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Abstract

POMDPs provide a rich framework for planning and control &mtally
observable domains. Recent new algorithms have greatlgoed the scala-
bility of POMDPs, to the point where they can be used in rolppiiaations.
In this paper, we describe how approximate POMDP solvingbeafurther
improved by the use of a new theoretically-motivated athyanifor selecting
salient information states. We present the algorithmgedafEMA, demon-
strate competitive performance on a range of navigatidestasd show how
this approach is robust to mismatches between the roboy'sigai environ-
ment and the model used for planning.

1 Introduction

The Partially Observable Markov Decision Process (POMDC#)lbng been rec-
ognized as a rich framework for real-world planning and omrjiroblems, espe-
cially in robotics. However exact solutions are typicatiyractable for all but the
smallest problems. The main obstacle is that POMDPs asduaevorld states
are not directly observable, therefore plans are expresgmdnformation states
The space of information states is the space of all beliefgstes might have
about the world state. Information states are easy to edkedifom sensor mea-
surements, but planning over them is generally considereddtable, since the
number of information states grows exponentially with pliaiy horizon.

Recent point-based techniques for approximating POMDiRisols have proven
effective for scaling-up planning in partially observalitamains [5,10,11]. These
reduce computation by optimizing a value function over alksubset of informa-
tion states (obeliefg. Often, the quality of the solution depends on which bslief
were selected, but most techniques use ad-hoc methoddéotisg beliefs.

In this paper, we describe a new version of the point-baske \approximation
which features a theoretically-motivated approach todbgipint selection. The
main insight is to select points which minimize a bound ondher of the value
approximation. This allows us to solve large problems wétvér points than
previous algorithms, which leads to faster planning timésrthermore because
a reachability analysis is used to select candidate pongsgestrict the search to
relevant dimensions of the belief, thereby alleviatingdhese of dimensionality.

The new algorithm is key to the successful control of an imdnobile service
robot, designed to seek and assist the elderly in residentiaronments. The
experiments we present show the robustness of the approacteriety of chal-
lenging factors, including limited sensing, sensor naésa inaccurate models.

2 Background

The Partially Observable Markov Decision Process (POMDBYigdes a general
framework for acting optimally in partially observable daims. It is well-suited



to a great number of robotics problems where decision-ngakinst be robust to
sensor noise, stochastic controls, and poor models. Thioedirst establishes
the basic terminology and essential concepts pertainif@iIDPs.

2.1 Basic POMDP Terminology

We assume the standard formulation, whereby a POMDP is didinthe n-tuple:
{S, A, Z, by, T, O, R}. The first three components, A and Z denote finite, dis-
crete sets, wher§ is the set of statesd is the set of actions, and is the set of
observations. In general, it is assumed that the state atem gimet, s;, is not
observable, but can be partially disambiguated througtotieervationz,. The
next three quantities,,, 7', andO define the probabilistic world model that un-
derlies the POMDPb, describes the probability that the domain is in each state
attimet = 0; T'(s, a, s") describes the state-to-state transition probabilitiez (e
robot motion model)0(s, a, z) describes the observation probability distribution
(e.g. sensor model). AnR(s,a) : S x A — R is a (bounded) reward function
quantifying the utility of each action for each state.

2.2 Belief Computation

POMDPs assume that the statds not directly observable, but instead the agent
perceives observationg:, ..., 2;} which convey information about the state.
From these, the agent can computeetief, or probability distribution over possi-
ble world statesb;(s) = Pr(s; = s | z¢,a¢-1, 2t—1, - . ., ap). Because POMDPs
are instances of Markov processes, the bélieft timet can be calculated recur-
sively, using only the belief one time step earligr,,, along with the most recent
actiona;_; and observation,:

Z O(s',as_1,2t) T(s,as_1,8) by_1(s")

bils) = 7(bi-1, 011, 21) = = Pr(z:|bi—1,at-1). (1)

This is equivalent to the Bayes filter, and in robotics, itatewous generaliza-
tion forms the basis of the well-known Kalman filter. In maayge robotics ap-
plications, tracking the belief can be computationallylrging. However in

POMDPs, the bigger challenge is the generation of an astbeetion policy. We

assume throughout this paper that the belief can be compatedlately, and focus
on the problem of finding good policies.

2.3 Policy Computation

The POMDP framework’s primary purpose is to optimize anacgelectiorpol-
icy, of the form: n(b) — a, whereb is a belief distribution and is the action
chosen by the policy. We say that a policy*(b;) is optimal when the expected

future discounted reward is maximized: .

