provides the visualization

of the robot and object trajectories within the stored sequences. The transparent,

scaled-down robot figures indicate the push initiation poses (i.e. the beginning of the

sequences) whereas the scaled-down object figures indicate the mean observed poses

of the object after the pushes (i.e. the end of the sequences). The robot trajectory

(indicated by green curves) and the object trajectory (indicated by red curves) that

46

belong to the same sequence are marked with the same ID value. Final object pose

uncertainty is depicted with the yellow ellipses drawn around the mean final poses.

This is what makes our cases probabilistic ones as the output has uncertainty. The

process of acquiring these experimental models is elaborated in Section 3.3.2.

As the number of the stored cases grow, processing efficiency and scalability starts

to become a problem, as the corresponding sequences are recorded at each step of the

robot’s perception cycle, in our case at a frequency of 30Hz. In order to improve the

efficiency of collision checking along the robot’s and the object’s trajectories, we define

keyframes at every kth frame of the sequence and perform collision checking only for

the keyframes. The value of k can be adjusted according to the dimensions of the

object being pushed; that is, the smaller the object, the better to check collisions more

frequently along the trajectories.

3.3.2. Building Experimental Interaction Models

There are two challenges that the robot needs to handle while building experi-

mental models that describe the outcomes of its interactions with the objects:

(i) The first challenge is the uncontrolled motion of the object after the push is

ceased. As a result of moving on passively-rolling caster wheels, the pushable

objects used in our experiments do not stop immediately after the robot stops

pushing, and the exact poses of the objects after they come to rest vary even

between the pushing attempts from the same direction for the same duration.

(ii) The second challenge is the effect of the initial stationary orientations of the

object’s caster wheels on the trajectory that the object follows while being pushed.

The wheels do not immediately align with the pushing direction after the contact

between the robot and the object is established, which introduces additional

uncertainty to the motion of the object and its final observed pose.

We address these partly interrelated problems simultaneously by having the robot build

its experience incrementally over several trials instead of relying on a single observation.

47

When the robot is asked to acquire experience about a given pushable object

through self-exploration, it determines m random push initiation locations immediately

around the object together with the corresponding random pushing durations ranging

from 1 to 3 seconds. We name these tuples push configurations, ς = {ς0, . . . , ςm−1},

ςi : (℘R0 , t), which are used to carry out the first push trials on the object. Each ςi

represents a simple linear push performed while moving with constant velocity. On

the other hand, we can also demonstrate the robot more sophisticated and informative

pushing motions for the given objects via the use of a joystick. Regardless of the

method that the robot uses to acquire its object-specific experience, a new case is

created and saved whenever the robot tries a particular push for the first time. The

additional trials are merely reiterating the sequences of these newly acquired cases to

update the parameters of the distributions associated with each of them that represent

the uncertainty in the observed final pose of the relevant object after a push.

Figure 3.4 illustrates the visualization of the actual observed relative final object

pose data recorded during the execution of one of the several memorized sequences

for the chair object. As an attempt to capture this motion uncertainty caused by

the caster wheels, the robot experiments with each Snewi of the newly gathered set of

sequences Snew for varying initial wheel orientations. If there are more than two newly

acquired sequences, then the robot iterates over Snew by using a set of increments

ι = {ι0 = 1, . . . , ιj = |Snew| − 1} in a way similar to a hash collision resolution

strategy. Starting with ι = ι0, the robot alternates between Snewi using i = ((i + ι)

mod |Snew|) until each of them are covered. Then it keeps picking other increments ιl

with l = ((l+ 1) mod (j+ 1)) and continues its experimentation until n samples from

each of the Snewi are collected. If there are only one or two newly acquired sequences,

then the robot either reiterates some of the other already existing sequences or executes

random pushing motions to alter the initial orientations of the wheels.

Based on the visualizations of the actual data shown in Figure 3.4, we decided to

use 3-dimensional Gaussians, for the sake of simplicity, to approximate the distributions

of the 3 DoF final object poses represented as 〈x, y, θ〉. During the collection of these

n samples for each Snewi , the corresponding distribution parameters are incrementally

48

a) Relative location

b) Relative orientation

Figure 3.4. Actual distribution of the object’s relative final pose (location and

orientation) when one of the sequences is reiterated several times. (a) Stars represent

relative locations and colors represent distribution density. (b) Observed object

orientation is discretized into bins to obtain a final relative orientation histogram.

updated according to Equation 3.1 and Equation 3.2, assuming that the observed final

object poses will be normally distributed, as Figure 3.4 roughly suggests.

℘̄Oit = ℘̄Oit−1
+
℘Oit − ℘̄Oit−1

t
(3.1)

Σ℘
Oit

=
(t− 1)Σ℘

Oit−1

+ (℘Oit − ℘̄Oit)(℘Oit − ℘̄Oit−1
)T

t
(3.2)

49

In these equations, ℘̄Oit denotes the mean of the observed final object pose after the tth

trial for a specific Snewi , and Σ℘
Oit

is the corresponding covariance, which in our case

is a 3 × 3 matrix as we are dealing with 3 DoF poses in the form of 〈x, y, θ〉. This

compact representation eliminates the need for storing all of the previously observed

individual poses.

These distributions are also good indicators of how reliable and consistent indi-

vidual push sequences are. Since the object moves in an uncontrolled manner after

the pushing is ceased, we do not want it to end up in an unforeseen pose which may

happen to collide with the obstacles or the other objects in the environment, or cause

the next pushing motion in the plan to be unachievable due to the obstruction of the

corresponding push initiation pose. Therefore, we eliminate the sequences with vari-

ances exceeding predefined thresholds to improve the safety and reliability of the plans

generated using these sequences, preventing potential failures and reducing the number

of re-plans needed along the way during plan execution.

Similar to incrementally building these distributions, it would be possible to up-

date the object trajectories themselves by aligning them with the recently experienced

ones using a Dynamic Time Warping (DTW) [24] approach, and computing the mean

object trajectory accordingly. However, since the object trajectories are relatively

short and the obstacles in the environment are large, it is plausible to assume that the

trajectories observed at the very beginning of the case acquisition process are decent

representatives of the ones to be observed in the future. This assumption simplifies the

computational complexity of our contributed method while not degrading the overall

performance of the system significantly.

3.4. Case-Based Reactive Push-Manipulation

One possible way of using the experimentally acquired interaction models (i.e.

probabilistic cases) for push-manipulation is to plan an arbitrary collision-free guideline

path for the object without worrying about whether it can actually be followed using

the available sequences, and then reiterating the ones that result in the best locally-

50

matching non-colliding object trajectories until the goal is reached. First of all, the

sequences with obstructed robot trajectories are filtered out as it would not be possible

to reiterate them. As the final placement orientation is important in our problem, the

next check is performed to see if the current orientation of the object differs from the

goal orientation by an amount greater than the allowed tolerance. If that is the case

and the local environment of the object has enough space for the required maneuver,

then the sequence that will reduce the orientation difference the most is selected for

execution. If, on the other hand, the orientation difference is still acceptable, this time

cosine similarities between the directions of each of the non-colliding object trajectories

(τi) and the direction of the next waypoint on the guideline path (G) are computed

as shown in Equation 3.3. The sequence that results in the object trajectory with the

greatest similarity to the guideline is selected for execution.

Figure 3.5. The anticipated object trajectories are approximated with vectors

(marked with τi) and compared against the vector representing the desired moving

direction (the red vector marked with G) using cosine similarity. τ4 is the most

similar direction to the desired one in this particular figure.

sim(τi,G) =
τi· G
||τi|| ||G||

(3.3)

51

To better visualize the concept, Figure 3.5 shows the bird’s-eye view of the object tra-

jectory components of a set of sequences learned for a chair together with the direction

of the next waypoint along the guideline path generated at the very beginning of the

process. The direction vectors are depicted as arrows superimposed on the anticipated

and desired trajectories. Trajectories with IDs 8 and 9 are the results of the rota-

tional movements of the robot; hence, they are usually more suitable for reducing the

orientation difference between current pose and the goal pose of the object.

The sequence selected based on its directional and rotational similarity to the

desired intermediate state may result in collision of the object with the environment

when executed all the way to the end. It is important to keep in mind that the elegance

of manipulation by pushing comes with the potential danger of irreversibility ; that is,

the robot may push the object to such an inconvenient location that it may not be

able to recover. For that reason, it becomes very important to be able to control the

amount of movement so that the object is pushed only so much that it does not collide

with anything, and ends up in a state that is as close to the desired one as possible.

Therefore, in addition to the directional and rotational similarity checks, the robot also

tries to find the best matching and collision-free projected pose (i.e. keyframe) of the

object along the trajectory and stops pushing right at the corresponding moment.

3.4.1. Experimental Evaluation

The Webots simulation environment [31] enabled us to realistically simulate the

passively-mobile real world objects and their motions on caster wheels (described in

APPENDIX A). Even though we used identical caster wheels for all the pushable

objects, their actual physical structures, weight distributions, and the varying wheel

placements cause them to have distinct motion characteristics. For simulating the 2-

axes rotation of the caster wheels, we set the Coulomb friction coefficient for the wheel

axis as 0.1 and for the fork axis that rotates the wheel vertically as 1.0. Providing

reasonable mass and friction parameters to Webots’ physics simulator, Open Dynamics

Engine (ODE), results in reasonably realistic object behaviors, although we are not

particularly concerned with the accuracy of these parameter values.

52

In the simulated setup, instead of having the robot acquire it push-manipulation

experience via random interactions, we demonstrated via joysticking a total of 10 push-

ing sequences to the robot; four linear pushes from the four main directions, four di-

agonal pushes, and two rotational pushes from either side of the object as shown in

Figure 3.6d. The final placement of an object was considered successful if the distance

to the desired goal location was below 0.15m, and the orientation difference was below

π/6 radians. In the experiments performed with the chair, the robot was able to place

the object to its desired pose safely 6 out of 10 times. 4

We also investigated the effects that the number and types of the available pushing

sequences have on the overall success of the approach. Figure 3.6 shows the four

different sets of the motion sequences that the robot was allowed to use. In a sample

setup, we placed the chair rotated π/2 radians counterclockwise 3 meters away from

the desired goal configuration so that the robot would need to perform rotational as

well as translational manipulation moves in order to bring the chair to its desired pose.

As we utilized a randomized generative planner to construct the guideline path, we

repeated our experiments 10 times with each of the four sets of sequences. The average

distances and orientation differences obtained with each of these sets as well as the

number of pushes required to obtain these results are summarized in Table 3.1.

Table 3.1. Performances of different sets of motion sequences.

Sequence set Push count µdist (cm) µ4θ (deg)

S1 25 14.11 26.12

S2 8 14.82 14.06

S3 7 14.87 23.52

S4 7 14.86 20.49

Among these sets, S1 only had a counterclockwise rotational pushing sequence in

addition to four linear pushing sequences; therefore, it took a lot more pushes for the

robot to bring the chair to the desired orientation by using the available sequences.

