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1. Latent Dirichlet Allocation

The Latent Dirichlet Allocation (LDA) model by Blei et al [BNJ02] is a gener-
ative model for a collection of exchangeable discrete data. LDA has mainly been
used to model text corpora, where the notion of exchangeability corresponds to
the “bag-of-words” assumption that is commonly employed in such models. More
recently, Sivic et al [SRE+05] and Li and Perona [FFP05] have applied the model
to collections of images, where the “visual words” correspond to quantized local
feature vectors.

The model is simplest to describe for text corpora. In a nutshell, LDA models
each document as a mixture over topics, where each vector of mixture proportions
is assumed to have been drawn from a Dirichlet distribution. A topic in this model
is defined to be a discrete distribution over words from some finite lexicon. For
example, if a topic is “astrophysics”, then the word “quasar” would presumably be
assigned a higher probability than the word “burrito”.

More precisely, let D be a collection of M documents and w be a document with
words w1, . . . , wn. We assume that each word corresponds to one of K possible
topics, and that for each word, there is a latent topic assignment zi which takes on
values 1, . . . ,K, indexing into the set of topics. By convention, we will represent zi

by a K dimensional vector with one component set to one indicating its value in
1, . . . ,K and the rest set to zero. The generative process is as follows:

(1) Draw θ ∼ Dirichlet(α1, . . . , αk)
(2) For each word wn ∈ w,

(a) Draw a topic zi ∼ Multinomial(θ)
(b) Draw a word wi ∼ Multinomial(β(zi)) where β(k) is a probability

distribution over words corresponding to topic k

The inference task in LDA is to solve for the vector of topic mixture proportions,
θ, and the topic assignment zi for each word, given the words wi and the model
parameters α, βk. Exact inference in this model involves an intractable integral,
but approximations via Markov Chain Monte Carlo sampling [GS04] or mean-field
methods have been shown to work well.
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2. The Correlated Topic Model

A problem with drawing the topic mixture proportions (θs) from a Dirichlet
distribution is that Dirichlet distributions are too simple, and exhibit a near-
independence structure.1

Figure 1. Dirichlet Distributions for various parameter settings
on a 2-simplex. Red corresponds to high probability density and
blue corresponds to low probability density.

Figure 2. Logistic Normal Distributions for various parameter
settings on a 2-simplex. Note that unlike the Dirichlet, its level
sets can bound nonconvex regions.

The Logistic-Normal distribution [AS80] is an alternative distribution over a sim-
plex which forms a richer class of distributions and better captures inter-component
correlations. The process of drawing a k-dimensional Logistic-Normal random vari-
able θ is as follows:

(1) Draw v ∼ N(µ,Σ) where N(µ,Σ) is a k−1 dimensional Normal distribution.
(2) Define vk = 0.
(3) Let

θ =
exp v

∑k

j=1
exp vj

(This is the projection of exp(v) to the simplex)

The probability density for θ can be explicitly written as

p(θ;µ,Σ) =
1

|2πΣ|





k
∏

j=1

θj





−1

exp

[

−
1

2
{log(θ/θk) − µ}Σ−1{log(θ/θk) − µ}

]

1A way to draw from a Dirichlet distribution is to sample k independent Gamma distributions,

concatenate the samples into a vector and divide by their sum. This process shows that the

correlations between the components of a Dirichlet random variable arise solely from the fact that

they must all sum to one.
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2

The Correlated Topic Model [BL05] models the same type of data as LDA and
only differs in the first step of the generative process. Instead of drawing θ from a
Dirichlet distribution it assumes that θ is drawn from a Logistic-Normal Distribu-
tion.

Figure 3. A graphical model representation of the Correlated
Topic Model

3. Supervised Training

Expectation-Maximization provides a method for unsupervised training for LDA
and CTM. However, in certain cases, if one can observe the latent variables (i.e.
each word is labeled by a topic assignment) during the training process, then it
makes more sense to take advantage of them. 3

For LDA, if the topic assignment zi is observed for each word during training,
then we can estimate the α and β independently of each other. Since βk = P (w|z =
k), β can be estimated simply by building histograms of words for each topic.