Z ,ytftort

7 (by) = argmaxE,
g t=to

bt] : )

Computing an optimal policy over all possible beliefs carchallenging [2], and
so many recent POMDP approximations have been proposedhwhio compu-
tational advantage by applying value updates at a few spdmfief points [5, 7,
10, 11]. These techniques differ in how they select the bpbats, but all use the



same procedure for updating the value over a fixed set of poiie key to updat-
ing a value function over a fixed set of belief3,= {bo, b1, ..., b4}, is in realizing
that the value function contains at most am&ector for each belief point, thus
yielding a fixed-size solution seF, = {ag, a1, ..., a4}

The standard procedure for point-based value update istlosving. First we
generate intermediate sét$™ andl'y"*,Va € A,Vz € Z:

I¢* — {a®'}, wherea®*(s) = R(s,a) )

ry* «— Hal® | a; €Ty_1}, wherea*(s) =~ Z T(s,a,s)O(s,a,z)a;(s").
s'eS

Next, we take the expectation over observations and cangtfuvs € B:

Y «— {a®’|ac A}, wherea®® =T¢* + Z argmaxZa(s)b(s). 4

zez €Ty s
Finally, we find the best action for each belief point:
I; « {a’|be B}, wherea® = argmaxz a(s)b(s). (5)

ael? s

Because the size of the solution $gtis constant, the point-based value update
can be computed in polynomial time. And while these openatioreserve only
the besta-vector at each belief poirtt € B, an estimate of the value function at
any belief in the simplex (including¢ B) can be extracted from the det:

Vi(b) = max) a(s)b(s). (6)
ses

2.4 Error Bound on Point-Based Value Updates

The point-based value update operation is an integral fartamy approximate
POMDP solvers. As shown in [5], given a fixed belief &and planning horizon
t, the error over multiple value updates is boundet by

(Rmax - Rmin) maXp eA mianB ||b - b/”l-
(1—7)?

whereb’ € A is the point where the point-based update makes its wot ierr
value update, anble B is the closest (1-norm) sampled belieffo Now leta be
the vector that is maximal & anda’ be the vector that would be maximaltt
Then, we can show equivalently that

V% = Voo <

et) < oV —a- bt
< (¢ —a)- (V' —D)
(Hmax — o) (0] — b;) b > b
< . vy
< > (Bain — ) (B) — b;) B < by

1=y

1The error bound proven in [5] depends on the sampling dewsity the belief simplex\. But
when the initial beliefbg is known, it is not necessary to sample allafdensely. Instead, we can
sample the set of reachable beligfsdensely; the error bound holds dn



3 Error-Minimization Point Selection

Many recent point-based value approximations, which shoadgempirical suc-
cess, use poorly informed heuristics to select belief goMte now describe a new
algorithm for selecting provably good belief points. Thgaaithm directly uses
the error bound above to pick those reachable beliefs\ which most reduce the
error bound. Figure 1a shows the tree of reachable beltefsirgy with the initial
belief (top node). Building the tree (to a finite depth) isiadone by recursively
using Equation 1.

b%zq%zo b%zo_ﬁjzu

(@)

Figure 1: (a) The set of reachable beliefs. Each node correspondptxiis belief, and in-
creasing depth corresponds to an increasing plan horigdrgarl the Nursebot interacting
with patients in a nursing facility.

Applying point-based value updatesaih reachable beliefs would guarantee op-
timal performance, but at the expense of computationatabéity: a planning
problem of horizort hasO(|A||Z|!) reachable beliefs. So we select from our
reachable beliefs those most likely to minimize the errooum value function.
Given the belief tree in Figure 1a, we consider three set®dés. Set 1 includes
all points already inB (in this examplehy andb,, .,). Set 2 contains the set of
candidates from which we will select new points to be adde@.téVe call this set
thefringe (denotedB). Set 3 contains all other reachable beliefs.

Now we need to decide which beligshould be removed from the fringg and
added to the set of active poinis Every new point added t® should improve
our estimate of the value function as much as possible. Totfiadboint most
likely to do this, we consider the theoretical analysis oftiéa 2.4. Consider
b € B, a belief point candidate, aride B, some belief which we have already
selected. While one could simply pick the candidgte B with the largest error
bound,e(d’), this would go against the most useful insight from earlierkvon
point-based approaches: namely ttegichabilityconsiderations are important. So
we need to factor in the probability of each candidate bg@ht occurring. We
first note that the error bound at any given belief péiintthe tree can be evaluated
from that of its immediate descendants:

€(b) = max > O(b,a,z2) e(r(b,a,z)) 7)

z€EZ

2In Figure 1a, the fringeR) is restricted to the immediate descendants of the poinks iihe rest
of the paper proceeds on this assumption, but we could asau®eper fringe.

