
POMDP Planning for Robust Robot Control
Joelle Pineau Geoff Gordon

School of Computer Science Center for Automated Learning and Discovery
McGill University Carnegie Mellon University

Montreal QC CANADA H3A 2A7 Pittsburgh PA 15232
jpineau@cs.mcgill.ca ggordon@cs.cmu.edu

Abstract

POMDPs provide a rich framework for planning and control in partially
observable domains. Recent new algorithms have greatly improved the scala-
bility of POMDPs, to the point where they can be used in robot applications.
In this paper, we describe how approximate POMDP solving canbe further
improved by the use of a new theoretically-motivated algorithm for selecting
salient information states. We present the algorithm, called PEMA, demon-
strate competitive performance on a range of navigation tasks, and show how
this approach is robust to mismatches between the robot’s physical environ-
ment and the model used for planning.

1 Introduction
The Partially Observable Markov Decision Process (POMDP) has long been rec-
ognized as a rich framework for real-world planning and control problems, espe-
cially in robotics. However exact solutions are typically intractable for all but the
smallest problems. The main obstacle is that POMDPs assume that world states
are not directly observable, therefore plans are expressedover information states.
The space of information states is the space of all beliefs a system might have
about the world state. Information states are easy to calculate from sensor mea-
surements, but planning over them is generally considered intractable, since the
number of information states grows exponentially with planning horizon.

Recent point-based techniques for approximating POMDP solutions have proven
effective for scaling-up planning in partially observabledomains [5,10,11]. These
reduce computation by optimizing a value function over a small subset of informa-
tion states (orbeliefs). Often, the quality of the solution depends on which beliefs
were selected, but most techniques use ad-hoc methods for selecting beliefs.

In this paper, we describe a new version of the point-based value approximation
which features a theoretically-motivated approach to belief point selection. The
main insight is to select points which minimize a bound on theerror of the value
approximation. This allows us to solve large problems with fewer points than
previous algorithms, which leads to faster planning times.Furthermore because
a reachability analysis is used to select candidate points,we restrict the search to
relevant dimensions of the belief, thereby alleviating thecurse of dimensionality.

The new algorithm is key to the successful control of an indoor mobile service
robot, designed to seek and assist the elderly in residential environments. The
experiments we present show the robustness of the approach to a variety of chal-
lenging factors, including limited sensing, sensor noise,and inaccurate models.

2 Background
The Partially Observable Markov Decision Process (POMDP) provides a general
framework for acting optimally in partially observable domains. It is well-suited

1

to a great number of robotics problems where decision-making must be robust to
sensor noise, stochastic controls, and poor models. This section first establishes
the basic terminology and essential concepts pertaining toPOMDPs.

2.1 Basic POMDP Terminology

We assume the standard formulation, whereby a POMDP is defined by the n-tuple:
{S, A, Z, b0, T, O, R}. The first three components,S A andZ denote finite, dis-
crete sets, whereS is the set of states,A is the set of actions, andZ is the set of
observations. In general, it is assumed that the state at a given timet, st, is not
observable, but can be partially disambiguated through theobservationzt. The
next three quantities,b0, T , andO define the probabilistic world model that un-
derlies the POMDP:b0 describes the probability that the domain is in each state
at timet = 0; T (s, a, s′) describes the state-to-state transition probabilities (e.g.
robot motion model);O(s, a, z) describes the observation probability distribution
(e.g. sensor model). AndR(s, a) : S × A −→ < is a (bounded) reward function
quantifying the utility of each action for each state.