The distribution of zi given the Dirichlet parameter α is known as a Polya

distribution and details and code for fitting such a distribution are given by Minka
[Min00].

For CTM, the way to estimate β in the supervised case is identical to LDA,
but estimating µ and Σ is more involved since the Logistic-Normal distribution
is not a member of the exponential family. The distribution of zi given Logistic
Normal parameters is called a Hierarchical Logistic Normal (HLN) distribution and
we present a method for fitting one using EM in the appendix.

4. Inference

The details for variational inference are given in Appendix B.

Appendix

Appendix A. Fitting a Hierarchical Logistic-Normal Distribution

We now present the method for fitting the Hierarchical Logistic-Normal (HLN)
distribution given by Hoff [Hof03]. The HLN distribution is the same as a CTM
distribution except that no words are drawn. Recall the generative process for a
given document wj:

2Since θ is actually a k-dimensional vector, we concatenate a zero to the end of µ and pad Σ

and Σ−1 on the right and bottom by a column and row of zeros respectively.
3Note that this only changes the training stage - but the inference step on novel images remains

difficult.
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(1) Draw vj ∼ N(µ,Σ) where N(µ,Σ) is a k − 1 dimensional Normal distribu-
tion.

(2) Define vjk = 0.
(3) Let

θj =
exp v

∑k

j=1
exp vj

(4) For each word wji ∈ wj, draw a topic zji ∼ Multinomial(θ)

Notice that if the vj are known, then finding the maximum likelihood estimates of
µ and Σ is easy. Since they are unknown, the strategy will be instead to alternate
between estimating v1, . . . vm for each document, and estimating µ and Σ using
EM. Let p̂(z) be the empirical distribution function (normalized histogram) of the
topic assignments in a document. The conditional likelihood of v given the topic
assignments z = (z1, . . . , zn) for a given document can be written down using Bayes
rule:

P (v|z, µ,Σ) ∝ P (z|v)P (v|µ,Σ)

=
exp

(

∑k−1

i=1
vinp̂i

)

(

1 +
∑k−1

j=1
exp vj

)n exp

(

−
1

2
(v − µ)T Σ−1(v − µ)

)

The conditional log-likelihood and its derivatives are straight-forward (but not
fun) to derive:

log P (v|z, µ,Σ) =
k−1
∑

i=1

vinp̂i − n log



1 +
k−1
∑

j=1

exp vj



−
1

2
(v − µ)T Σ−1(v − µ) + C

∂ log P (v|z, µ,Σ)

∂v
= n

(

p̂ −
expv

1 +
∑k−1

j=1
exp vj

)

− Σ−1(v − µ)

∂2 log P (v|z, µ,Σ)

∂vi∂vj

= −Σ−1
ij − n

[

δ{i = j}
exp vj

1 +
∑k−1

l=1
exp vl

−

(

exp vi

1 +
∑k−1

l=1
exp vl

)(

exp vj

1 +
∑k−1

l=1
exp xl

)]

By maximizing the conditional log-likelihood, the conditional mode of v can be
found. 4

Let µ̂ be the conditional mode of v and Î be the Fisher Information matrix
(negative Hessian) evaluated at µ̂. Then asymptotically,

f(v|z, µ,Σ) ≈ N(v|µ̂, Î−1)

To estimate the Logistic Normal parameters µ and Σ, we iterate between com-
puting conditional modes, and updating µ,Σ. The algorithm is as follows

(1) Initialize µ0, Σ0.
(2) Until convergence,

4In practice, we find that (Polak-Riviere) Conjugate Gradient tends to be more dependable

than the Newton-Raphson method in high dimensions. We used Carl Rasmussen’s Conjugate

Gradient Matlab code for this.
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(a) For each document j ∈ {1, . . . ,m}, estimate µ̂j and Îj with respect to
current model parameters µl and Σl.