4
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Figure 2: Policy performance (top row) and estimate of the bound ortha (bottom row)
for selected belief points

wherer (b, a, z) is the belief update equation (Eqn 1), afid(b, a, z)) is evaluated
as in Section 2.4 (unlessb, a, z) € B, in which case:(7(b, a, z)) = 0). So we
use Equation 7 to find the existing point B with the largest error bound, then
pick as a new point its descendattb, a, z) which has the largest impact @(b).
Points on the fringe are picked one a time, allowing us to lde&p in the tree; in
the experiments presented below, beliefs at 40+ levelsdeet selected.

This concludes the presentation of our new error-minindzapoint selection
technique. In practice, the addition of new points is alwigsrleaved with the
point-based value updates described in Section 2.3 to fofull # OMDP so-
lution. The complete approach, called PEMPo(nt-basedError Minimization
Algorithm), is now evaluated empirically in a series of robohtrol experiments.

4 Empirical evaluation

We begin our empirical evaluation with a few well-studiedzmanavigation do-
mains. Most have been used strictly in simulation, but fesatabot-like assump-
tions, such as non-deterministic motion and noisy sensie. Tiger-grid, Hall-
way and Hallway?2 problems are described in [3]. The Tag domais introduced
in [5]. The goal of these preliminary experiments is simgycobmpare the per-
formance of PEMA with earlier POMDP approximations on staadproblems.
More extensive robot navigation domains are presenteckifioflowing section.

Error estimates. A first set of results on PEMAs performance are shown in
Figure 2. For each problem domain, we first plot PEMA's rewpedformance
as a function of the number of belief points (top graphs), thea plot the error
estimate of each point selected according to the order islwboints were picked
(bottom graphs). As shown in these, PEMA is able to solveoalt problems with
relatively few beliefs (sometimes fewer than the numbetaiks).

Considering the error bound graphs, we see that overak thegms to be rea-



sonably good correspondence between an improvement iorpexfice, and a de-
crease in the error estimates. We can conclude from thetetpéd the error bound
used by PEMA is quite informative in guiding exploration bétbelief simplexX.

Comparative analysis. While the results outlined above show that PEMA is
able to handle a wide spectrum of large-scale POMDP domdiisalso use-
ful to compare its performance to that of alternative apphes, on the same set
of problems. Figure 3 compares both reward performance alicysize' (# of
nodes in controller) for a few recent POMDP algorithms, anttiree larger prob-
lems (Hallway, Hallway2, and Tag). The algorithms includiedhis comparison
were selected simply based on the availability of publistesdilts for this set of
problems.
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Figure 3: Results for standard POMDP domains. Left column: Hallwaybfgm. Middle
column: Hallway?2 problem. Right column: Tag problem.

As is often the case, these results show that there is nog sitgorithm that is
best for solving all problems, so it is difficult to draw brogeneralizations. But
we can point out a few salient effects. First, the baselindd®NB] approximation
is clearly outclassed by other more sophisticated meth@désalso observe that
some of the algorithms achieve sub-par performance in tefrespected reward:
BPI [9] (on Hallway2 and Tag) PBVI [5] (on Tag) and BBSLS [1] (on Tag).
While each of these is theoretically able to reach optimeigpmance, they would
require larger controllers (and therefore longer companigime) to do so.

The remaining algorithms—HSVI [10], Perseus [11], and PEMéffer com-

SWhile the decrease in error over a fixed point (ebg) is monotonic, the decrease in error over
each new pointgin the order it was added) is not necessarily monotonicchvigixplains the large
jumps in the bottom graphs. These jumps suggest that PEMA dmuimproved by maintaining a
deeper fringe of candidate belief points, in which case ithe spent selecting points would have to
be carefully balanced with the time spent planning. Culyente spend less that% of computation
time selecting belief points; the rest is spent estimativgvialue function.

4The results were computed on different platforms, so timaparisons are difficult. The size of
the final policy is often a useful indicator of computatioméi, but should be considered with care.

SBetter results for BPI have since been published in [8].



parable performance. HSVI offers good control performamtéhe full range of
tasks, but requires bigger controllers. HSVI and PEMA slmaagy similarities:
both use an error bound to select belief points. HSVI's ufijmemd is tighter than
PEMA's, but requires costly LP solutions. PEMA solves pesh$ with fewer be-
lief points, we believe this is because it updates all bgl@hts more frequently,
thus generalizing better in poorly explored areas of theebsimplex.