2.2 Belief Computation

POMDPs assume that the statest is not directly observable, but instead the agent
perceives observations{z1, . . . , zt} which convey information about the state.
From these, the agent can compute abelief, or probability distribution over possi-
ble world states:bt(s) = Pr(st = s | zt, at−1, zt−1, . . . , a0). Because POMDPs
are instances of Markov processes, the beliefbt at timet can be calculated recur-
sively, using only the belief one time step earlier,bt−1, along with the most recent
actionat−1 and observationzt:

bt(s) = τ(bt−1, at−1, zt) :=

∑

s′

O(s′, at−1, zt) T (s, at−1, s
′) bt−1(s

′)

Pr(zt|bt−1, at−1).
(1)

This is equivalent to the Bayes filter, and in robotics, its continuous generaliza-
tion forms the basis of the well-known Kalman filter. In many large robotics ap-
plications, tracking the belief can be computationally challenging. However in
POMDPs, the bigger challenge is the generation of an action-selection policy. We
assume throughout this paper that the belief can be computedaccurately, and focus
on the problem of finding good policies.

2.3 Policy Computation

The POMDP framework’s primary purpose is to optimize an action-selectionpol-
icy, of the form: π(b) −→ a, whereb is a belief distribution anda is the action
chosen by the policyπ. We say that a policyπ∗(bt) is optimal when the expected
future discounted reward is maximized:

π∗(bt) = argmax
π

Eπ

[

T
∑

t=t0

γt−t0rt

∣

∣

∣

∣

∣

bt

]

. (2)

Computing an optimal policy over all possible beliefs can bechallenging [2], and
so many recent POMDP approximations have been proposed which gain compu-
tational advantage by applying value updates at a few specific belief points [5, 7,
10,11]. These techniques differ in how they select the belief points, but all use the

2

same procedure for updating the value over a fixed set of points. The key to updat-
ing a value function over a fixed set of beliefs,B = {b0, b1, ..., bq}, is in realizing
that the value function contains at most oneα-vector for each belief point, thus
yielding a fixed-size solution set:Γt = {α0, α1, . . . , αq}.

The standard procedure for point-based value update is the following. First we
generate intermediate setsΓa,∗

t andΓa,z
t , ∀a ∈ A, ∀z ∈ Z:

Γa,∗
t ← {αa,∗}, whereαa,∗(s) = R(s, a) (3)

Γa,z
t ← {αa,z

i | αi ∈ Γt−1}, whereαa,z
i (s) = γ

∑

s′∈S

T (s, a, s′)O(s′, a, z)αi(s
′).

Next, we take the expectation over observations and construct Γb
t , ∀b ∈ B:

Γb
t ← {αa,b | a ∈ A}, whereαa,b = Γa,∗

t +
∑

z∈Z

argmax
α∈Γa,z

t

∑

s∈S

α(s)b(s). (4)

Finally, we find the best action for each belief point:

Γt ← {αb | b ∈ B}, whereαb = argmax
α∈Γb

t

∑

s

α(s)b(s). (5)

Because the size of the solution setΓt is constant, the point-based value update
can be computed in polynomial time. And while these operations preserve only
the bestα-vector at each belief pointb ∈ B, an estimate of the value function at
any belief in the simplex (includingb /∈ B) can be extracted from the setΓt:

Vt(b) = max
α∈Γt

∑

s∈S

α(s)b(s). (6)

2.4 Error Bound on Point-Based Value Updates

The point-based value update operation is an integral part of many approximate
POMDP solvers. As shown in [5], given a fixed belief setB and planning horizon
t, the error over multiple value updates is bounded by1:

‖V B
t − V ∗

t ‖∞ ≤
(Rmax −Rmin)maxb′∈∆ minb∈B ‖b− b′‖1.

(1− γ)2

whereb′ ∈ ∆ is the point where the point-based update makes its worst error in
value update, andb ∈ B is the closest (1-norm) sampled belief tob′. Now letα be
the vector that is maximal atb, andα′ be the vector that would be maximal atb′.
Then, we can show equivalently that

ε(b′) ≤ α′ · b′ − α · b′

≤ (α′ − α) · (b′ − b)

≤
∑

i

{

(Rmax

1−γ
− αi)(b

′

i − bi) b′i ≥ bi

(Rmin

1−γ
− αi)(b

′

i − bi) b′i < bi.