Looking at Table 3.1, the general tendency seems to be towards a decreasing number

of pushes as the translational and rotational variety of the available sequences grows.

4A video showing the robot performing case-based reactive push-manipulation can be seen
here: http://youtu.be/1Z8KW7fPGrA

53

a) S1: 4 linear, 1 rotational b) S2: 4 linear, 2 rotational

c) S3: 4 linear, 2 diagonal, 2 rotational d) S4: 4 linear, 4 diagonal, 2 rotational

Figure 3.6. The four different sets of sequences used in the experiments. Among these

sets, S1 is the most challenging one as it has only one rotational pushing sequence,

which makes it difficult to correct for clockwise orientation differences.

In some challenging setups, we observed insufficient variety of sequences resulting in

situations where the robot got stuck due to either potential collisions, or having all the

push initiation poses obstructed. Those were the main reasons of the robot failing to

safely transport the object to its desired pose 4 out of 10 times in the aforementioned

experiments. The success rate could be increased by increasing the number and the

variety of sequences. However, the best results are obtained when achievability is taken

into account during planning, which is explained in the following section.

54

3.5. Case-Based Achievable Push-Manipulation

The experimentally acquired probabilistic cases present primitives that can be

used for building various kinds of graphs to search for the path to the requested goal

pose in the task environment instead of trying to follow guideline paths that are arbi-

trarily generated in an uninformed manner. In order to maintain a small computational

footprint, we take a sampling-based approach to planning the push-manipulation path

for the primary OOI. We modify the original Rapidly-exploring Random Tree (RRT)

algorithm [12,13] and use the previously acquired probabilistic cases as building blocks

for constructing the tree [9]. As opposed to the potentially linear δ extensions towards

the random samples in the original RRT algorithm (Figure 2.3), our experience-based

version, Exp-RRT, uses the previously observed object trajectories as building blocks

for extending the tree towards the sample. Since the probabilistic cases encode the

motion of both the robot and the OOI together with the associated uncertainty, using

them to construct the push plan ensures achievability from both the robot’s and the

OOI’s perspective in terms of motion feasibility and collision-safety. The pseudocode

for Exp-RRT is given in Figure 3.7. At each iteration, we sample a random pose with

probability p or use the goal as the sample with probability 1 − p. The “nearest”

node of the tree to the new sample is the one that gives the maximum similarity value

according to the similarity function we define as in Equation 3.4,

sim(p1, p2) =
dmax

dist(p1, p2)
cos(p1.θ − p2.θ) (3.4)

where dmax is the maximum possible distance that can be obtained in the task envi-

ronment and dist(p1, p2) is the Euclidean distance between the locations of the poses.

Therefore, the closer the locations of the two poses and the smaller the angular differ-

ence between their orientations, the more similar they are. The nearest node is queried

via the MostSimilar function in the algorithm. After the most similar node to the

sample is determined, this time each of the collision-free final expected poses of the

55

1: function BuildExpRRT(ooi, qinit, qgoal)

2: Tree← qinit; . set the root of the tree as the initial configuration

3: qnew ← qinit;

4: while sim(qnew, qgoal) < THRESHOLD do . while the goal is not reached

5: qrand ← Sample(); . sample a random configuration

6: qmost similar ←MostSimilar(Tree, qrand);

7: qnew ← Extend(ooi, qmost similar, qrand);

8: Tree.add(qnew); . add the new configuration to the tree

9: end while

10: return Trajectory(Tree, qnew); . return solution

11: end function

12: function MostSimilar(Tree, qtarget) . find “most similar” configuration

13: return arg maxq∈Tree sim(q, qtarget);

14: end function

15: function Extend(ooi, qsource, qtarget) . extend using the best sequence

16: Strans ← {Transform(Si, qsource)}∀Si ∈ ooi.S;

17: Ssafe ← {Strans \ {Colliding(St)}}∀St ∈ Strans;

18: return arg maxSi.qf∀Si∈Ssafe sim(Si.q
f , qtarget);

19: end function

Figure 3.7. The Exp-RRT algorithm.

sequences originating from the pose of the most similar node are compared against

the sample, again using the similarity function defined in Equation 3.4. The tree is

extended towards the sample by using the final estimated object pose of the sequence

that gives the highest similarity value and is collision-free for both the object and the

robot, which is performed by the Extend function in the algorithm. This process is

repeated until the pose of the newly added node falls within predefined distance and

orientation difference limits to the goal pose. Figure 3.8 illustrates two steps of the tree

construction process, assuming, for the sake of simplicity, that the goal itself is used

as the sample to be reached. Object trajectories within the sequences are illustrated

as dashed curves and the estimated final object poses are depicted as little squares.

56

Figure 3.8. Illustration of the Exp-RRT construction process. The sequences

resulting in the most similar poses are highlighted.

During tree construction, the suitability of a particular sequence for extending the

tree is determined by evaluating its achievability in addition to its final pose similarity

to the sample. The achievability of a sequence is determined by checking each keyframe

along the robot and object trajectories within the sequence for potential collisions.

Additionally, in order to incorporate the motion uncertainty of the object into the

planning process, collision check for the final expected object pose is performed using

the associated distribution rather than the mean observed pose only. For this purpose,

we derive 2L + 1 sigma points representing the extremes of the distribution from the

mean and the covariance using Equations 3.5-3.7, where L is the dimensionality of the

state space. In our case L = 3 as we are dealing with 3 DoF poses.

χ0 = ℘̄Of (3.5)

χi = ℘̄Of + ζ(
√

Σ℘
O
f
n

)i, i = 1, . . . , L (3.6)

χi = ℘̄Of − ζ(
√

Σ℘
O
f
n

)i, i = L+ 1, . . . , 2L (3.7)

57

In these equations, ℘̄Of is the mean of the final object poses observed so far for a

particular sequence, (
√

Σ℘
O
f
n

)i is the ith column of the matrix-square-root of the co-

variance matrix Σ℘
O
f
n

, and ζ is the scalar scaling factor that determines the spread of

the sigma points around ℘̄Of . Increasing ζ increases the conservativeness of the plan-

ner. In our experiments, we used ζ = 3. Each of these extreme poses are checked for

collision and the corresponding probabilistic case is marked as unachievable and not

used for extending the tree if any of these poses are in collision with the objects in the

environment (Figure 3.9).

Figure 3.9. The sigma points, illustrated as scaled-down OOI figures, indicate the

extreme poses (i.e. the extreme points on the corresponding distribution) that could

be observed after a push. During plan construction, each of these poses are collision

checked in order to be prepared for the worst case scenario during plan execution.

3.5.1. Execution Monitoring

Taking uncertainty into account during RRT planning has been studied in the

literature [50–52], however, we do it for the manipulated objects instead of the robot

itself in addition to performing it in a novel way. Instead of propagating uncertainty

along the tree, we take a more optimistic approach, and extend branches from the

means of the distributions. The constructed plan is executed by replaying one after

another the robot trajectories of the chain of sequences that transports the object to

the desired pose. Even though the plan is constructed by taking into account the

uncertainties in the expected final object poses, the object inevitably digresses from its

foreseen path, especially when it needs to be transported for a long distance. During

58

plan execution, re-planning may be triggered depending on whether the actual observed

final pose of the object after a push falls within the tolerance region of the expected

pose distribution, which is computed using Equation 3.8

(℘Oo − ℘̄O)TΣ−1℘O(℘Oo − ℘̄O) ≤ χ2
k(p) (3.8)

where ℘Oo is the observed final pose of the object, ℘̄O is the expected final pose, Σ℘O

is the expected final pose covariance, and χ2
k(p) is the quantile function for probability

p of the chi-squared distribution with k degrees of freedom. In our case k = 3 and we

use p = 0.05 to make sure that the observation is statistically significantly different

from the expectation for the robot to trigger re-planning.

Additionally, in order to relax the planning process a bit, we design a heuristic

that dynamically alters the desired final pose accuracy depending on the distance of

the object from the goal, as defined in Equation 3.9 and Equation 3.10.

δ = (dist(℘Oo , ℘Og)/dmax) + δmax (3.9)

ω = π(dist(℘Oo , ℘Og)/dmax) + ωmax (3.10)

where ℘Og is the goal pose, δ and ω are the distance and orientation difference thresh-

olds, respectively, and δmax and ωmax are the maximum allowed final distance and

orientation difference thresholds, respectively. This heuristic helps the robot plan a

“rough” solution quickly when the object is far from the goal, and enforces more ac-

curate planning at each re-planning attempt as the object gets closer to the goal.

59

3.5.2. Experimental Evaluation

We performed majority of our case-based achievable push planning and manipu-

lation experiments again in Webots. The final placement of an object was considered

successful if the distance of the object to the desired goal was below 0.2m and the ori-

entation difference was below π/9 radians. Considering the dimensions of the objects

that our robot is expected to manipulate, such as a 0.8m × 0.45m serving tray and a

1.9m× 0.9m stretcher, these constraints are quite tight.

Separate sets of cases are acquired and stored for each of our pushable, passively-

mobile objects. As briefly mentioned in Section 3.3.2, the first step before performing

any evaluation is to select a reliable set of cases to be used for planning. We do that by

eliminating the ones that cannot be reiterated consistently; that is, the ones that have

high variance in the final observed object pose. We determined the maximum allowed

position and orientation variances to have the same values as δmax and ωmax.

Figure 3.10 visualizes the generated achievable and collision-free plans from initial

(S) to goal (G) poses for five of our pushable objects, namely a chair, an overbed table,

a serving tray, a stretcher, and a cart by using their corresponding probabilistic cases as

building blocks. The cart is a particularly challenging one as only the two front wheels

are casters and the rear ones are stationary, resembling the wheel configuration of a

traditional shopping cart. This wheel configuration results in totally different motion

characteristics. The purely observation-driven nature of our method enables the robot

to acquire and make use of probabilistic cases that define the behavior of even these

kinds of objects with different kinematic and dynamic properties.

As it can be seen from these screenshots, our experiment environment is much

bigger and much more cluttered compared to the problem setups used in many of the

related studies surveyed in Section 3.2. All of the generated plans were successfully

executed in simulation without any failures. 5

5A video showing the simulated CoBot successfully push-manipulating an overbed table can be
seen here: http://youtu.be/rN22PSjsniY

60

a) b) c)

d) e) f)

g) h) i)

j) k) l)

m) n) o)

Figure 3.10. Collision-free and achievable push-plans generated (shown as blue ghost

figures over the corresponding path) using the probabilistic cases stored for various

pushable objects, namely a chair ((a), (b), and (c)), an overbed table ((d), (e), and

(f)), a serving tray ((g), (h), and (i)), a stretcher ((j), (k), and (l)), and a cart ((m),

(n), and (o)) in large-scale, cluttered environments.

In our first set of experiments, we evaluate the effect of the number and variety of

object-specific probabilistic cases on the quality of the successfully generated solutions

61

for randomly determined goal configurations. The solution quality is measured in terms

of the path length (i.e. the lowest the number of pushes required to transport the object,

the better the solution is) and having consistently similar path lengths in multiple trials.