(b) Update µ,Σ:

µl+1 =
1

m

m
∑

j=1

µ̂j

Σl+1 =
1

m

m
∑

j=1

[

(µ̂j − µl+1)(µ̂j − µl+1)
T + Î−1

j

]

Appendix B. Variational Inference for the Correlated Topic Model

As in LDA, exact inference in the Correlated Topic Model is intractable. We
describe the variational Mean Field approximation given by Blei and Lafferty. Sup-
pose P (xh, xv) is a distribution where xh are latent variables and xv are observable.
Inference on this distribution involves the computation of P (xv) (the denominator
in Bayes Rule) which is often an intractable integral. One possible way to get
around this is to approximate P by a distribution for which inference is easier.

One view of Mean Field methods [JGJS99] is that they approximate the poste-
rior P (xh|xv) with a fully factorized distribution Q =

∏

i∈h Qi(xi) by minimizing
KL(Q(xh)||P (xh|xv)). Another equivalent view is that one can maximize a lower
bound J(Q) on the observed data log-likelihood:

J(Q) = log P (xv) − KL(Q(xh)||P (xv|xh))

= EQ[log P (xh, xv)] + H(Q)

with respect to Q subject to the constraint that Q must be a fully factorized prob-
ability distribution. This alternative view of maximizing J(Q) is appealing because
it suggests the intuition that one should at once maximize both the expected com-
plete data log-likelihood and the entropy of Q.

For the CTM, we use the approximating variational distribution

Q(v1:K , z1:N |λ1:K , ν2
1:K , φ1:N ) =

K
∏

i=1

Q(vi|λi, ν
2
i )

N
∏

n=1

Q(zn|φn)

where each Q(vi|λi, ν
2
i ) is a univariate gaussian with parameters λi, ν

2
i and each

Q(zn|φn) is discrete with multinomial parameters φn. As we described in the pre-
vious paragraph, the objective is to find λ, ν2, φ such that the following variational
lower bound is maximized:

J(Q) = EQ[log P (v|µ,Σ)] +

N
∑

n=1

(E[log P (zn|v)] + E[log P (wn|zn, β)]) + H(Q)

The second term of J(Q) is not computable, and so yet another variational bound
is introduced via a Taylor expansion:

EQ[log P (zn|v)] = EQ[vT zn] − EQ

[

1 + log

(

k−1
∑

i=1

exp{vi}

)]

≥ EQ[vT zn] −

(

ζ−1

(

k−1
∑

i=1

EQ[exp{vi}]

)

− 1 + log(ζ)

)

where ζ is a new variational parameter that must be fit.
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Expanding everything out for J(Q) yields the following (very ugly) expression:

J(Q) =
1

2
log |Σ−1| −

k − 1

2
log 2π −

1

2

[

Tr(diag(ν2)Σ−1) + (λ − µ)T Σ−1(λ − µ)
]

+

N
∑

n=1

[

k−1
∑

i=1

λiφn,i − ζ−1

(

k−1
∑

i=1

exp

{

λ +
ν2

2

}

)

+ 1 − log ζ +

k−1
∑

i=1

φn,i log βi,wn

]

+

k−1
∑

i=1

1

2

(

log ν2
i + log 2π + 1 −

N
∑

n=1

k−1
∑

i=1

φn,i log φn,i

)

To optimize J(Q), Blei and Lafferty give coordinate ascent updates with respect
to the variational parameters, which we reproduce here with a few minor changes.
5

Holding all other parameters fixed, the optimal ζ is:

ζ̂ = 1 +

k−1
∑

i=1

exp{λi + ν2
i /2}

Maximizing with respect to φ gives:

φ̂n,i ∝

{

exp{λi}βi,wn
for i ∈ {1, . . . , k − 1}

βi,wn
for i = k

There are no analytic expressions for maximimizing with respect to λ or ν2, but
they can be maximized numerically using a number of methods. The gradient with
respect to λ is:

∂J

∂λ
= −Σ−1(λ − µ) +

N
∑

n=1

φn,1:K−1 − (N/ζ) exp

(

λ +
ν2

2

)

The derivative with respect to ν2
i is:

∂J

∂ν2
i

= −
1

2Σii

−

(

N

2ζ

)

exp

(

λi +
ν2

i

2

)

+
1

2ν2
i

And the second derivative is given by:

∂2J

∂(ν2
i )2

= −
N

4ζ
exp

(

λi −
ν2

i

2

)

−
1

2(ν2
i )2
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