1The error bound proven in [5] depends on the sampling densityover the belief simplex∆. But
when the initial beliefb0 is known, it is not necessary to sample all of∆ densely. Instead, we can
sample the set of reachable beliefs∆̄ densely; the error bound holds on̄∆.

3

3 Error-Minimization Point Selection
Many recent point-based value approximations, which show good empirical suc-
cess, use poorly informed heuristics to select belief points. We now describe a new
algorithm for selecting provably good belief points. The algorithm directly uses
the error bound above to pick those reachable beliefsb ∈ ∆̄ which most reduce the
error bound. Figure 1a shows the tree of reachable beliefs, starting with the initial
belief (top node). Building the tree (to a finite depth) is easily done by recursively
using Equation 1.

(a)

b
1 0a z b

1 1a z b
1 qa z

b
0

b
0 0 0 0a z a z

b
0 0 p qa z a z

b
0 0a z b

0 1a z b
0 qa z

b
p 0a z b

p 1a z b
p qa z...

...

...

... ...

... ...

...

...

(b)

Figure 1: (a) The set of reachable beliefs. Each node corresponds to a specific belief, and in-
creasing depth corresponds to an increasing plan horizon.(b) Pearl the Nursebot interacting
with patients in a nursing facility.

Applying point-based value updates toall reachable beliefs would guarantee op-
timal performance, but at the expense of computational tractability: a planning
problem of horizont hasO(|A||Z|t) reachable beliefs. So we select from our
reachable beliefs those most likely to minimize the error inour value function.
Given the belief tree in Figure 1a, we consider three sets of nodes. Set 1 includes
all points already inB (in this exampleb0 andba0,z0

). Set 2 contains the set of
candidates from which we will select new points to be added toB. We call this set
thefringe (denotedB̄). Set 3 contains all other reachable beliefs.2

Now we need to decide which beliefb should be removed from the fringēB and
added to the set of active pointsB. Every new point added toB should improve
our estimate of the value function as much as possible. To findthe point most
likely to do this, we consider the theoretical analysis of Section 2.4. Consider
b′ ∈ B̄, a belief point candidate, andb ∈ B, some belief which we have already
selected. While one could simply pick the candidateb′ ∈ B̄ with the largest error
bound,ε(b′), this would go against the most useful insight from earlier work on
point-based approaches: namely thatreachabilityconsiderations are important. So
we need to factor in the probability of each candidate beliefpoint occurring. We
first note that the error bound at any given belief pointb in the tree can be evaluated
from that of its immediate descendants:

ε̄(b) = max
a∈A

∑

z∈Z

O(b, a, z) ε(τ(b, a, z)) (7)

2In Figure 1a, the fringe (̄B) is restricted to the immediate descendants of the points inB. The rest
of the paper proceeds on this assumption, but we could assumea deeper fringe.

4

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

belief points

R
ew

ar
d

Tiger−grid

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

belief points

E
rr

or

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

belief points

Hallway

10
0

10
1

10
2

0

5

10

15

20

belief points

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

belief points

Hallway2

10
0

10
1

10
2

0

5

10

15

belief points

10
0

10
1

10
2

10
3

−20

−15

−10

−5

belief points

Tag

10
0

10
1

10
2

10
3

0

100

200

300

400

500

belief points

Figure 2: Policy performance (top row) and estimate of the bound on theerror (bottom row)
for selected belief points

whereτ(b, a, z) is the belief update equation (Eqn 1), andε(τ(b, a, z)) is evaluated
as in Section 2.4 (unlessτ(b, a, z) ∈ B, in which caseε(τ(b, a, z)) = 0). So we
use Equation 7 to find the existing pointb ∈ B with the largest error bound, then
pick as a new point its descendantτ(b, a, z) which has the largest impact on̄ε(b).
Points on the fringe are picked one a time, allowing us to lookdeep in the tree; in
the experiments presented below, beliefs at 40+ levels are in fact selected.