Starting with an empty one, we evaluate the proficiency of the available case-base in

generating efficient solutions for each of the 20 randomly generated collision-free goal

configurations in the task environment by adding new probabilistic cases to it one batch

at a time. A batch size of m = 7 was used for this set of experiments. After the addition

of each new batch to the case-base, 10 planning attempts were made for each of the

goals in order to capture the corresponding statistics better as the Exp-RRT planner

is a random sampling-based planning algorithm. During the evaluation and the actual

planning processes, we consider a planning attempt unsuccessful if the total number

of RRT nodes allowed is exceeded. In our experiments, we determined the maximum

number of Exp-RRT nodes to be 50625 as we require 0.2m distance accuracy with at

most +/− π/9 radians orientation difference in a 15m× 15m environment.

Figure 3.11a shows how the mean path length computed over all 20 goals changes

with the changing number and variety of the cases in the robot’s case-base. It can easily

be seen from the figure that the mean path length decreases with the increasing number

of available cases for a while and then settles around a certain mean path length value.

Figure 3.11b shows how the standard deviation of the mean path length changes with

the increasing number of available cases, which is a measure of how consistent the

solutions are in terms of path length. Similarly, we can interpret from the figure that

the robot starts finding solutions that have consistently lower path lengths as the

variety of the available cases increases. In case the robot is concerned about storing

a minimal number of useful cases, these figures are good indicators for the robot to

understand when it has learned enough variety of sequences to solve a decent number

of push-manipulation problems for a specific object. The experiments with the other

pushable objects in our task environment resulted in similar plots; therefore, we present

only the results obtained for the chair object.

The aim of our second experiment was to understand how the number of practices

per sequence (corresponding to the t in Equation 3.1 and Equation 3.2) affects the

62

a) Change of the mean path length computed over 20 goals with the

increasing variety of sequences.

b) Change of the standard deviation of the mean path length computed

over 20 goals with the increasing variety of sequences.

Figure 3.11. The effects of the growing variety of the available sequences for the chair

object on the path length and its consistency.

robustness of the constructed push plan, measured in the number of re-plans performed

during execution. We used the chair object as our primary OOI and utilized the set

of 7 sequences illustrated in Figure 3.3b. The desired goal pose was approximately 4m

away diagonally, which corresponds to an average of 12 pushes with the available set of

cases. Starting from a minimum of 5 practices per sequence, with an increment of 5, we

tried up to 20 practices per sequence, and performed 10 push-manipulation planning

and execution experiments with each of these values. Figure 3.12 shows the results,

where a general tendency (indicated by the green curve) of decreasing number of re-

plans with the increasing number of practices per sequence can be observed. Given the

average path length of 12, it can be inferred from the plot that almost 3 consecutive

pushes can be achieved before re-planning in case of 20 practices per sequence, whereas

that number is below 2 for the case of 5 practices per sequence.

63

Figure 3.12. The number of re-plans during task execution decreases with the

increasing number of practices per individual case. This tendency illustrated by the

green curve is an indicator of the corresponding distributions becoming more stable

and reliable in their predictive abilities.

Figure 3.13. The number of cases versus plan success rate for 10 random goals. The

general tendency is towards an increased plan success rate with the increasing number

of cases. The goals in this plot are sorted based on the total plan success rate.

The last experiment we performed was to see the effect of the number and the

variety of the cases in solving various planning problems. For that purpose, we created

10 random goal configurations scattered around the cluttered task environment. Again

using the chair object as the primary OOI, we started from 5 cases (i.e. sequences) and

went all the way up to 14 cases with increments of 1. Artificially limiting the maximum

number of allowed Exp-RRT nodes to 2000, for each number of cases, we performed

10 planning experiments for each of the 10 random goals and measured whether the

64

Figure 3.14. The number of cases versus the number of expanded Exp-RRT nodes.

The general tendency is towards a reduced number of Exp-RRT nodes with the

increasing number of cases.

planner succeeded (1 for success and 0 for failure) and if so how many nodes it had to

expand before reaching the goal. We obtained a rough success rate percentage measure

by counting the number of successes after each set of 10 experiments per goal and

dividing the sum to the number of experiments (i.e. 10). Figure 3.13 illustrates how the

plan success rate changes for each of the 10 goals with the increasing number of cases.

The figure shows a general tendency towards an increasing success (i.e. reachability)

rate for each goal as the number of cases increase. Out of the last two goals where

the robot performed the poorest in terms of planning, one of them was at the opposite

corner of the environment with many obstacles in between, and the other one was within

close proximity of another obstacle, which made it difficult for the robot to generate

a collision-free placement plan for these goal configurations. Figure 3.14 visualizes the

second measurement in the same experiment scenario, which is the average number

of expanded Exp-RRT nodes during the 10 experiments performed for each of the

goals. It can be observed in the figure that, for each goal, the number of nodes tends

to decrease with the increasing number of cases, which means that a solution can be

found quicker with a richer set of cases.

It must be noted that the simulation environment is essentially a black box for the

robot, as the real world would be, and the only information that the simulator provides

65

to the robot are the poses of the objects. It is a black box for us as well. In addition

to the object meshes for visualization, we only provide empirically determined mass

values and wheel friction coefficients for the ODE physics engine of the simulator to

take care of the inter-object interactions to make them behave reasonably realistically.

The only motivation behind using a realistic 3D simulator is to obtain a setup that

“looks” an “behaves” reasonably realistically as we are not concerned with transferring

any knowledge from the simulated environment to the real world or vice versa. In

other words, both the internal and external parameters of the simulator are totally

irrelevant to the operation of our method. Therefore, even if we had not set the physics

parameters realistically, the robot would still be able to learn how to push-manipulate

the objects under those circumstances, assuming that they would eventually come to

a stop after each push. That makes our method totally independent of the robot, the

object, and the environment, both in simulation and in real world.

3.5.3. Mobile Push-Manipulation in Real World

In addition to the detailed study we conducted in simulation, we also ran some

preliminary tests in a physical setup to validate our contributed method in terms of its

robot, object, and environment (i.e. simulated or real) independence. In this test, our

physical CoBot robot [2] was asked to arrange a set of chairs in a predefined seating

formation around a round table, some of which were already in place. Figure 3.15

shows a snapshot from one of the physical setups in which we tested our proposed

method (described in detail in APPENDIX B).

There are a number of challenges that need to be addressed when switching from

the simulated environment to the physical one. The first challenge is the construction

of a stable world model. In simulation, we get the global pose information of all the

objects in the environment directly from the simulator. However, in the physical setup,

the robot’s global pose information comes from the localization module [53], which is

noisier compared to the perfect information received in simulation. The pose of the

chair is computed relative to the robot; hence, the calculated global pose of the chair

is affected by the noise in the localization estimation of the robot. In order to make it

66

Figure 3.15. A snapshot from one of the real world tests, where the task of the robot

is to arrange the chairs around the round table. Visualization of the setup in

simulation is provided on the top left corner of the image.

easier to detect the chair visually, we placed Augmented Reality (AR) tags on both sides

of the back of the chair (Figure 3.15), which are visible most of the time from almost

all directions. However, perception is not perfect either; therefore, additional noise

comes from the perception of the AR tags. The second challenge is the maintenance of

the constructed world model at all times. Since the Kinect sensor that we use as the

primary visual sensing device is placed at a certain location on the robot with a certain

angle to satisfy multiple requirements, and the field of view of the camera is limited,

the AR tags cannot be seen anymore when the robot gets very close to the object to

push it. A good tracker needs to be employed so that the robot can still have an idea

of where the object is even if it is not visible within the robot’s field of view.

During our preliminary tests, the robot was, in general, able to construct a stable

world model by combining its perception with its localization information to success-

fully generate and execute push-manipulation plans. Figure 3.16 shows some of the

pushing moves that CoBot executed to transport the chair to its desired pose. 6 Even

though we have not performed detailed experiments in this setup, we observed that

there was an overall increase in the frequency of re-planning due to the increased un-

certainty in both perception and action in real world.

6A video showing the physical CoBot acquiring and using push-manipulation cases in a real world
setup can be seen here: http://youtu.be/TORQdBPHJ3g

67

a) b)

c) d)

Figure 3.16. Snapshots from the case-based push-manipulation planning and

execution test in a real world setup. The robot was able to successfully transport the

chair to its desired pose right next to the round table.

These preliminary real world tests run using the exact same code base verified

the validity of our method and demonstrated its robot, object, and environment (simu-

lated and real) independence as the only pieces of information needed were the robot’s

localization belief and the pose of the object inferred from the robot’s own detection,

processing, and transformation of the AR tags associated with the object of interest.

3.6. Discussion

Push-manipulation is one of the most interesting and challenging robotic manipu-

lation modalities that has attracted many researchers. However, many of the proposed

methods in the literature handle flat objects with primitive geometric shapes moving

quasi-statically on high-friction surfaces, yet they usually make use of complex ana-

lytical models or utilize specialized physics engines to predict the outcomes of various

interactions. In this chapter, we propose an observation-driven, case-based approach,

68

which does not require any explicit analytical model or the help of a physics engine.

Our mobile robot simply experiments with pushable, passively-mobile complex 3D real

world objects to observe and memorize their motion characteristics together with the

associated uncertainties resulting from various pushing actions. It then uses this in-

crementally built experience either for trying to make the object of interest follow a

guideline path by reiterating in a reactive manner the sequences that result in the

best locally-matching outcomes, or as building blocks of a sampling based planner we

contribute, the Exp-RRT, to construct push plans that are safe and achievable. In

contrast to the proposed approaches in the literature, in our contribution;

• we handle real world objects with complex 3D structures that may contact the

robot on more than one point,

• the manipulated objects move on passively-rolling caster wheels, which introduce

two additional sources of motion uncertainty; the effect of the initial orientations

of the wheels on the object’s trajectory, and the object’s continued motion even

after the push is ceased,

• the experiment environment is cluttered with obstacles; hence, both collision-free

and achievable plans should be constructed and manipulation should be per-

formed delicately,

• we do not use any explicit analytical robot-object interaction models or learn a

mapping between the trajectories of the robot and the object; we only utilize

the experimented and observed effects of the past pushing motions as discrete

probabilistic cases to anticipate the future, plan, and act accordingly.

We extensively tested our method in a realistic 3D simulation environment, where

a variety of passively-mobile pushable objects with caster wheels needed to be safely

navigated among obstacles to reach their desired final poses. We also performed some

preliminary tests in a physical setup to verify the validity of our method. Our exper-

iments demonstrate safe transportation and successful placement of several pushable

objects in simulation and promising results for push-manipulation tasks in real world,

such as arranging chairs in predefined seating formations in a study area.

