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Abstract
Large-scale network services can consist of tens of thou-
sands of machines running thousands of unique soft-
ware configurations spread across hundreds of physical
networks. Testing such services for complex perfor-
mance problems and configuration errors remains a dif-
ficult problem. Existing testing techniques, such as sim-
ulation or running smaller instances of a service, have
limitations in predicting overall service behavior.

Although technically and economically infeasible at
this time, testing should ideally be performed at the same
scale and with the same configuration as the deployed
service. We present DieCast, an approach to scaling net-
work services in which we multiplex all of the nodes in
a given service configuration as virtual machines (VM)
spread across a much smaller number of physical ma-
chines in a test harness. CPU, network, and disk are then
accurately scaled to provide the illusion that each VM
matches a machine from the original service in terms
of both available computing resources and communi-
cation behavior to remote service nodes. We present
the architecture and evaluation of a system to support
such experimentation and discuss its limitations. We
show that for a variety of services—including a commer-
cial, high-performance, cluster-based file system—and
resource utilization levels, DieCast matches the behav-
ior of the original service while using a fraction of the
physical resources.

1 Introduction
Today, more and more services are being delivered by
complex systems consisting of large ensembles of ma-
chines spread across multiple physical networks and ge-
ographic regions. Economies of scale, incremental scal-
ability, and good fault isolation properties have made
clusters the preferred architecture for building planetary-
scale services. A single logical request may touch dozens
of machines on multiple networks, all providing in-
stances of services transparently replicated across mul-
tiple machines. Services consisting of tens of thousands
of machines are commonplace [11].

Economic considerations have pushed service
providers to a regime where individual service machines

must be made from commodity components—saving an
extra $500 per node in a 100,000-node service is critical.
Similarly, nodes run commodity operating systems, with
only moderate levels of reliability, and custom-written
applications that are often rushed to production because
of the pressures of “Internet Time.” In this environment,
failure is common [24] and it becomes the responsibility
of higher-level software architectures, usually employing
custom monitoring infrastructures and significant service
and data replication, to mask individual, correlated, and
cascading failures from end clients.

One of the primary challenges facing designers of
modern network services is testing their dynamically
evolving system architecture. In addition to the sheer
scale of the target systems, challenges include: heteroge-
neous hardware and software, dynamically changing re-
quest patterns, complex component interactions, failure
conditions that only manifest under high load [21], the
effects of correlated failures [20], and bottlenecks aris-
ing from complex network topologies. Before upgrad-
ing any aspect of a networked service—the load balanc-
ing/replication scheme, individual software components,
the network topology—architects would ideally create an
exact copy of the system, modify the single component to
be upgraded, and then subject the entire system to both
historical and worst-case workloads. Such testing must
include subjecting the system to a variety of controlled
failure and attack scenarios since problems with a par-
ticular upgrade will often only be revealed under certain
specific conditions.

Creating an exact copy of a modern networked service
for testing is often technically challenging and econom-
ically infeasible. The architecture of many large-scale
networked services can be characterized as “controlled
chaos,” where it is often impossible to know exactly what
the hardware, software, and network topology of the sys-
tem looks like at any given time. Even when the pre-
cise hardware, software and network configuration of the
system is known, the resources to replicate the produc-
tion environment might simply be unavailable, particu-
larly for large services. And yet, reliable, low overhead,
and economically feasible testing of network services re-
mains critical to delivering robust higher-level services.

The goal of this work is to develop a testing method-
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ology and architecture that can accurately predict the be-
havior of modern network services while employing an
order of magnitude less hardware resources. For ex-
ample, consider a service consisting of 10,000 hetero-
geneous machines, 100 switches, and hundreds of indi-
vidual software configurations. We aim to configure a
smaller number of machines (e.g., 100-1000 depending
on service characteristics) to emulate the original config-
uration as closely as possible and to subject the test in-
frastructure to the same workload and failure conditions
as the original service. The performance and failure re-
sponse of the test system should closely approximate the
real behavior of the target system. Of course, these goals
are infeasible without giving something up: if it were
possible to capture the complex behavior and overall per-
formance of a 10,000 node system on 1,000 nodes, then
the original system should likely run on 1,000 nodes.