This concludes the presentation of our new error-minimization point selection
technique. In practice, the addition of new points is alwaysinterleaved with the
point-based value updates described in Section 2.3 to form afull POMDP so-
lution. The complete approach, called PEMA (Point-basedError Minimization
Algorithm), is now evaluated empirically in a series of robotcontrol experiments.

4 Empirical evaluation
We begin our empirical evaluation with a few well-studied maze navigation do-
mains. Most have been used strictly in simulation, but feature robot-like assump-
tions, such as non-deterministic motion and noisy sensors.The Tiger-grid, Hall-
way and Hallway2 problems are described in [3]. The Tag domain was introduced
in [5]. The goal of these preliminary experiments is simply to compare the per-
formance of PEMA with earlier POMDP approximations on standard problems.
More extensive robot navigation domains are presented in the following section.

Error estimates. A first set of results on PEMA’s performance are shown in
Figure 2. For each problem domain, we first plot PEMA’s rewardperformance
as a function of the number of belief points (top graphs), andthen plot the error
estimate of each point selected according to the order in which points were picked
(bottom graphs). As shown in these, PEMA is able to solve all four problems with
relatively few beliefs (sometimes fewer than the number of states).

Considering the error bound graphs, we see that overall there seems to be rea-

5

sonably good correspondence between an improvement in performance, and a de-
crease in the error estimates. We can conclude from these plots that the error bound
used by PEMA is quite informative in guiding exploration of the belief simplex.3

Comparative analysis. While the results outlined above show that PEMA is
able to handle a wide spectrum of large-scale POMDP domains,it is also use-
ful to compare its performance to that of alternative approaches, on the same set
of problems. Figure 3 compares both reward performance and policy size4 (# of
nodes in controller) for a few recent POMDP algorithms, on the three larger prob-
lems (Hallway, Hallway2, and Tag). The algorithms includedin this comparison
were selected simply based on the availability of publishedresults for this set of
problems.

 QMDP BPI PBUA PBVI HSVI Perseus PEMA
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ew

ar
d

 QMDP BPI PBUA PBVI HSVI Perseus PEMA
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
ew

ar
d

 QMDP BPI PBVI BBSLS HSVI Perseus PEMA
−18

−16

−14

−12

−10

−8

−6

R
ew

ar
d

 QMDP BPI PBUA PBVI HSVI Perseus PEMA
0

0.5

1

1.5

2

2.5

3

3.5

lo
g

(P
ol

ic
y

si
ze

)

 QMDP BPI PBUA PBVI HSVI Perseus PEMA
0

0.5

1

1.5

2

2.5

3

3.5

lo
g

(P
ol

ic
y

si
ze

)

 QMDP BPI PBVI BBSLS HSVI Perseus PEMA
0

0.5

1

1.5

2

2.5

3

3.5

lo
g

(P
ol

ic
y

si
ze

)
Figure 3: Results for standard POMDP domains. Left column: Hallway problem. Middle
column: Hallway2 problem. Right column: Tag problem.

As is often the case, these results show that there is not a single algorithm that is
best for solving all problems, so it is difficult to draw broadgeneralizations. But
we can point out a few salient effects. First, the baseline QMDP [3] approximation
is clearly outclassed by other more sophisticated methods.We also observe that
some of the algorithms achieve sub-par performance in termsof expected reward:
BPI [9] (on Hallway2 and Tag)5, PBVI [5] (on Tag) and BBSLS [1] (on Tag).
While each of these is theoretically able to reach optimal performance, they would
require larger controllers (and therefore longer computation time) to do so.