69

4. ADAPTING PAST EXPERIENCE TO NOVEL

SITUATIONS

4.1. Motivation

After the initial learning period in a case-based push-manipulation scenario, the

acquired probabilistic cases are usually reliable enough to push-manipulate the known

OOIs within the environment successfully, requiring re-planning every once in a while

during task execution. However, especially considering that all of our potential OOIs

are instances of office, hospital, and service furniture, their occupation state, and hence

dynamics, may change from time to time as they are mainly intended for transporting

various loads. Figure 4.1 depicts such a scenario, where the overbed table is loaded with

several objects of unknown masses. This addition to the object changes its dynamics

and it starts behaving differently than expected, as illustrated in the figure. Even in

such cases where the OOIs are loaded with other objects, we would still like to be

able to make as much use of the past experience as possible to solve the novel problem

without having the go through the learning process all over again.

Figure 4.1. A large difference is observed between the expected pose and the realized

one when the loaded OOI is tried to be push-manipulated using the past experience

obtained from the unloaded OOI. However, the robot can incrementally adapt the

corresponding cases to these new observations instead of trying to learn a completely

new set of cases for the loaded OOI.

70

4.2. Related Work

This problem can be viewed as an instance of lifelong robot learning [54]. Along

these lines, Sturm et al. [55,56] contributes a method that allows the robot to learn and

maintain a generative model of its own physical body through self-observation, which

helps in detecting and adapting to mismatches between the model prediction and self

observation in case there is a change in the robot’s physiology. In our approach,

the robot observes the changes in the behavior of the object and tries to adapt the

experimental models (i.e. cases) pertaining to that particular object in such a way to

establish a match between the model-based prediction and observation.

4.3. Approach

To achieve that, we seek a way of modifying the available distributions to quickly

accommodate for the difference between the expected and the observed object behavior.

However, since the parameters of the distributions associated with individual cases are

updated incrementally after each trial during case acquisition, the latest observations

start becoming less and less effective in shaping the distributions as the number of trials

per case increases. We overcome this problem by introducing a weighting factor to

determine how much relative weight the distributions representing the past experience

should have over the newly acquired experience. This weight coefficient is computed

by evaluating the difference between the expected and the observed pose of the object

via the pose similarity function defined in Equation 3.4 and multiplying the obtained

value with a scaling factor K, as defined in Equation 4.1. The resulting weight is used

as a scaling factor to adjust the influence of the past distribution defined by ℘̄Oft−1
and

Σ℘
O
f
t−1

, as shown in Equation 4.2 and Equation 4.3. That is, if the difference between

the expected pose and the observed one is significant, then their similarity value will be

small, resulting in a decrease in the weight of the past distribution parameters. That

way, the past experience is treated as if it were formed out of a smaller number of

samples in the first place, allowing the distributions to quickly shift towards the new

observation. Otherwise, these updates will have a similar effect as the ones performed

by the original equations given in Equation 3.1 and Equation 3.2.

71

W = sim(pexpected, pobserved)K (4.1)

℘̄W
Oft−1

= W℘̄Oft−1
(4.2)

ΣW
℘
O
f
t−1

= WΣ℘
O
f
t−1

(4.3)

4.4. Experimental Evaluation

In our experiment, we investigate how the ability to continuously adapt to the

changes regarding the primary OOI (e.g. loaded versus unloaded) affects robust plan

execution measured in the number of consecutive pushes before a re-plan is needed.

The overbed table was used as the primary OOI and the desired goal pose was placed

approximately 10m away diagonally, which corresponds to an average of 25 pushes with

the available set of cases. The cases were acquired on the unloaded overbed table, and

the robot was expected to adapt and utilize them for push-manipulating the loaded

one, which has significantly different dynamics as shown in Figure 4.1. Adaptation was

performed on the fly during plan execution with the hope that the execution would

become more robust after each re-planning attempt.

Figure 4.2 clearly shows that continuous adaptation enables the cases learned on

an unloaded OOI to be adapted and used on a loaded one (the left part of the plot)

as well as improving the performance during plan execution in the original unloaded

OOI manipulation scenario (the right part of the plot). The first box on the left-hand

side of the plot shows that the robot pretty much had to re-plan after each push when

it tried manipulating a loaded overbed table using the cases acquired on the unloaded

one. The second box depicts the performance improvement in the case of continuous

adaptation, where an average of more than 2 pushes could be achieved by adapting

72

Figure 4.2. Continuous adaptation to the observed changes contributes significantly

to the robust execution of the generated plans, both under occupation state changes

(left) and during regular operation (right). Median number of consecutive pushes are

given at the top.

the cases to the novel situation. This is noteworthy considering that the robot had to

adapt to the new dynamics of the OOI on the fly in the course of an average of just 25

pushes in total.

In addition to handling drastic changes in the OOI’s dynamics, it is also possi-

ble to utilize the flexibility of our incremental learning approach to enable the robot

to continuously learn and adapt by updating the parameters of the corresponding

distributions after each push during regular task execution. The positive effects of

continuous adaptation in such scenarios can be seen on the right-hand side of the plot

in Figure 4.2. The first box indicates the push-manipulation execution robustness in

the default case, where the cases learned on an unloaded overbed table are being used

on the same object without any adaptation. The second box shows that a considerable

amount of performance improvement in the predictive abilities of the final object pose

distributions (hence increased number of consecutive pushes) can be achieved through

continuous adaptation even when the occupation status of the OOI remains the same.

73

4.5. Discussion

In this chapter, we demonstrate the advantage of having a purely interaction and

observation driven case acquisition and tuning approach in adapting the past experience

to the novel situations, such as changes in the dynamics of the manipulated objects

due to loading/unloading, instead of having to go through the learning process all over

for each such novelty. Our experimental results indicate that, after adaptation, the

cases acquired for unloaded OOIs could be successfully used for manipulating loaded

ones, which have significantly different dynamics. Additionally, we show that the same

paradigm can be applied to obtain continuous performance improvement in terms of

robust plan execution during regular operation.

74

5. MOBILE PUSH-MANIPULATION AMONG MOVABLE

OBSTACLES

5.1. Motivation

Having acquired experience about how several objects in its task environment

move in response to various pushes enables the robot to modify and rearrange the task

environment according to its needs whenever necessary. When the robot knows that it

can move some of the obstacles to make way for the primary OOI, the complexity of

the task environments can be reduced considerably by treating every movable obstacle

as “permeable” while constructing push plans for the primary OOI (Figure 5.1).

a) No utilization of movable obstacles: The

robot plans around all obstacles regardless of

them being movable or not.

b) Utilizing movable obstacles: The robot

treats movable obstacles as “permeable”, know-

ing that it can push them out of the way.

Figure 5.1. Effect of movable obstacle utilization during planning. (a) When all

obstacles are treated as static, planning takes longer and results in sophisticated

solutions. (b) Planning becomes much quicker and the resulting solutions get simpler

and more direct when the movable obstacles are utilized.

75

5.2. Related Work

In handling movable obstacles, Stilman et al. [57–59] contribute practical algo-

rithms for Navigation Among Movable Obstacles (NAMO), which globally reason about

free space connectivity and identify which objects to move as well as where to move

them starting from the very beginning of the planning project. Rigid grasps are used

for pushing or pulling the movable obstacles out of the way. Dogar and Srinivasa [48]

use the same framework they developed to perform pre-grasp push-manipulation in a

tabletop scenario for rearranging the clutter via single-step linear pushes to be able to

reach and grasp the target object.

5.3. Push-Manipulation Among Movable Obstacles

The robot may take advantage of its experience about the other pushable objects

in the environment to alleviate the computational load of manipulation planning and

execution for the primary OOI. As the robot would know how to push-manipulate them,

all the known movable objects in the task environment can essentially be treated as

permeable during push plan construction for the OOI, allowing the solution paths to

pass through them. Before executing each push along the constructed push plan for

the primary OOI, the robot checks whether the action would potentially result in a

collision with any of the movable obstacles. In case a collision is anticipated, a state

lattice graph [60, 61] is expanded for each of the involved movable obstacles. Since we

do not know where to push the obstacle ahead of time, full graph construction until

candidate collision-free configurations are found is a more suitable approach than using

Exp-RRT, which would require a particular goal to be specified. Full planning graphs

are expanded by using the relevant probabilistic cases as building blocks until collision-

free poses for the movable obstacles are reached. Figure 5.2 illustrates a single branch

expansion in the process of state lattice construction for the overbed table object. As

opposed to various applications of the state lattices in the literature [62,63], we have no

concerns regarding the continuity of the successive motion primitives as our primitives

represent discrete achievable motions of the OOI, not the robot. Therefore, none of

the cases are eliminated during graph construction, except for the ones that are in

76

collision with the environment. Among the set of candidate paths that first reach

collision-free configurations, the one that pushes the obstacle farthest from the OOI’s

path as well as all the other obstacles is selected for execution. The push plan for the

OOI is ceased until all of the immediately blocking movable obstacles are pushed out

of the way according to the generated plan, and it is resumed when the path of the

primary OOI is clear. Figure 5.3 shows the stages of movable obstacle clearance during

push-manipulation of a stretcher. 7 Even though we cannot claim that our approach

to handling push-manipulation among movable obstacles produces optimal plans and

results, our experiments demonstrate its practicality as we never observed a failure in

our test scenarios.

Figure 5.2. The construction of the state lattice is achieved by repeating the set of

probabilistic cases at the end of every individual case in a breadth-first manner.

Following an optimistic tree construction strategy, each set of branches is originated

from the mean values of the final object pose distributions of the previous depth level.

5.4. Experimental Evaluation

We ran two sets of experiments to evaluate the benefits of the method we propose

for handling and utilizing the movable obstacles in the task environment.

7A video showing experience-based push-manipulation among movable obstacles can be seen here:
http://youtu.be/cvI6YipRCns

77

a) b)

c) d)

Figure 5.3. Clearing movable obstacles along the path of the stretcher. (a) First the

stretcher is push-manipulated until a collision is anticipated. (b) The chair is pushed

out of the way. (c) The overbed table is cleared after resuming the original push plan

and navigating the stretcher a little further. (d) The original push plan for the

stretcher is resumed.

Initially excluding the execution part, we first tried to understand how such ca-

pability influences planning performance. We created 5 random test environments and

ran 30 planning trials in two different scenarios. In Scenario 1, all the obstacles were

treated as stationary, whereas in Scenario 2, some of the obstacles were considered as

movable. Planning time is improved dramatically in Scenario 2 as a result of eliminat-

ing many of the planning constraints. As Figure 5.4 shows, both the means and the

variances of the various performance metrics obtained in Scenario 2 (cyan) are consid-

erably lower than those obtained in Scenario 1 (red). The results are intuitive since the

planner needs more effort to find potentially more tortuous solution paths that avoid

all the obstacles in Scenario 1, which explains longer planning times and path lengths.

78

a) Total number of Exp-RRT nodes.

b) The length of the solution path.

c) Planning time.

Figure 5.4. Planning performance in the presence of movable obstacles measured in

terms of (a) the total number of Exp-RRT nodes, (b) the solution path length, and

(c) planning time.

In the second set of experiments, we additionally tested the task completion times

(i.e. both planning and execution) in a random test environment by running 10 trials

for each of the two scenarios. Table 5.1 shows a significant difference between the

79

Table 5.1. Task completion statistics for stationary and movable obstacle

configurations.