A key insight behind our work is that we can trade
time for system capacity while accurately scaling indi-
vidual system components to match the behavior of the
target infrastructure. We employtime dilation to accu-
rately scale the capacity of individual systems by a con-
figurable factor [19]. Time dilation fully encapsulates
operating systems and applications such that the rate at
which time passes can be modified by a constant factor.
A time dilation factor (TDF) of 10 means that for every
second of real time, all software in a dilated frame be-
lieves that time has advanced by only 100 ms. If we wish
to subject a target system to a one-hour workload when
scaling the system by a factor of 10, the test would take
10 hours of real time. For many testing environments,
this is an appropriate tradeoff. Since the passage of time
is slowed down while the rate ofexternal events(such
as network I/O) remains unchanged, the system appears
to have substantially higher processing power and faster
network and disk.

In this paper, we present DieCast, a complete envi-
ronment for building accurate models of network ser-
vices (Section 2). Critically, we run the actual oper-
ating systems and application software of some target
environment on a fraction of the hardware in that envi-
ronment. This work makes the following contributions.
First, we extend our original implementation of time di-
lation [19] to support fully virtualized as well as paravir-
tualized hosts. To support complete system evaluations,
our second contribution shows how to extend dilation to
disk and CPU (Section 3). In particular, we integrate
a full disk simulator into the virtual machine monitor
(VMM) to consider a range of possible disk architec-
tures. Finally, we conduct a detailed system evaluation,
quantifying DieCast’s accuracy for a range of services,
including a commercial storage system (Sections 4 and
5). The goals of this work are ambitious and while we
cannot claim to have addressed all of the myriad chal-

lenges associated with testing large-scale network ser-
vices (Section 6), we believe that DieCast shows signifi-
cant promise as a testing vehicle

2 System Architecture
We begin by providing an overview of our approach to
scaling a system down to a target test harness. We then
discuss the individual components of our architecture.

2.1 Overview
Figure 1 gives an overview of our approach. On the left
(Figure 1(a)) is an abstract depiction of a network ser-
vice. A load balancing switch sits in front of the service
and redirects requests among a set of front-end HTTP
servers. These requests may in turn travel to a middle
tier of application servers, who may query a storage tier
consisting of databases or network attached storage.

Figure 1(b) shows how a target service can be scaled
with DieCast. We encapsulate all nodes from the origi-
nal service in virtual machines and multiplex several of
these VMs onto physical machines in the test harness.
Critically, we employ time dilation in the VMM run-
ning on each physical machine to provide the illusion
that each virtual machine has, for example, as much pro-
cessing power, disk I/O, and network bandwidth as the
corresponding host in the original configuration despite
the fact that it is sharing underlying resources with other
VMs. DieCast configures VMs to communicate through
a network emulator to reproduce the characteristics of
the original system topology. We then initialize the test
system using the setup routines of the original system
and subject it to appropriate workloads and fault-loads to
evaluate system behavior.

The overall goal is to improve predictive power. That
is, runs with DieCast on smaller machine configurations
should accurately predict the performance and fault tol-
erance characteristics of some larger production system.
In this manner, system developers may experiment with
changes to system architecture, network topology, soft-
ware upgrades, and new functionality before deploying
them in production. Successful runs with DieCast should
improve confidence that any changes to the target ser-
vice will be successfully deployed. Below, we discuss
the steps in applying our general approach to applying
DieCast scaling to target systems.

2.2 Choosing the Scaling Factor
The first question to address is the desired scaling fac-
tor. One use of DieCast is to reproduce the scale of an
original service in a test cluster. Another application is
to scale existing test harnesses to achieve more realism
than possible from the raw hardware. For instance, if
100 nodes are already available for testing, then DieCast
might be employed to scale to a thousand-node system



(a) Original System (b) Test System

Figure 1: Scaling a network service to the DieCast infrastructure.

with a more complex communication topology. While
the DieCast system may still fall short of the scale of
the original service, it can provide more meaningful ap-
proximations under more intense workloads and failure
conditions than might have otherwise been possible.