The remaining algorithms—HSVI [10], Perseus [11], and PEMA—offer com-

3While the decrease in error over a fixed point (e.g.b0) is monotonic, the decrease in error over
each new points(in the order it was added) is not necessarily monotonic, which explains the large
jumps in the bottom graphs. These jumps suggest that PEMA could be improved by maintaining a
deeper fringe of candidate belief points, in which case the time spent selecting points would have to
be carefully balanced with the time spent planning. Currently, we spend less than1% of computation
time selecting belief points; the rest is spent estimating the value function.

4The results were computed on different platforms, so time comparisons are difficult. The size of
the final policy is often a useful indicator of computation time, but should be considered with care.

5Better results for BPI have since been published in [8].

6

parable performance. HSVI offers good control performanceon the full range of
tasks, but requires bigger controllers. HSVI and PEMA sharemany similarities:
both use an error bound to select belief points. HSVI’s upper-bound is tighter than
PEMA’s, but requires costly LP solutions. PEMA solves problems with fewer be-
lief points, we believe this is because it updates all beliefpoints more frequently,
thus generalizing better in poorly explored areas of the belief simplex.

Between Perseus and PEMA, the trade-offs are less clear: theplanning time, con-
troller size and performance quality are quite comparable.These two approaches
in fact share many similarities. Perseus uses the same point-based backups as in
PEMA (see Section 2.3), but it differs in both how the set of belief points is se-
lected (Perseus uses random exploration traces), and the order in which it updates
the value at those points (also randomized). The effect of these differences is hard
to narrow. We did experiment informally with Perseus-type random updates within
PEMA, but this did not yield significant speed-up. It is likely that randomizing
value updates is not as beneficial when carefully picking a small set of essential
points. We speculate that PEMA will scale better to higher dimensions because of
the selective nature of the belief sampling. This is the subject of ongoing work.

5 Robotic applications
Much of the algorithmic development described in this paperis motivated by our
need for high-quality robust planning for interactive mobile robots. In particular,
we are concerned with the problem of controlling a nursing assistant robot. This
is an important technical challenge arising from the Nursebot project [6]. This
project aims to develop personalized robotic technology that can improve the level
of personal care and services for elderly individuals. The robot Pearl (Fig. 1b)
is the main experimental platform used in this project. It isequipped with stan-
dard indoor navigation abilities and is programmed with theCARMEN toolkit [4].
An important task for this robot is to provide timely cognitive reminders (e. g.
medications to take, appointments to attend, etc.) to its target population. It is
therefore crucial that the robot be able to find the person whenever it is time to
issue a reminder. We model this task as a POMDP, and use PEMA tooptimize a
strategy with which the robot can robustly find the person, even under very weak
assumptions over the person’s initial location and ease of mobility.

We begin by considering the environment in which the robot operates. Figure 4
shows a 2D robot-generated map of its physical environment.The goal is for the
robot to navigate in this environment until it finds the patient and then deliver the
appropriate reminder. To successfully find the patient, therobot needs to system-
atically explore the environment, while reasoning about both its spatial coverage
and the likely motion pattern of the person.

5.1 POMDP Modeling

To model this task as a POMDP, we assume a state space consisting of two fea-
tures: RobotPosition, andPersonPosition. Each feature is expressed through a
fixed discretization of the environment (roughly 25 cells for each feature, or 625
total states.) We assume the person and robot move freely, constrained only by
walls and obstacles. The robot’s motion is deterministic (as a function of the ac-
tion={North, South, East, West}). A fifth action (DeliverMessage) concludes the

7

scenario if applied when the robot and person are in the same location. We as-
sume the person’s motion is stochastic, and in one of two modes: (1) whenever
the person is far from the robot, s/he moves according to Brownian motion (i. e.
in each cardinal direction withPr = 0.1 or stays in place), this corresponds to a
random walk and is a conservative assumption regarding people’s motion; or (2)
whenever the robot is within sight (< 4m), the person tries to avoid the robot and
moves away from it (with noise), which makes the task more challenging.