Obstacle configuration µ (sec) σ (sec) # replans

Stationary (Scenario 1) 187.5 47.33 8

Movable (Scenario 2) 92.05 17.29 5

average task completion times as well as the number of re-plans during the navigation

of the primary OOI, which, in this case, was an overbed table.

An interesting application of the movable obstacle manipulation capability would

be to transport the primary OOI to its desired destination by “minimally invading”

the environment. That is, the robot would try to clean up after itself by trying to push

the movable obstacles back as close to their original poses as possible.

5.5. Discussion

The robot can utilize the probabilistic cases acquired for the objects other than

the primary OOI to manipulate and re-arrange its task environment to fit its needs.

In this chapter, we present an auxiliary algorithm that helps reduce the complexity

of the task environment by treating every known movable obstacle as “permeable”

during push-plan construction for the primary OOI. Whenever the next push of the

OOI is anticipated to result in a potential collision, the robot constructs state lattices

out of their corresponding probabilistic cases for each of the movable obstacles that are

involved in the anticipated collision until collision-free configurations are reached for all

of them. The results of our experiments performed in various scenarios demonstrate the

advantage of being able to manipulate the task environment in reducing the complexity

of the primary push plans measured in number of Exp-RRT nodes, path length, and

planning time.

80

6. CONCLUSIONS AND FUTURE WORK

We present a case-based approach to achieving practical and efficient mobile ma-

nipulation through the utilization of past experience, stored as object-specific, distinct,

and potentially probabilistic cases. This chapter summarizes and concludes the the-

sis while reviewing its major scientific contributions and discussing several promising

directions for future research.

6.1. Case-Based Mobile Pick and Place

The delicacy and precision that pick and place activities performed in everyday

living contexts require may strain even the state-of-the-art planners, demanding sig-

nificant amount of time and computational resources to generate successful solutions.

However, careful examination of such tasks reveal recurring manipulation patterns,

which usually occur within the close vicinity of the object and the destination. Fine

manipulation within those regions is critical to the overall success of the task.

Motivated by this observation, we contribute an experience-based mobile ma-

nipulation method where the robot memorizes a few number of critical yet recurring

target-specific fine reaching and manipulation moves as state-action sequences, and

reuses them whenever possible to guide manipulation planning and execution. We

show through extensive experimentation that this guidance helps reduce task com-

pletion times considerably when combined with a sampling-based generative planner,

while increasing the chance of successful task completion by carefully reiterating pre-

viously executed and known to be successful fine moves. Our approach harmoniously

combines the already available partial plans and executions with the ones generated

from scratch, yielding to fast, reliable, and repeatable solutions.

81

6.2. Case-Based Mobile Push-Manipulation

Push-manipulation is one of the most interesting and challenging robotic manipu-

lation modalities that has attracted many researchers. However, many of the proposed

methods handle flat objects with primitive geometric shapes moving quasi-statically

on high-friction surfaces, yet they usually make use of complex analytical models or

utilize specialized physics engines to predict the outcomes of various interactions. On

the other hand, we propose an experience-based approach, which does not require any

explicit analytical model or the help of a physics engine. Our mobile robot simply ex-

periments with pushable complex 3D real world objects to observe and memorize their

motion characteristics together with the associated motion uncertainties resulting from

varying initial caster wheel orientations and potential contacts between the robot and

the object. It then uses this incrementally built experience either for trying to make

the object of interest follow a guideline path by reiterating in a reactive manner the

sequences that result in the best locally-matching outcomes, or as building blocks of a

sampling based planner we contribute, the Exp-RRT, to construct push plans that are

safe and achievable. In contrast to the proposed approaches in the literature, in our

contribution;

• we handle real world objects with complex 3D structures that may contact the

robot on more than one point,

• the manipulated objects move on passively-rolling caster wheels and do not stop

immediately after the pushing is ceased,

• the experiment environment is cluttered with obstacles; hence, both collision-free

and achievable plans should be constructed and manipulation should be per-

formed delicately,

• we do not use any explicit analytical models or learn a mapping between the

trajectories of the robot and the object; we only utilize the experimented and

observed effects of the past pushing motions to anticipate the future, plan, and

act accordingly.

82

We extensively tested our method in a realistic 3D simulation environment where

a variety of pushable objects with passively-rolling caster wheels needed to be nav-

igated among obstacles to reach their desired final poses. We also performed some

preliminary tests in a physical setup to verify the validity of our method. Our exper-

iments demonstrate safe transportation and successful placement of several pushable

objects in simulation and promising results for push-manipulation tasks in real world,

such as arranging chairs in predefined seating formations in a study area. Additionally,

we show that the incremental acquisition and tuning of the probabilistic cases allows

the robot to adapt to the changes in the dynamics of the objects when continually used

after the initial case acquisition phase. Based on our experimental results, our method

proves to be robot, object, and environment (real or simulated) independent due to its

purely interaction and observation driven nature.

6.3. Contributions

This thesis makes the following major contributions to the field of mobile robotic

manipulation:

• Formalization of mobile manipulation as a case-based planning problem, where

the robot retains manipulation experiences as cases, reuses them for plan con-

struction (non-prehensile) and guidance (prehensile), and revises them to match

the slight differences observed in the manipulated object’s behavior (loaded ob-

jects) to improve planning and execution performance.

• A mobile pick and place manipulation algorithm that defines target-specific fine

reaching trajectories as cases and reuses them to guide the robot through manip-

ulation plan construction and execution processes.

• A mobile whole-body push-manipulation algorithm that incrementally acquires

object-specific interaction models and stores them as distinct probabilistic cases

to be reused as building blocks for achievable push planning and execution.

• A state lattice-based push-manipulation algorithm that is used for treating mov-

able obstacles as “permeable” to reduce the complexity of planning during push-

plan construction for the primary object of interest.

83

• An online algorithm that adapts the probabilistic cases to the changes in the

object’s behavior based on the observed deviation from the expected outcome.

• Extensive experimental evaluation of the presented case-based prehensile and

non-prehensile mobile manipulation methods in simulated and real setups.

6.4. Future Research Directions

There are several promising future research directions that this thesis could lead

to, some of which are highlighted below:

• Evaluating the presented pick-and-place and push-manipulation methods through

extensive testing and detailed experimentation in a physical setup,

• Active learning of the push-manipulation cases as needed through proactive ask-

ing by the robot for additional demonstrations in an informed manner,

• Incorporating dynamic time warping based alignment and adjustment of the suc-

cessively observed object trajectories during push-manipulation learning to track

variance not only over the final object pose but also along the trajectories,

• Repairing only the problematic parts of the generated push plans and reusing

them whenever possible instead of complete re-planning,

• Investigating the potential benefits of propagating uncertainty through the plan

graph over our current optimistic approach of keeping the distributions of con-

secutive push results independent from each other,

• Exploring the construction of deterministically optimal paths for the primary

object of interest through the utilization of a state lattice planner and comparing

the performance against the Exp-RRT,

• Transferring acquired prehensile and non-prehensile manipulation cases among

objects with similar properties.

84

APPENDIX A: BUILDING REALISTIC SIMULATION

ENVIRONMENTS

In this section, we elaborate on how we build the simulated models of the office

and hospital objects used in our experiments as well as our CoBot robot (Figure 1.1)

in Webots [31], and how we control the simulated CoBot to make it move as desired

in its task environment. 8

A.1. Simulated Robot and Object Models

Being an autonomous mobile service robot, CoBot is expected to manipulate a

variety of office and hospital service objects, such as office chairs, utility carts, overbed

tables, and stretchers. Figure A.1 illustrates some of the objects that we used in our

mobile manipulation experiments and the realistic simulation models we prepared for

each of them. As it can be seen in the figure, the bodies of our simulated objects are

exactly the same as the physical counterparts. We achieve this by simply importing

the SolidWorks CAD models of those objects into Webots as meshes. We then define

bounding surfaces, ideally with the same forms as the objects themselves, that the

simulator can use to compute inter-body collisions. Finally, we augment those simu-

lated object models with caster wheels so that our robot can push-manipulate them

in the task environment. Webots provides a standard caster wheel model, as shown

in Figure A.2. For each of the objects of interest, we provide reasonable Coulomb

friction coefficients for the wheel axis and the fork axis to obtain a decent caster wheel

behavior. In our experiments, a friction coefficient of 0.1 for the wheel axis and 1.0 for

the fork axis seemed to work fine. Providing reasonable mass and friction parameters

to Webots’ physics simulator, Open Dynamics Engine (ODE), results in reasonably

realistic object behaviors, although it must be noted that our contributed methods are

only concerned about the observed poses of the objects in the task environment.

8The Webots world files and the controller software we developed during this thesis work can be
obtained from http://tekin.mericli.com/share/thesis_webots.zip

85

a) b)

c) d)

e) f)

Figure A.1. Realistically simulated models of some common office and service objects,

such as a chair, an overbed table, and a utility cart.

a) b)

Figure A.2. A standard generic caster wheel and its simulated counterpart.

86

A.2. Robot Kinematics and Control

It is important to have a good grasp of the engineering principles behind the

robot’s design to be able to write kinematics equations and define various controllers

to make it move as intended. Our CoBot robot has a holonomic base; that is, the

controllable degrees of freedom are greater than or equal to the total physical degrees

of freedom. This holonomic property of the robot is achieved by the use of four omni-

directional wheels (Figure A.3) placed around the round body at every 90 degrees,

as shown in Figure A.4b. As long as the robot stays within the safe velocity limits,

this configuration allows it to move in any arbitrary combination of 〈vx, vy, ω〉, which

represents the desired translational (forward-backward and sideways) and rotational

(around the center of rotation) velocity components of the robot’s body. We approx-

imated the many small rollers on the omni-directional wheels of the physical CoBot

with larger rollers sparsely placed on the simulated wheel and obtained similar motion

characteristics to the physical platform while potentially being less computationally

demanding on the simulator side. The simulated CoBot achieves its motion through

the interaction of these small rollers with the floor surface of the task environment,

just like how the physical robot achieves its motion.

a) b)

Figure A.3. Simulated model of the omni-directional wheel with a lower resolution of

rollers compared to the wheels of the physical platform.

The robot can be moved around by continuously providing it with non-zero omni-

directional motion commands in 〈vx, vy, ω〉 form. The source of these motion commands

could be the ROS-based joystick interface implemented for tele-operating CoBot and

87

a) Simulated CoBot base. b) Robot kinematics. [64]

Figure A.4. Simulated four-wheeled omni-directional CoBot base and its kinematics.

extended for the purposes of this thesis, or the path tracker and motion controller

modules during autonomous operation. Through a set of kinematics equations, these

commands in the body coordinate frame can be translated into angular velocities for

the individual wheels. In addition to the requested motion command, these equations

make use of the information about the total number of wheels and their placements

around the body, the radii of the wheels, and the distances of the wheels from the

center of the robot’s body.