Overall, the goal is to pick the largest scaling factor
possible while still obtaining accurate predictions from
DieCast, since the prediction accuracy will naturally de-
grade with increasing scaling factors. This maximum
scaling factor depends on the the characteristics of the
target system. Section 6 highlights the potential limita-
tions of DieCast scaling. In general, scaling accuracy
will degrade with: i) application sensitivity to the fine-
grained timing behavior of external hardware devices;
ii) capacity-constrained physical resources; and iii) sys-
tem devices not amenable to virtualization. In the first
category, application interaction with I/O devices may
depend on the exact timing of requests and responses.
Consider for instance a fine-grained parallel application
that assumes all remote instances are co-scheduled. A
DieCast run may mispredict performance if target nodes
are not scheduled at the time of a message transmission
to respond to a blocking read operation. If we could in-
terleave at the granularity of individual instructions, then
this would not be an issue. However, context switching
among virtual machines means that we must pick time
slices on the order of milliseconds. Second, DieCast can-
not scale the capacity of hardware components such as
main memory, processor caches, and disk. Finally, the
original service may contain devices such as load bal-
ancing switches that are not amenable to virtualization or
dilation. Even with these caveats, we have successfully
applied scaling factors of 10 to a variety of services with
near-perfect accuracy as discussed in Sections 4 and 5.

Of the above limitations to scaling, we consider capac-
ity limits for main memory and disk to be most signifi-
cant. However, we do not believe this to be a fundamental
limitation. For example, one partial solution is to config-
ure the test system with more memory and storage than
the original system. While this will reduce some of the
economic benefits of our approach, it will not erase them.
For instance, doubling a machine’s memory will not typ-
ically double its hardware cost. More importantly, it will

not substantially increase the typically dominant human
cost of administering a given test infrastructure because
the number of required administrators for a given test
harness usually grows with the number of machines in
the system rather than with the total memory of the sys-
tem.

Looking forward, ongoing research in VMM architec-
tures have the potential to reclaim some of the mem-
ory [32] and storage overhead [33] associated with multi-
plexing VMs on a single physical machine. For instance,
four nearly identically configured Linux machines run-
ning the same web server will overlap significantly in
terms of their memory and storage footprints. Similarly,
consider an Internet service that replicates content for im-
proved capacity and availability. When scaling the ser-
vice down, multiple machines from the original configu-
ration may be assigned to a single physical machine. A
VMM capable of detecting and exploiting available re-
dundancy could significantly reduce the incremental stor-
age overhead of multiplexing multiple VMs.

2.3 Cataloging the Original System

The next task is to configure the appropriate virtual ma-
chine images onto our test infrastructure. Maintaining a
catalog of the hardware and software configuration that
comprises an Internet service is challenging in its own
right. However, for the purposes of this work, we as-
sume that such a catalog is available. This catalog would
consist of all of the hardware making up the service, the
network topology, and the software configuration of each
node. The software configuration includes the operating
system, installed packages and applications, and the ini-
tialization sequence run on each node after booting.

The original service software may or may not run on
top of virtual machines. However, given the increasing
benefits of employing virtual machines in data centers for
service configuration and management and the popular-
ity of VM-based appliances that are pre-configured to run
particular services [7], we assume that the original ser-
vice is in fact VM-based. This assumption is not critical
to our approach but it also partially addresses any base-
line performance differential between a node running on



bare hardware in the original service and the same node
running on a virtual machine in the test system.

2.4 Configuring the Virtual Machines

With an understanding of appropriate scaling factors and
a catalog of the original service configuration, DieCast
then configures individual physical machines in the test
system with multiple VM images reflecting, ideally, a
one-to-one map between physical machines in the origi-
nal system and virtual machines in the test system. With
a scaling factor of 10, each physical node in the target
system would host 10 virtual machines. The mapping
from physical machines to virtual machines should ac-
count for: similarity in software configurations, per-VM
memory and disk requirements and the capacity of the
hardware in the original and test system. In general,
a solver may be employed to determine a near-optimal
matching [26]. However, given the VM migration capa-
bilities of modern VMMs and DieCast’s controlled net-
work emulation environment, the actual location of a VM
is not as significant as in the original system.