Between Perseus and PEMA, the trade-offs are less clegstaheing time, con-
troller size and performance quality are quite comparablese two approaches
in fact share many similarities. Perseus uses the same-lpagetd backups as in
PEMA (see Section 2.3), but it differs in both how the set dfdfgoints is se-
lected (Perseus uses random exploration traces), anddheiorwhich it updates
the value at those points (also randomized). The effectesfaldifferences is hard
to narrow. We did experiment informally with Perseus-tygedom updates within
PEMA, but this did not yield significant speed-up. It is likehat randomizing
value updates is not as beneficial when carefully picking allsset of essential
points. We speculate that PEMA will scale better to higheratisions because of
the selective nature of the belief sampling. This is theettt)f ongoing work.

5 Robotic applications

Much of the algorithmic development described in this papenotivated by our
need for high-quality robust planning for interactive mebobots. In particular,
we are concerned with the problem of controlling a nursirgisésnt robot. This
is an important technical challenge arising from the Nuotqfyoject [6]. This
project aims to develop personalized robotic technologydhn improve the level
of personal care and services for elderly individuals. Tdieot Pearl (Fig. 1b)
is the main experimental platform used in this project. leduipped with stan-
dard indoor navigation abilities and is programmed with@#RMEN toolkit [4].
An important task for this robot is to provide timely cognéireminders (e. g.
medications to take, appointments to attend, etc.) to itgetgpopulation. It is
therefore crucial that the robot be able to find the persometer it is time to
issue a reminder. We model this task as a POMDP, and use PEMgtitnize a
strategy with which the robot can robustly find the persoenewnder very weak
assumptions over the person’s initial location and easeodility.

We begin by considering the environment in which the rob@&rates. Figure 4
shows a 2D robot-generated map of its physical environmim.goal is for the
robot to navigate in this environment until it finds the patiand then deliver the
appropriate reminder. To successfully find the patientyti®t needs to system-
atically explore the environment, while reasoning abouhbits spatial coverage
and the likely motion pattern of the person.

51 POMDP Modeling

To model this task as a POMDP, we assume a state space aupsiktivo fea-
tures: RobotPosition and PersonPosition Each feature is expressed through a
fixed discretization of the environment (roughly 25 cells éach feature, or 625
total states.) We assume the person and robot move freeaigtramned only by
walls and obstacles. The robot’s motion is deterministicgdunction of the ac-
tion={North, South, East, Wadt A fifth action DeliverMessageconcludes the



scenario if applied when the robot and person are in the saoaidn. We as-
sume the person’s motion is stochastic, and in one of two si10 whenever
the person is far from the robot, s’lhe moves according to Biamvmotion (i. e.

in each cardinal direction witt?’r = 0.1 or stays in place), this corresponds to a
random walk and is a conservative assumption regardingl@sapotion; or (2)
whenever the robot is within sight(4m), the person tries to avoid the robot and
moves away from it (with noise), which makes the task moréiehging.

The observation function has two parts: what the robot seakeut its own po-
sition, and what it senses about the person’s position.t Riesassume that the
robot’s position is fully known; this is reasonable sincarpling is done at a much
coarser resolution (2m), than the typical localizationcgsi®n (10cm). When
testing policies however, probabilistic localization erformed by the CARMEN
toolkit, and the robot’s belief incorporates any positiaunacertainty. For the per-
son’s position, we assume that the robot perceives nothihgss the person is
within 2 meters. This is plausible given the robot’s senséngen at short-range,
there is a small probability®r = 0.01) that the robot will miss the person.

The reward function is straightforwar@® = —1 for any motion,R = 10 when
the robot decides tbeliverMessagand is within range<2m) of the person, and
R = —100 when the robot decides DeliverMessagén the person’s absence.
The task terminates when the robot successfully deliverstbssage. We assume
a discount factor proportional to the map’s resolutior= 0.98).

With these POMDP parameters, we can run PEMA to optimizedhetis con-
trol strategy. Given the complexity of POMDP planning we dewane that PEMA
will be used as an off-line algorithm to optimize the robqisrformance prior
to deployment. The results presented below describe tiferpgance of an opti-
mized control policy when tested onboard the CARMEN sinarlat

5.2 Experimental Results

We first consider PEMA's performance on this task, as a fonaf planning time.
As shown in Figure 4a, PEMA is in fact able to solve the probiégthin 1800 sec-
onds, using only 128 belief points. In comparison, an MDpetapproximation
(in this case the QMDP technique [3]) proves to be inadedfoate problem ex-
hibiting such complex uncertainty over the person’s positiUsing PEMA, the
patient was found in00% of trials, compared t85% for QMDP.