In Figure A.4b, the coordinate frame XrOrYr is attached to the robot and XOY

is the world frame. The radii of the wheels are assumed to be equal and denoted by

r, and the distance between a wheel’s center and the center of the robot is denoted by

b, assuming that all wheels have equal b values. αi, i ∈ {1, ..., 4} represent the angles

between the axles of the wheels. The angular velocity of each wheel is denoted as

ωi, i ∈ {1, ..., 4} and the direction of the linear velocity of the center of each wheel

with respect to XrOrYr is denoted as vi, i ∈ {1, ..., 4}. The angle between the reference

frames XrOrYr and XOY is θ. The linear and angular velocities of the robot are

v = [vxvy]
T and ω, respectively. Assuming that the axis Xr aligns with the axle of the

fourth wheel, we can write the following kinematics equations.

88

rωi = bω + vTr vi, i ∈ {1, ..., 4} (A.1)

vi = [−sin(αi) cos(αi)]
T , i ∈ {1, ..., 4} (A.2)

vrx = vxcos(θ) + vysin(θ) (A.3)

vry = −vxsin(θ) + vycos(θ) (A.4)

vr = [vrx vry]
T (A.5)

Hence the angular velocities for each individual wheel can be computed as follows.

ωi = r−1(bω + vrycos(αi)− vrxsin(αi)), i ∈ {1, ..., 4} (A.6)

89

APPENDIX B: REAL WORLD TEST SETUP

The aim for our preliminary tests in the physical world was to see if we could

utilize our proposed case-based push-manipulation algorithm to get our CoBot robot

(Figure 1.1) to organize a set of office chairs around a round table in one of the study

areas of the 9th floor of the Gates Hillman Center at Carnegie Mellon University, as

seen in Figure 3.15. There are a number of challenges that need to be addressed when

switching from the simulated environment to the physical one. In simulation, global

poses of all of the objects in the environment are directly reported by the simulator.

However, in the physical setup, the robot has to detect and infer the poses of the

objects and the obstacles through its on-board sensors. In order to make the visual

detection of the chair easier, we placed Augmented Reality (AR) tags on both sides of

the back of the chair (Figure B.1), which are visible most of the time from almost all

directions. The visual detection and tracking of the tags are handled by using the AR

Track Alvar package, which is available in the ROS repositories. 9

Figure B.1. AR Tag tracking visualization. The simulated chair moves in the world

model of the robot as the physical chair moves in the real world.

9http://wiki.ros.org/ar_track_alvar

90

AR Track Alvar publishes the 6 DoF poses of the detected tags in the reference

frame of the camera; however, we would like to know where the geometric center of

the object with respect to the base of the robot, none of which are directly provided

as a result of the detection process. However, since we place the tag on the object, we

can measure its pose relative to the geometric center of the object, and publish that

information as a static transform to be a part of the tf tree, which is a mechanism in

ROS that lets the user keep track of multiple reference frames on the robot and in the

environment over time. 10 Similarly the static transform between the optical frame of

the camera and the base of the robot is also known and published as a part of the tf

tree. Therefore, given that we know where the object’s center (ϕOOI) is with respect to

the tag (ϕTag), where the tag is with respect to the camera (ϕCamera), and where the

camera is with respect to the robot’s base (ϕRobot), we can compute where the object’s

center with respect to the robot’s base, as seen in Figure B.2.

Figure B.2. Various reference frames attached to the AR tag (ϕTag), the object’s

geometric center (ϕOOI), the camera (ϕCamera), and the robot’s base (ϕRobot). These

coordinate frames are utilized for computing the location of the object’s center with

respect to the robot.

10http://wiki.ros.org/tf

91

In addition to detecting the objects, the robot also has to localize itself in the

environment so that it can navigate safely and have an idea about how to move to

deliver the objects to their desired locations requested in global map coordinates. The

general assumption that the robot makes is that the large vertical planar surfaces

would correspond to the interior walls of the building. The robot uses these features

detected through processing the depth images provided by the on-board Kinect sensor,

which is also the primary camera, to localize itself in the environment [53]. The visuals

depicting this process are shown in Figure B.3. The obtained pose information is noisier

compared to the perfect pose information received in simulation.

Figure B.3. Screenshot from the operation of the Fast Sampling Plane Filtering based

planar feature detection and Corrective Gradient Refinement based localization

algorithms [53,65].

After the objects’ and the robot’s poses in the global map are computed, they

can be plugged into our robot and environment agnostic codes, just like the pose values

reported by the simulator, to acquire push-manipulation cases for the object and use

them for planning collision-free and achievable push plans for the OOI.

92

APPENDIX C: ADDITIONAL EXPERIMENTAL

RESULTS

C.1. Experience-based Mobile Pick and Place

In this section, we present additional experimental results obtained with various

office and service objects, namely an overbed table, a utility cart, and a stretcher,

in the prehensile mobile manipulation domain for each combination of the three gen-

erative planners (RRT, RRT-Connect, and RRT∗) and the four subgoal utilization

methods (sampling individual subgoals, sampling sequences, sampling subgoals within

goal probability, and coincidental termination) as well as the base case of planning only

for reaching the actual goal.

The box plots shown in Figure C.1 and Figure C.3 present the planning perfor-

mance statistics, measured in number of nodes, obtained with each of these combina-

tions for picking up and placing the overbed table object, respectively. The box plots

shown in Figure C.2 and Figure C.4 provide the corresponding time statistics.

Table C.1 and Table C.2 provide sequence utilization statistics of the tests pre-

sented in Figure C.1 and Figure C.3, respectively. These numbers indicate in what

percentage of the 30 planning trials with each combination the planner eventually

ended up reaching an entry point. We see that sampling individual subgoals and sam-

pling subgoals within goal probability have very high sequence utilization percentages.

In the case of sampling individual subgoals, the total bias towards the delicate manip-

ulation region increases, hence the increased sequence utilization percentages. Since

the method of of sampling subgoals within goal probability combines the actual goal

with the set of subgoals, it becomes very likely for a subgoal to be sampled instead of

the actual goal whenever a goal is decided to be sampled.

The box plots shown in Figure C.5 and Figure C.7 present the planning perfor-

mance statistics, measured in number of nodes, obtained with each of these combina-

93

a)

b)

c)

Figure C.1. The statistics for the number of generated nodes by (a) the RRT, (b) the

RRT-Connect, and (c) the RRT∗ generative planners during planning for picking up

the overbed table object in 10 different task environments.

tions for picking up and placing the utility cart object, respectively. The box plots

shown in Figure C.6 and Figure C.8 provide the corresponding time statistics.

Table C.3 and Table C.4 provide sequence utilization statistics of the tests pre-

sented in Figure C.5 and Figure C.7, respectively.

The box plots shown in Figure C.9 and Figure C.11 present the planning per-

formance statistics, measured in number of nodes, obtained with each of these com-

binations for picking up and placing the stretcher object, respectively. The box plots

94

a)

b)

c)

Figure C.2. Time statistics for (a) the RRT, (b) the RRT-Connect, and (c) the RRT∗

planners to generate plans for picking up the overbed table object in 10 different task

environments.

shown in Figure C.10 and Figure C.12 provide the corresponding time statistics.

Table C.5 and Table C.6 provide sequence utilization statistics of the tests pre-

sented in Figure C.9 and Figure C.11, respectively.

95

a)

b)

c)

Figure C.3. The statistics for the number of generated nodes by (a) the RRT, (b) the

RRT-Connect, and (c) the RRT∗ generative planners during planning for placing the

overbed table object in 10 different task environments.

96

a)

b)

c)

Figure C.4. Time statistics for (a) the RRT, (b) the RRT-Connect, and (c) the RRT∗

planners to generate plans for placing the overbed table object in 10 different task

environments.

97

Table C.1. Sequence utilization while planning and executing pick task for the

overbed table object in ten different environments.

Planner Subgoal Use Method

Sequence Utilization (%)

Pick

Env 1 Env 2 Env 3 Env 4 Env 5 Env 6 Env 7 Env 8 Env 9 Env 10

RRT

Coincidental 6.67 3.33 0.0 3.33 3.33 13.33 13.33 30.0 16.67 3.33

Within goals 93.33 73.33 86.67 93.33 73.33 93.33 86.67 93.33 86.67 86.67

Sequences 26.67 43.33 13.33 33.33 20.0 76.67 50.0 46.67 43.33 30.0

Individual subgoals 76.67 83.33 56.67 76.67 50.0 90.0 93.33 83.33 93.33 90.0

RRT-Connect

Coincidental 23.33 20.0 6.67 10.0 13.33 3.33 3.33 33.33 16.67 10.0

Withing goals 93.33 83.33 90.0 90.0 90.0 86.67 93.33 96.67 93.33 93.33

Sequences 40.0 60.0 73.33 60.0 63.33 66.67 66.67 63.33 83.33 73.33

Individual subgoals 83.33 80.0 86.67 80.0 96.67 90.0 96.67 86.67 86.67 83.33

RRT∗

Coincidental 13.33 3.33 6.67 3.33 0.0 10.0 13.33 30.0 23.33 6.67

Within goals 90.0 93.33 73.33 80.0 80.0 86.67 96.67 96.67 76.67 90.0

Sequences 30.0 30.0 33.33 26.67 13.33 76.67 56.67 53.33 40.0 53.33

Individual subgoals 86.67 90.0 56.67 80.0 46.67 93.33 96.67 90.0 80.0 83.33

Table C.2. Sequence utilization while planning and executing place task for the

overbed table object in ten different environments.

Planner Subgoal Use Method

Sequence Utilization (%)

Place

Env 1 Env 2 Env 3 Env 4 Env 5 Env 6 Env 7 Env 8 Env 9 Env 10

RRT

Coincidental 26.67 6.67 30.0 20.0 30.0 20.0 3.33 13.33 23.33 16.67

Within goals 93.33 100.0 93.33 96.67 90.0 83.33 83.33 93.33 90.0 93.33

Sequences 56.67 23.33 70.0 33.33 56.67 26.67 30.0 36.67 26.67 36.67

Individual subgoals 80.0 76.67 86.67 83.33 93.33 76.67 56.67 76.67 70.0 73.33

RRT-Connect

Coincidental 33.33 16.67 23.33 16.67 26.67 16.67 13.33 23.33 33.33 16.67

Withing goals 93.33 100.0 93.33 100.0 93.33 90.0 90.0 96.67 90.0 96.67

Sequences 70.0 66.67 70.0 43.33 53.33 50.0 53.33 56.67 80.0 66.67

Individual subgoals 90.0 86.67 90.0 86.67 80.0 76.67 93.33 76.67 90.0 86.67

RRT∗

Coincidental 26.67 23.33 36.67 13.33 43.33 13.33 3.33 3.33 10.0 23.33

Within goals 96.67 90.0 93.33 93.33 96.67 90.0 96.67 90.0 80.0 93.33

Sequences 46.67 26.67 46.67 13.33 56.67 40.0 10.0 33.33 53.33 30.0

Individual subgoals 90.0 70.0 93.33 83.33 96.67 83.33 70.0 86.67 66.67 70.0

98

a)

b)

c)

Figure C.5. The statistics for the number of generated nodes by (a) the RRT, (b) the

RRT-Connect, and (c) the RRT∗ generative planners during planning for picking up

the utility cart object in 10 different task environments.