The observation function has two parts: what the robot senses about its own po-
sition, and what it senses about the person’s position. First we assume that the
robot’s position is fully known; this is reasonable since planning is done at a much
coarser resolution (2m), than the typical localization precision (10cm). When
testing policies however, probabilistic localization is performed by the CARMEN
toolkit, and the robot’s belief incorporates any positional uncertainty. For the per-
son’s position, we assume that the robot perceives nothing unless the person is
within 2 meters. This is plausible given the robot’s sensors. Even at short-range,
there is a small probability (Pr = 0.01) that the robot will miss the person.

The reward function is straightforward:R = −1 for any motion,R = 10 when
the robot decides toDeliverMessageand is within range (<2m) of the person, and
R = −100 when the robot decides toDeliverMessagein the person’s absence.
The task terminates when the robot successfully delivers the message. We assume
a discount factor proportional to the map’s resolution (γ = 0.98).

With these POMDP parameters, we can run PEMA to optimize the robot’s con-
trol strategy. Given the complexity of POMDP planning we do assume that PEMA
will be used as an off-line algorithm to optimize the robot’sperformance prior
to deployment. The results presented below describe the performance of an opti-
mized control policy when tested onboard the CARMEN simulator.

5.2 Experimental Results

We first consider PEMA’s performance on this task, as a function of planning time.
As shown in Figure 4a, PEMA is in fact able to solve the problemwithin 1800 sec-
onds, using only 128 belief points. In comparison, an MDP-type approximation
(in this case the QMDP technique [3]) proves to be inadequatefor a problem ex-
hibiting such complex uncertainty over the person’s position. Using PEMA, the
patient was found in100% of trials, compared to35% for QMDP.

Figure 4 shows PEMA’s policy through five snapshots from one run. The policy
is optimized for any start positions (for both the person andthe robot); the execu-
tion trace in Figure 4 is one of the longer ones since the robotsearches the entire
environment before finding the person. In this scenario, theperson starts at the
far end of the left corridor. The person’s location is not shown in the figure since
it is not observable by the robot. The figure instead shows thebelief over person
positions, represented by a distribution of point samples (grey dots). We see the
robot starting at the far right end of the corridor (Fig. 4b),moving towards the
left until the room’s entrance (Fig. 4c), and searching the entire room (Fig. 4d).
Once sufficiently certain that the person is not there, it exits the room (Fig. 4e),
and moves towards the left until it finally finds the person at the end of the corridor
(Fig. 4f).

8

It is interesting to compare snapshots
(b) and (d). The robot position in both is
practically identical. Yet in (b) the robot
chooses to go up into the room, whereas
in (d) the robot chooses to move toward
the left. This is a direct result of plan-
ning overbeliefs, rather than overstates.

These results show that PEMA is able
to handle realistic domains. In partic-
ular, throughout these experiments, the
robot simulator was in no way constrained
to behave as described in our POMDP
model. For example the robot’s actions
often had stochastic effects, the robot’s
position was not always fully observ-
able, and belief tracking had to be per-
formed asynchronously (i. e. not a straight
alternation of actions and observations).
Despite this mismatch between the model
assumed for planning and the execution
environment, the control policy optimized
by PEMA successfully completed the task.

5.3 Robustness to modeling errors

Like most POMDP solvers, PEMA as-
sumes exact knowledge of the POMDP
model. In reality, this model is often
hand-crafted and may bear substantial
error. In our experience, such a mis-
match between model and the real sys-
tem does not necessarily render our so-
lution useless. The robustness built in to
POMDPs to overcome state uncertainty
often goes a long way towards overcom-
ing model uncertainty. Nonetheless, there
are cases where a poor model can be
catastrophic. In this section, we try to
gain a better understanding of the im-
pact of errors in the model we used for
the Find-the-patient domain.

Our model assumes that the robot can
see the patient withPr = 0.99, when-
ever s/he is within 2m. We use this pa-
rameter both for solving and tracking.
But it could be that in fact the person is
only detected withPr = 0.8.