Figure 4 shows PEMA's policy through five snapshots from ame The policy
is optimized for any start positions (for both the person @iredrobot); the execu-
tion trace in Figure 4 is one of the longer ones since the rebaiches the entire
environment before finding the person. In this scenario prson starts at the
far end of the left corridor. The person’s location is notwhan the figure since
it is not observable by the robot. The figure instead show®éhief over person
positions, represented by a distribution of point sampieey dots). We see the
robot starting at the far right end of the corridor (Fig. 4ivoving towards the
left until the room’s entrance (Fig. 4c), and searching thére room (Fig. 4d).
Once sufficiently certain that the person is not there, itsetkie room (Fig. 4e),
and moves towards the left until it finally finds the persorhatend of the corridor
(Fig. 4f).



It is interesting to compare snapshots
(b) and (d). The robot positionin both is ol o]
practically identical. Yetin (b) therobot -
choosesto go up into the room, whereas =
in (d) the robot chooses to move toward
the left. This is a direct result of plan- e EEE
ning overbeliefs rather than ovestates ‘

These results show that PEMA is able .| !
to handle realistic domains. In partic-  -so==
ular, throughout these experiments, the
robot simulator was in no way constrainggd
to behave as described in our POMDI
model. For example the robot’s action:
often had stochastic effects, the robot]
position was not always fully observ-
able, and belief tracking had to be pers
formed asynchronously (i. e. not a strai
alternation of actions and observations;
Despite this mismatch between the mo
assumed for planning and the executig
environment, the control policy optimizeg
by PEMA successfully completed the ta

5.3 Robustnessto modeling errors

Like most POMDP solvers, PEMA as-
sumes exact knowledge of the POMDI
model. In reality, this model is often
hand-crafted and may bear substanti
error. In our experience, such a mis
match between model and the real sy:
tem does not necessarily render our s(
lution useless. The robustness builtin t;
POMDPs to overcome state uncertaint
often goes a long way towards overcom
ing model uncertainty. Nonetheless, the
are cases where a poor model can |
catastrophic. In this section, we try tcrigure 4: Find-the patient domain: (a) Per-
gain a better understanding of the imformance results. (b)-(f) Sample trajectory.
pact of errors in the model we used for
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the Find-the-patient domain. —— ‘ 0os  oupeatl®
Our model assumes that the robot carm— o.99 97 113 -132 -155
i i — . 0.90 120 -131 -156 -19.0
see the patient vyltlﬁ)r = 0.99, whgn 080 o7 115 131 145
ever s/he is within 2m. We use this pa- o070 17.8  -19.4 220 -226

rameter both for solving and tracking.

But it could be that in fact the person jsTable 1: Sensitivity analysis over observa-
only detected withPr = 0.8 tion probabilities. (ClI for all: [0.7,1.4])



What would be the loss in performance, compared to if we hadrdd and
tracked with the correct parameter? Table 1 examines tleetsfbf this type of
modeling error. It shows the performance (avg. sum of revavér 1000 trajecto-
ries) when applying PEMA and tracking the belief with thesmraccuracy in the
left column, but testing with the accuracy in the top row. Tingin diagonal con-
tains cases where the model is correct. These results suggethings. First, as
expected, performance degrades as the real noise levebses (i.e. left-to right
effect for any given row.) Second, and this was not antieigathe dominating
performance factor is in fact the noise in the assumed madghrdless of what
conditions are used for testing, results are better for seatees of Py, s4.; (0.99
and0.8) and worse for otherd)(9 and0.7). We hypothesize that this happens
because in some models, PEMA did not have sufficient beligftpdo perform
well (all policies were optimized withB|=512). When we repeated experiments
for Pr.0de1(2)=0.9 with more beliefs points, the performance improved &b
Pr.cq1(2)) to the level of the top row. This suggest that in some domiamsy be
best to optimize policies assuming false models (e. g. love@enoise), because
an equally good policy can be obtained with fewer belief (RiklVe are currently
investigating this, as well as the impact of modeling eriotthe transition model.

6 Conclusion

This paper describes a new algorithm for planning in padyt@servable domains,
which features a theoretically-motivated technique fdecting salient informa-
tion states. This improves the scalability of the approactthe point where it
can be used to control a robot seeking a missing person. \Welafmonstrate that
the algorithm is robust to noise in the assumed model. Fwtorg focuses on
improving performance under even weaker modeling assomgpti
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