DieCast then configures the VMs such that each VM
appears to have resources identical to a physical machine
in the original system. Consider a physical machine host-
ing 10 VMs. DieCast would run each VM with a scaling
factor of 10, but allocate each VM only 10% of the actual
physical resource. DieCast employs a non-work conserv-
ing scheduler to ensure that each virtual machine receives
no more than its allotted share of resources even when
spare capacity is available. Suppose a CPU intensive task
takes 100 seconds to finish on the original machine. The
same task would now take 1000 seconds (of real time) on
a dilated VM, since it can only use a tenth of the CPU.
However, since the VM is running under time dilation,
it only perceives that 100 seconds have passed. Thus in
the VMs time frame, resources appear equivalent to the
original machine. We only explicitly scale CPU and disk
I/O latency on the host; scaling of network I/O happens
via network emulation as described next.

2.5 Network Emulation

The final step in the configuration process is to match the
network configuration of the original service using net-
work emulation. We configure all VMs in the test sys-
tem to route all their communication through our emu-
lation environment. Note that DieCast is not tied to any
particular emulation technology: we have successfully
used DieCast with Dummynet [27], Modelnet [31] and
Netem [3] where appropriate.

It is likely that the bisection bandwidth of the origi-
nal service topology will be larger than that available in
the test system. Fortunately, time dilation is of signif-
icant value here. Convincing a virtual machine scaled
by a factor of 10 that it is receiving data at 1 Gbps only

requires forwarding data to it at 100 Mbps. Similarly,
it may appear that latencies in an original cluster-based
service may be low enough that the additional software
forwarding overhead associated with the emulation en-
vironment could make it difficult to match the latencies
in the original network. To our advantage, maintaining
accurate latency with time dilation actually requiresin-
creasingthe real time delay of a given packet; e.g., a 100
µs delay network link in the original network should be
delayed by 1 ms when dilating by a factor of 10.

Note that the scaling factor need not match the TDF.
For example, if the original network topology is so
large/fast that even with a TDF of 10 the network emu-
lator is unable to keep up, it is possible to employ a time
dilation factor of 20 while maintaining a scaling factor of
10. In such a scenario, there would still on average be
10 virtual machines multiplexed onto each physical ma-
chine, however the VMM scheduler would allocate only
5% of the physical machine’s resources to individual ma-
chines (meaning that 50% of CPU resources will go idle).
The TDF of 20, however, would deliver additional capac-
ity to the network emulation infrastructure to match the
characteristics of the original system.

2.6 Workload Generation
Once DieCast has prepared the test system to beresource
equivalentto the original system, we can subject it to
an appropriate workload. These workloads will in gen-
eral be application-specific. For instance, Monkey [15]
shows how to replay a measured TCP request stream sent
to a large-scale network service. For this work, we use
application-specific workload generators where available
and in other cases write our own workload generators that
both capture normal behavior as well as stress the service
under extreme conditions.

To maintain a target scaling factor, clients should also
ideally run in DieCast-scaled virtual machines. This ap-
proach has the added benefit of allowing us to subject a
test service to a high level of perceived-load using rela-
tively few resources. Thus, DieCast scales not only the
capacity of the test harness but also the workload gener-
ation infrastructure.

3 Implementation
We have implemented DieCast support on several ver-
sions of Xen [10]: v2.0.7, v3.0.4, and v3.1 (both par-
avirtualized and fully virtualized VMs). Here we focus
on the Xen 3.1 implementation. We begin with a brief
overview of time dilation [19] and then describe the new
features required to support DieCast.