99

a)

b)

c)

Figure C.6. Time statistics for (a) the RRT, (b) the RRT-Connect, and (c) the RRT∗

planners to generate plans for picking up the utility cart object in 10 different task

environments.

100

a)

b)

c)

Figure C.7. The statistics for the number of generated nodes by (a) the RRT, (b) the

RRT-Connect, and (c) the RRT∗ generative planners during planning for placing the

utility cart object in 10 different task environments.

101

a)

b)

c)

Figure C.8. Time statistics for (a) the RRT, (b) the RRT-Connect, and (c) the RRT∗

planners to generate plans for placing the utility cart object in 10 different task

environments.

102

Table C.3. Sequence utilization while planning and executing pick task for the utility

cart object in ten different environments.

Planner Subgoal Use Method

Sequence Utilization (%)

Pick

Env 1 Env 2 Env 3 Env 4 Env 5 Env 6 Env 7 Env 8 Env 9 Env 10

RRT

Coincidental 30.0 16.67 13.33 40.0 6.67 16.67 20.0 10.0 3.33 6.67

Within goals 83.33 93.33 76.67 76.67 83.33 86.67 73.33 76.67 83.33 73.33

Sequences 36.67 40.0 23.33 23.33 43.33 46.67 23.33 60.0 30.0 53.33

Individual subgoals 73.33 96.67 80.0 66.67 93.33 90.0 53.33 90.0 46.67 90.0

RRT-Connect

Coincidental 26.67 13.33 13.33 30.0 16.67 30.0 40.0 6.67 16.67 16.67

Withing goals 90.0 100.0 100.0 86.67 96.67 96.67 80.0 86.67 90.0 96.67

Sequences 50.0 86.67 60.0 40.0 63.33 76.67 50.0 66.67 43.33 86.67

Individual subgoals 90.0 96.67 96.67 70.0 96.67 90.0 70.0 96.67 76.67 93.33

RRT∗

Coincidental 33.33 23.33 10.0 26.67 10.0 3.33 26.67 6.67 26.67 16.67

Within goals 83.33 93.33 83.33 76.67 83.33 76.67 73.33 83.33 86.67 73.33

Sequences 36.67 63.33 36.67 16.67 33.33 46.67 40.0 53.33 30.0 36.67

Individual subgoals 86.67 96.67 83.33 60.0 96.67 86.67 50.0 96.67 50.0 86.67

Table C.4. Sequence utilization while planning and executing place task for the

utility cart object in ten different environments.

Planner Subgoal Use Method

Sequence Utilization (%)

Place

Env 1 Env 2 Env 3 Env 4 Env 5 Env 6 Env 7 Env 8 Env 9 Env 10

RRT

Coincidental 16.67 13.33 16.67 70.0 30.0 16.67 6.67 16.67 50.0 6.67

Within goals 80.0 90.0 90.0 93.33 83.33 80.0 73.33 80.0 93.33 76.67

Sequences 33.33 53.33 50.0 80.0 43.33 33.33 36.67 20.0 60.0 23.33

Individual subgoals 73.33 63.33 56.67 83.33 63.33 73.33 70.0 56.67 73.33 60.0

RRT-Connect

Coincidental 23.33 6.67 36.67 80.0 36.67 20.0 10.0 16.67 26.67 6.67

Withing goals 100.0 80.0 83.33 90.0 90.0 90.0 83.33 90.0 90.0 93.33

Sequences 50.0 30.0 46.67 96.67 56.67 66.67 46.67 56.67 83.33 46.67

Individual subgoals 80.0 63.33 73.33 83.33 73.33 86.67 76.67 90.0 83.33 80.0

RRT∗

Coincidental 10.0 10.0 33.33 73.33 6.67 13.33 3.33 3.33 50.0 16.67

Within goals 76.67 80.0 80.0 90.0 86.67 86.67 80.0 76.67 76.67 83.33

Sequences 16.67 36.67 36.67 63.33 46.67 33.33 33.33 33.33 73.33 30.0

Individual subgoals 53.33 60.0 66.67 83.33 56.67 76.67 60.0 66.67 80.0 60.0

103

a)

b)

c)

Figure C.9. The statistics for the number of generated nodes by (a) the RRT, (b) the

RRT-Connect, and (c) the RRT∗ generative planners during planning for picking up

the stretcher object in 10 different task environments.

104

a)

b)

c)

Figure C.10. Time statistics for (a) the RRT, (b) the RRT-Connect, and (c) the

RRT∗ planners to generate plans for picking up the stretcher object in 10 different

task environments.

105

a)

b)

c)

Figure C.11. The statistics for the number of generated nodes by (a) the RRT, (b)

the RRT-Connect, and (c) the RRT∗ generative planners during planning for placing

the stretcher object in 10 different task environments.

106

a)

b)

c)

Figure C.12. Time statistics for (a) the RRT, (b) the RRT-Connect, and (c) the

RRT∗ planners to generate plans for placing the stretcher object in 10 different task

environments.

107

Table C.5. Sequence utilization while planning and executing pick task for the

stretcher object in ten different environments.

Planner Subgoal Use Method

Sequence Utilization (%)

Pick

Env 1 Env 2 Env 3 Env 4 Env 5 Env 6 Env 7 Env 8 Env 9 Env 10

RRT

Coincidental 43.33 13.33 33.33 6.67 6.67 20.0 0.0 16.67 6.67 26.67

Within goals 60.0 56.67 70.0 66.67 50.0 46.67 80.0 50.0 76.67 66.67

Sequences 43.33 40.0 50.0 26.67 26.67 26.67 70.0 23.33 66.67 20.0

Individual subgoals 73.33 46.67 80.0 93.33 56.67 43.33 93.33 50.0 96.67 73.33

RRT-Connect

Coincidental 36.67 23.33 23.33 10.0 10.0 10.0 3.33 26.67 16.67 26.67

Withing goals 73.33 43.33 76.67 76.67 73.33 70.0 96.67 80.0 93.33 83.33

Sequences 66.67 60.0 60.0 63.33 53.33 40.0 100.0 73.33 90.0 46.67

Individual subgoals 86.67 66.67 86.67 90.0 46.67 50.0 96.67 80.0 96.67 93.33

RRT∗

Coincidental 46.67 6.67 16.67 3.33 13.33 16.67 23.33 20.0 13.33 30.0

Within goals 40.0 56.67 63.33 76.67 40.0 66.67 90.0 63.33 93.33 73.33

Sequences 36.67 30.0 43.33 33.33 20.0 36.67 66.67 30.0 76.67 26.67

Individual subgoals 76.67 66.67 86.67 86.67 40.0 50.0 90.0 56.67 96.67 76.67

Table C.6. Sequence utilization while planning and executing place task for the

stretcher object in ten different environments.

Planner Subgoal Use Method

Sequence Utilization (%)

Place

Env 1 Env 2 Env 3 Env 4 Env 5 Env 6 Env 7 Env 8 Env 9 Env 10

RRT

Coincidental 33.33 20.0 46.67 10.0 40.0 86.67 56.67 60.0 30.0 33.33

Within goals 90.0 100.0 96.67 70.0 93.33 100.0 86.67 93.33 100.0 96.67

Sequences 60.0 93.33 60.0 26.67 73.33 83.33 50.0 46.67 60.0 43.33

Individual subgoals 73.33 90.0 86.67 76.67 93.33 93.33 80.0 93.33 90.0 93.33

RRT-Connect

Coincidental 26.67 26.67 23.33 33.33 43.33 56.67 26.67 46.67 23.33 36.67

Withing goals 86.67 93.33 93.33 96.67 93.33 100.0 96.67 86.67 100.0 96.67

Sequences 60.0 73.33 50.0 60.0 66.67 86.67 76.67 70.0 73.33 43.33

Individual subgoals 96.67 96.67 90.0 93.33 93.33 96.67 90.0 80.0 96.67 53.33

RRT∗

Coincidental 26.67 30.0 33.33 13.33 33.33 86.67 30.0 50.0 33.33 20.0

Within goals 83.33 93.33 93.33 90.0 86.67 100.0 100.0 93.33 100.0 93.33

Sequences 40.0 66.67 70.0 26.67 60.0 80.0 60.0 76.67 56.67 46.67

Individual subgoals 86.67 90.0 86.67 76.67 86.67 96.67 93.33 90.0 96.67 96.67

108

REFERENCES

1. Mason, C. R., J. E. Gomez and T. J. Ebner, “Hand Synergies During Reach-to-

Grasp”, Journal of Neurophysiology , Vol. 86, No. 6, pp. 2896–2910, 2001.

2. Rosenthal, S., J. Biswas and M. Veloso, “An Effective Personal Mobile Robot Agent

Through Symbiotic Human-Robot Interaction”, Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2010.

3. Aamodt, A. and E. Plaza, “Case-Based Reasoning; Foundational Issues, Method-

ological Variations, and System Approaches”, AI Communications , Vol. 7, No. 1,

pp. 39–59, 1994.

4. Veloso, M. M., H. Munoz-Avila and R. Bergmann, “General-Purpose Case-Based

Planning: Methods and Systems”, AI Communications , Vol. 9, No. 3, pp. 128–137,

1996.

5. Ros, R., J. L. Arcos, R. L. de Mantaras and M. Veloso, “A Case-based Approach

for Coordinated Action Selection in Robot Soccer”, Artificial Intelligence, Vol. 173,

pp. 1014–1039, 2009.

6. Meriçli, T., M. Veloso and H. L. Akın, “Experience Guided Mobile Manipulation

Planning”, Proceedings of the 8th International Cognitive Robotics Workshop at

AAAI’12 , Toronto, Canada, 2012.

7. Meriçli, T., M. Veloso and H. L. Akın, “Improving Prehensile Mobile Manipula-

tion Performance through Experience Reuse”, International Journal of Advanced

Robotic Systems , 2014.

8. Meriçli, T., M. Veloso and H. L. Akın, “Experience Guided Achievable Push Plan

Generation for Passive Mobile Objects”, Beyond Robot Grasping - Modern Ap-

proaches for Dynamic Manipulation at IROS’12 , Algarve, Portugal, 2012.

109

9. Meriçli, T., M. Veloso and H. L. Akın, “Achievable Push-Manipulation for Complex

Passive Mobile Objects using Past Experience”, Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), Saint Paul,

Minnesota, USA, 2013.

10. Meriçli, T., M. Veloso and H. L. Akın, “Push-Manipulation of Complex Passive Mo-

bile Objects using Experimentally Acquired Motion Models”, Autonomous Robots ,

pp. 1–13, 2014.

11. Meriçli, T., M. Veloso and H. L. Akın, “Case-Based Mobile Push-Manipulation:

Framework and Applications”, Journal of Intelligent and Robotic Systems , 2014.