10
−1

10
0

10
1

10
2

10
3

10
4

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

TIME (secs)

R
E

W
A

R
D

PEMA
QMDP

Figure 4: Find-the patient domain: (a) Per-
formance results. (b)-(f) Sample trajectory.

Prreal(z)
Prmodel(z) 0.99 0.90 0.80 0.70

0.99 -9.7 -11.3 -13.2 -15.5
0.90 -12.0 -13.1 -15.6 -19.0
0.80 -9.7 -11.5 -13.1 -14.5
0.70 -17.8 -19.4 -22.0 -22.6

Table 1: Sensitivity analysis over observa-
tion probabilities. (CI for all: [0.7,1.4])

9

What would be the loss in performance, compared to if we had planned and
tracked with the correct parameter? Table 1 examines the effects of this type of
modeling error. It shows the performance (avg. sum of rewards over 1000 trajecto-
ries) when applying PEMA and tracking the belief with the sensor accuracy in the
left column, but testing with the accuracy in the top row. Themain diagonal con-
tains cases where the model is correct. These results suggest two things. First, as
expected, performance degrades as the real noise level increases (i.e. left-to right
effect for any given row.) Second, and this was not anticipated, the dominating
performance factor is in fact the noise in the assumed model:regardless of what
conditions are used for testing, results are better for somevalues of Prmodel (0.99
and0.8) and worse for others (0.9 and0.7). We hypothesize that this happens
because in some models, PEMA did not have sufficient belief points to perform
well (all policies were optimized with|B|=512). When we repeated experiments
for Prmodel(z)=0.9 with more beliefs points, the performance improved (for all
Prreal(z)) to the level of the top row. This suggest that in some domainsit may be
best to optimize policies assuming false models (e. g. low sensor noise), because
an equally good policy can be obtained with fewer belief points. We are currently
investigating this, as well as the impact of modeling errorsin the transition model.

6 Conclusion
This paper describes a new algorithm for planning in partially observable domains,
which features a theoretically-motivated technique for selecting salient informa-
tion states. This improves the scalability of the approach,to the point where it
can be used to control a robot seeking a missing person. We also demonstrate that
the algorithm is robust to noise in the assumed model. Futurework focuses on
improving performance under even weaker modeling assumptions.

References
[1] D. Braziunas and C. Boutilier. Stochastic local search for POMDP controllers. InAAAI, 2004.

[2] A. Cassandra, M. L. Littman, and N. L. Zhang. Incrementalpruning: A simple, fast, exact method
for partially observable Markov decision processes. InProceedings of the Thirteenth Conference
on Uncertainty in Artificial Intelligence (UAI), pages 54–61, 1997.

[3] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially obsev-
able environments: Scaling up. InProceedings of Twelfth International Conference on Machine
Learning, pages 362–370, 1995.

[4] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standardization in mobile robot program-
ming: The Carnegie Mellon navigation (CARMEN) toolkit. InProceedings of IROS, 2003.

[5] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDPs. InProceedings of IJCAI, 2003.

[6] J. Pineau, M. Montermerlo, M. Pollack, N. Roy, and S. Thrun. Towards robotic assistants in
nursing homes: challenges and results.Robotics and Autonomous Systems, 42(3-4), 2003.

[7] K.-M. Poon. A fast heuristic algorithm for decision-theoretic planning. Master’s thesis, Hong-
Kong Univ. of Science and Technology, 2001.

[8] P. Poupart. Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov
Decision Processes. PhD thesis, University of Toronto, 2005.

[9] P. Poupart and C. Boutilier. Bounded finite state controllers. InAdvances in Neural Information
Processing Systems (NIPS), volume 16, 2004.

[10] T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. InProc. of UAI, 2004.

[11] N. Vlassis and M. T. J. Spaan. A fast point-based algorithm for POMDPs. InBelgian-Dutch
Conference on Machine Learning, 2004.

10