3.1 Time Dilation
Critical to time dilation is a VMM’s ability to modify the
perception of time within a guest OS. Fortunately, most



VMMs already have this functionality, for example, be-
cause a guest OS may develop a backlog of “lost ticks”
if it is not scheduled on the physical processor when it
is due to receive a timer interrupt. Since the guest OS
running in a VM does not run continuously, VMMs peri-
odically synchronize the guest OS time with the physical
machine’s clock. The only requirement for a VMM to
support time dilation is this ability to modify the VM’s
perception of time. In fact, as we demonstrate in Sec-
tion 5, the concept of time dilation can be ported to other
(non-virtualized) environments.

Operating systems employ a variety of time sources
to keep track of time, including timer interrupts (e.g., the
Programmable Interrupt Timer or PIT), specialized coun-
ters (e.g., the TSC on Intel platforms) and external time
sources such as NTP. Time dilation works by intercepting
the various time sources and scaling them appropriately
to fully encapsulate the OS in its own time frame.

Our original modifications to Xen for paravirtualized
hosts [19] therefore appropriately scale time values ex-
posed to the VM by the hypervisor. Xen exposes two
notions of time to VMs. Real time is the number of
nanoseconds since boot, and wall clock time is the tradi-
tional Unix time since epoch. While Xen allows the guest
OS to maintain and update its own notion of time via an
external time source (such as NTP), the guest OS often
relies solely on Xen to maintain accurate time. Real and
wall clock time pass between the Xen hypervisor and the
guest operating system via a shared data structure. Di-
lation uses a per-domain TDF variable to appropriately
scale real time and wall clock time. It also scales the fre-
quency of timer interrupts delivered to a guest OS since
these timer interrupts often drive the internal time keep-
ing of a guest. Given these modifications to Xen, our
earlier work showed that network dilation matches undi-
lated baselines for complex per-flow TCP behavior in a
variety of scenarios [19].

3.2 Support for OS diversity

Our original time dilation implementation only worked
with paravirtualized machines, with two major draw-
backs: it supported only Linux as the guest OS, and
the guest kernel required modifications. Generalizing
to other platforms would have required code modifi-
cations to the respective OS. To be widely applicable,
DieCast must support a variety of operating systems.

To address these limitations, we ported time dilation to
supportfully virtualized(FV) VMs, enabling DieCast to
support unmodified OS images. Note that FV VMs re-
quire platforms with hardware support for virtualization,
such as Intel VT or AMD SVM. While Xen support for
fully virtualized VMs differs significantly from the par-
avirtualized VM support in several key areas such as I/O
emulation, access to hardware registers, and time man-

agement, the general idea behind the implementation re-
mains the same: we want to intercept all sources of time
and scale them.

In particular, our implementation scales the PIT, the
TSC register (on x86), the RTC (Real Time Clock), the
ACPI power management timer and the High Perfor-
mance Event Timer (HPET). As in the original imple-
mentation, we also scale the number of timer interrupts
delivered to a fully virtualized guest. We allow each VM
to run with an independent scaling factor. Note, how-
ever, that the scaling factor is fixed for the life time of a
VM—it can not be changed at run time.

3.3 Scaling Disk I/O and CPU

Time dilation as described in [19] did not scale disk per-
formance, making it unsuitable for services that perform
significant disk I/O. Ideally, we would scale individual
disk requests at the disk controller layer. The complexity
of modern drive architectures, particularly the fact that
much low level functionality is implemented in firmware,
makes such implementations challenging. Note that sim-
ply delaying requests in the device driver is not sufficient,
since disk controllers may re-order and batch requests for
efficiency. On the other hand, functionality embedded in
hardware or firmware is difficult to instrument and mod-
ify. Further complicating matters are the different I/O
models in Xen: one for paravirtualized (PV) VMs and
one for fully virtualized (FV) VMs. DieCast provides
mechanisms to scale disk I/O for both models.