12. LaValle, S. M., Rapidly-Exploring Random Trees: A New Tool for Path Planning ,

Tech. Rep. TR 98-11, Department of Computer Science. Iowa State University,

1998.

13. LaValle, S. M., Planning Algorithms , Cambridge University Press, New York, NY,

USA, 2006.

14. Kuffner, J. J. and S. M. LaValle, “RRT-connect: An efficient approach to

single-query path planning”, Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), pp. 995–1001, 2000.

15. Karaman, S. and E. Frazzoli, “Incremental Sampling-based Algorithms for Optimal

Motion Planning”, Proceedings of the Robotics: Science and Systems Conference

(RSS), Zaragoza, Spain, 2010.

16. Yershova, A. and S. M. LaValle, “Improving Motion-Planning Algorithms by Effi-

cient Nearest-Neighbor Searching”, IEEE Transactions on Robotics , Vol. 23, No. 1,

pp. 151–157, 2007.

17. Bruce, J. and M. M. Veloso, “Real-time Randomized Path Planning for Robot

Navigation”, Lecture Notes in Computer Science, pp. 288–295, 2003.

110

18. Urmson, C. and R. Simmons, “Approaches for Heuristically Biasing RRT Growth”,

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Vol. 2, 2003.

19. Cohen, B. J., G. Subramania, S. Chitta and M. Likhachev, “Planning for Manip-

ulation with Adaptive Motion Primitives”, Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), pp. 5478–5485, 2011.

20. Berenson, D., P. Abbeel and K. Goldberg, “A Robot Path Planning Framework

that Learns from Experience”, Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), pp. 3671–3678, 2012.

21. Skoglund, A., B. Iliev, B. Kadmiry and R. Palm, “Programming by Demonstration

of Pick-and-Place Tasks for Industrial Manipulators using Task Primitives”, Inter-

national Symposium on Computational Intelligence in Robotics and Automation

(CIRA), pp. 368–373, 2007.

22. Argall, B. D., S. Chernova, M. Veloso and B. Browning, “A Survey of Robot

Learning from Demonstration”, Robotics and Automation Systems , Vol. 57, No. 5,

pp. 469–483, 2009.

23. Ye, G. and R. Alterovitz, “Demonstration-guided Motion Planning”, Proceedings

of the International Symposium on Robotics Research (ISRR), 2011.

24. Sakoe, H. and S. Chiba, “Dynamic Programming Algorithm Optimization for Spo-

ken Word Recognition”, Acoustics, Speech and Signal Processing, IEEE Transac-

tions on, Vol. 26, No. 1, pp. 43–49, 1978.

25. Samadi, M., F. Asr, J. Schaeffer and Z. Azimifar, “Extending the Applicability of

Pattern and Endgame Databases”, Computational Intelligence and AI in Games,

IEEE Transactions on, Vol. 1, No. 1, pp. 28–38, 2009.

26. Veloso, M. M., Planning and Learning by Analogical Reasoning , Springer-Verlag

111

New York, Inc., Secaucus, NJ, USA, 1994.

27. Bartsch-Spörl, B., M. Lenz and A. Hübner, “Case-Based Reasoning - Survey

and Future Directions”, Proceedings of the 5th German Biennial Conference on

Knowledge-Based Systems , pp. 67–89, Springer Verlag, 1999.

28. Spalazzi, L., “A Survey on Case-Based Planning”, Artificial Intelligence Review ,

Vol. 16, pp. 3–36, 2001.

29. Berenson, D., S. Srinivasa and J. Kuffner, “Task Space Regions: A Framework

for Pose-Constrained Manipulation Planning”, International Journal of Robotics

Research (IJRR), Vol. 30, No. 12, pp. 1435 – 1460, 2011.

30. Pettersson, O., “Execution Monitoring in Robotics: A Survey”, Robotics and Au-

tonomous Systems , Vol. 53, pp. 73–88, 2005.

31. Michel, O., “Webots: Professional Mobile Robot Simulation”, International Jour-

nal of Advanced Robotics Systems , Vol. 1, No. 1, pp. 39–42, 2004.

32. Lynch, K. M., Nonprehensile Robotic Manipulation: Controlability and Planning ,

Ph.D. Thesis, Robotics Institute, Carnegie Mellon University, 1996.

33. Veloso, M. M., “Flexible Strategy Learning: Analogical Replay of Problem Solving

Episodes”, Proceedings of the Twelfth National Conference on Artificial Intelligence

(Vol. 1), AAAI ’94, pp. 595–600, American Association for Artificial Intelligence,

Menlo Park, CA, USA, 1994.

34. Veloso, M. M., “Merge strategies for multiple case plan replay”, D. Leake and

E. Plaza (Editors), Case-Based Reasoning Research and Development , Vol. 1266

of Lecture Notes in Computer Science, pp. 413–424, Springer Berlin Heidelberg,

1997.

35. K. M. Lynch and M. T. Mason, “Dynamic Nonprehensile Manipulation: Control-

lability, Planning, and Experiments”, International Journal of Robotics Research,

112

Vol. 18, pp. 64–92, 1997.

36. Salganicoff, M., G. Metta, A. Oddera and G. Sandini, “A Vision-Based Learning

Method for Pushing Manipulation”, Proceedings of the AAAI Fall Symposium on

Machine Learning in Vision: What Why and How? , 1993.

37. Agarwal, P. K., J. Latombe, R. Motwani and P. Raghavan, “Nonholonomic Path

Planning for Pushing a Disk Among Obstacles”, Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA), 1997.

38. Nieuwenhuisen, D., A. van der Stappen and M. Overmars, “Path Planning for

Pushing a Disk using Compliance”, Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2005.

39. Nieuwenhuisen, D., A. van der Stappen and M. H. Overmars, “Pushing Using

Compliance”, Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2006.

40. de Berg, M. and D. Gerrits, “Computing Push Plans for Disk-Shaped Robots”,

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), 2010.

41. Khatib, O., “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots”,

The International Journal of Robotics Research, Vol. 5, No. 1, pp. 90–98, 1986.

42. Igarashi, T., Y. Kamiyama and M. Inami, “A Dipole Field for Object Delivery by

Pushing on a Flat Surface”, Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2010.

43. Lau, M., J. Mitani and T. Igarashi, “Automatic Learning of Pushing Strategy

for Delivery of Irregular-Shaped Objects”, Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2011.

44. Walker, S. and J. K. Salisbury, “Pushing Using Learned Manipulation Maps”,

113

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), 2008.

45. Zito, C., R. Stolkin, M. Kopicki and J. Wyatt, “Two-level RRT Planning for

Robotic Push Manipulation”, Proceedings of the IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), 2012.

46. Kopicki, M., S. Zurek, R. Stolkin, T. Mörwald and J. Wyatt, “Learning to Predict

How Rigid Objects Behave Under Simple Manipulation”, Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2011.

47. Scholz, J. and M. Stilman, “Combining Motion Planning and Optimization for

Flexible Robot Manipulation”, Proceedings of the IEEE-RAS International Con-

ference on Humanoid Robots (Humanoids), pp. 80–85, 2010.

48. Dogar, M. and S. Srinivasa, “A Planning Framework for Non-Prehensile Manip-

ulation under Clutter and Uncertainty”, Autonomous Robots , Vol. 33, No. 3, pp.

217–236, 2012.

49. Katz, D. and O. Brock, “Manipulating Articulated Objects with Interactive Per-

ception”, Proceedings of the IEEE International Conference on Robotics and Au-

tomation (ICRA), pp. 272–277, Pasadena, CA, 2008.

50. Melchior, N. and R. Simmons, “Particle RRT for Path Planning with Uncertainty”,

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), pp. 1617–1624, 2007.

51. Berg, J. V. D., P. Abbeel and K. Goldberg, “LQG-MP: Optimized Path Planning

for Robots with Motion Uncertainty and Imperfect State Information”, Proceedings

of the Robotics: Science and Systems Conference (RSS), Zaragoza, Spain, 2010.

52. Bry, A. and N. Roy, “Rapidly-exploring Random Belief Trees for Motion Planning

Under Uncertainty”, Proceedings of the IEEE International Conference on Robotics

114

and Automation (ICRA), pp. 723–730, 2011.

53. Biswas, J., B. Coltin and M. Veloso, “Corrective Gradient Refinement for Mobile

Robot Localization”, Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2011.

54. Thrun, S. and T. M. Mitchell, “Lifelong Robot Learning”, L. Steels (Editor), The

Biology and Technology of Intelligent Autonomous Agents , Vol. 144 of NATO ASI

Series , pp. 165–196, Springer Berlin Heidelberg, 1995.

55. Sturm, J., C. Plagemann and W. Burgard, “Body Scheme Learning and Life-Long

Adaptation for Robotic Manipulation”, Proceedings of the Workshop on Robot

Manipulation at the Robotics: Science and Systems Conference (RSS), Zurich,

Switzerland, 2008.

56. Sturm, J., C. Plagemann and W. Burgard, “Adaptive Body Scheme Models for

Robust Robotic Manipulation”, Proceedings of the Robotics: Science and Systems

Conference (RSS), Zurich, Switzerland, 2008.

57. Stilman, M. and J. J. Kuffner, “Navigation Among Movable Obstacles: Real-

time Reasoning in Complex Environments”, International Journal of Humanoid

Robotics , Vol. 2, No. 04, pp. 479–503, 2005.

58. Stilman, M., K. Nishiwaki, S. Kagami and J. Kuffner, “Planning and Executing

Navigation Among Movable Obstacles”, Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pp. 820–826, 2006.

59. Stilman, M., Navigation Among Movable Obstacles , Ph.D. Thesis, Robotics Insti-

tute, Carnegie Mellon University, Pittsburgh, PA, 2007.

60. Pivtoraiko, M. and A. Kelly, “Constrained Motion Planning in Discrete State

Spaces”, Field and Service Robotics , pp. 269–280, 2005.

61. Pivtoraiko, M. and A. Kelly, “Efficient Constrained Path Planning via Search

115

in State Lattices”, Proceedings of the 8th International Symposium on Artificial

Intelligence, Robotics and Automation in Space, 2005.

62. Howard, T. and A. Kelly, “Optimal Rough Terrain Trajectory Generation for

Wheeled Mobile Robots”, International Journal of Robotics Research, Vol. 26,

No. 2, pp. 141–166, 2007.

63. McNaughton, M., C. Urmson, J. Dolan and J.-W. Lee, “Motion Planning for Au-

tonomous Driving with a Conformal Spatiotemporal Lattice”, Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), pp. 4889–

4895, 2011.

64. Huang, L., Y. S. Lim, D. Li and C. E. L. Teoh, “Design and Analysis of a Four-

wheel Omnidirectional Mobile Robot”, Proceedings of the International Conference

on Autonomous Robots and Agents , 2004.

65. Biswas, J. and M. Veloso, “Depth Camera Based Indoor Mobile Robot Localization

and Navigation”, Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), pp. 1697–1702, 2012.