For FV VMs, DieCast integrates a highly accurate and
efficient disk system simulator — Disksim [17] — which
gives us a good trade-off between realism and accuracy.
Figure 2(a) depicts our integration of DiskSim into the
fully virtualized I/O model: for each VM, a dedicated
user space process (ioemu) in Domain-0 performs I/O
emulation by exposing a “virtual disk” to the VM (the
guest OS is unaware that a real disk is not present). A
special file in Domain-0 serves as the backend storage
for the VM’s disk. To allowioemu to interact with
DiskSim, we wrote a wrapper around the simulator for
inter-process communication.

After servicing each request (but before returning),
ioemu forwards the request to Disksim, which then re-
turns the time,rt, the request would have taken in its
simulated disk. Since we are effectively layering a soft-
ware disk on top ofioemu, each request should ideally
take exactly timert in the VM’s time frame, ortdf ∗ rt

in real time. If delay is the amount by which this re-
quest is delayed, the total time spent inioemu becomes
delay + dt + st, wherest is the time taken toactually
serve the request (Disksim only simulates I/O character-
istics, it does not deal with the actual disk content) anddt

is the time taken to invoke Disksim itself. The required
delay is then(tdf ∗ rt) − dt − st.



(a) I/O Model for FV VMs (b) I/O Model for PV VMs
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Figure 2: Scaling Disk I/O

The architecture of Disksim, however, is not amenable
to integration with the PV I/O model (Figure 2(b)). In
this “split I/O” model, a front-end driver in the VM
(blkfront) forwards requests to a back-end driver in
Domain-0 (blkback), which are then serviced by the
real disk device driver. Thus PV I/O is largely a kernel
activity, while Disksim runs entirely in user-space. Fur-
ther, a separate Disksim process would be required for
each simulated disk, whereas there is a single back-end
driver for all VMs.

For these reasons, for PV VMs, we inject the appropri-
ate delays in theblkfront driver. This approach has
the additional advantage of containing the side effects of
such delays to individual VMs —blkback can con-
tinue processing other requests as usual. Further, it elimi-
nates the need to modify disk-specific drivers in Domain-
0. We emphasize that this is functionally equivalent to
per-request scaling in Disksim: the key difference is that
scaling in Disksim is much closer to the (simulated) hard-
ware. Overall our implementation of disk scaling for PV
VM’s is simpler though less accurate and somewhat less
flexible since it requires the disk subsystem in the testing
hardware to match the configuration in the target system.

We have validated both our implementations using
several micro-benchmarks. For brevity, we only describe
one of them here. We run DBench [29] — a popular hard-
drive and file-system benchmark — under different dila-
tion factors and plot the reported throughput. Figure 2(c)
shows the results for the FV I/O model with Disksim in-
tegration (results for the PV implementation can be found
in a separate technical report [18]). Ideally, the through-
put should remain constant as a function of the dilation
factor. We first run the benchmark without scaling disk
I/O or CPU, and we can see that the reported throughput
increases almost linearly, an undesirable behavior. Next,
we repeat the experiment and scale the CPU alone (thus,
at TDF 10 the VM only receives 10% of the CPU). While
the increase is no longer linear, in the absence of disk
dilation it is still significantly higher than the expected
value. Finally, with disk dilation in place we can see that
the throughput closely tracks the expected value.

However, as the TDF increases, we start to see some
divergence. After further investigation, we found that
this deviation results from the way we scaled the CPU.
Recall that we scale the CPU by bounding the amount
of CPU available to each VM. Initially, we simply used
Xen’s Credit scheduler to allocate an appropriate fraction
of CPU resources to each VM in non-work conserving
mode. However, simply scaling the CPU does not govern
how those CPU cycles are distributed across time. With
the original Credit scheduler, if a VM does not consume
its full timeslice, it can be scheduled again in subsequent
timeslices. For instance, if a VM is set to be dilated by
a factor of 10 and if it consumes less than 10% of the
CPU in each time slice, then it will run inevery time
slice, since in aggregate it never consumes more than its
hard bound of 10% of the CPU. This potential to run con-
tinuously distorts the performance of I/O-bound applica-
tions under dilation, and in particular they’ll have a dif-
ferent timing distribution than they would in the real time
frame. This distortion increases with increasing TDF.
Thus, we found that, for some workloads, we may ac-
tually wish to enforce that the VM’s CPU consumption
should be moreuniformlyenforced across time.

We modified the Credit CPU scheduler in Xen to sup-
port this mode of operation as follows: if a VM runs for
the entire duration of its time slice, we ensure that it does
not get scheduled for the next(tdf − 1) time slices. If a
VM voluntarily yields the CPU or is pre-empted before
its time slice expires, itmay be re-scheduled in a sub-
sequent time slice. However, as soon as it consumes a
cumulative total of a time slice’s worth of run time (car-
ried over from the previous time it was descheduled), it
will be pre-empted and not allowed to run for another
(tdf − 1) time slices. The final line in figure 2(c) shows
the results of the DBench benchmark with using this
modified scheduler. As we can see, the throughput re-
mains consistent even at higher TDFs. Note that unlike
in this benchmark, DieCast typically runs multiple VMs
per machine, in which case this “spreading” of CPU cy-
cles occurs naturally as VMs compete for CPU.



4 Evaluation
We seek to answer the following questions with respect
to DieCast-scaling: i) Can we configure a smaller num-
ber of physical machines to match the CPU capacity,
complex network topology, and I/O rates of a larger ser-
vice? ii) How well does the performance of a scaled ser-
vice running on fewer resources match the performance
of a baseline service running with more resources? we
consider three different systems: i) BitTorrent, a popular
peer-to-peer file sharing program; ii) RUBiS, an auction
service prototyped after eBay; and iii) Isaac, our config-
urable network three-tier service that allows us to gener-
ate a range of workload scenarios.

4.1 Methodology

To evaluate DieCast for a given system, we first estab-
lish the baseline performance: this involves determining
the configuration(s) of interest, fixing the workload, and
benchmarking the performance. We then scale the sys-
tem down by an order of magnitude and compare the
DieCast performance to the baseline. While we have ex-
tensively evaluated evaluated DieCast implementations
for several versions of Xen, we only present the results
for the Xen 3.1 implementation here. Detailed evaluation
for Xen 3.0.4 can be found in our technical report [18].

Each physical machine in our testbed is a dual-core
2.3GHz Intel Xeon with 4GB RAM. Note that since the
Disksim integration only works with fully virtualized
VMs, for a fair evaluation it isrequired that even the
baseline system run on VMs—ideally the baseline would
be run on physical machines directly (for the paravirtual-
ized setup, we do have evaluation with physical machines
as the baseline. We refer the reader to [18] for details).
We configure Disksim to emulate a Seagate ST3217 disk
drive. For the baseline, Disksim runs as usual (no re-
quests are scaled) and with DieCast, we scale each re-
quest as described in Section 3.3.

We configure each virtual machine with 256MB RAM
and run Debian Etch on Linux 2.6.17. Unless otherwise
stated, the baseline configuration consists of 40 physical
machines hosting a single VM each. We then compare
the performance characeteristics to runs with DieCast on
four physical machines hosting 10 VMs each, scaled by
a factor of 10. We use Modelnet for the network emu-
lation, and appropriately scale the link characteristics for
DieCast. For allocating CPU, we use our modified Credit
CPU scheduler as described in Section 3.3.

4.2 BitTorrent

We begin by using DieCast to evaluate BitTorrent [1] —
a popular P2P application. For our baseline experiments,
we run BitTorrent (version 3.4.2) on a total of 40 virtual
machines. We configure the machines to communicate

across a ModelNet-emulated dumbbell topology (Figure
3), with varying bandwidth and latency values for the ac-
cess link (A) from each client to the dumbbell and the
dumbbell link itself (C). We vary the total number of
clients, the file size, the network topology, and the ver-
sion of the BitTorrent software. We use the distribution
of file download times across all clients as the metric for
comparing performance. The aim here is to observe how
closely DieCast-scaled experiments reproduce behavior
of the baseline case for a variety of scenarios.

The first experiment establishes the baseline where we
compare different configurations of BitTorrent sharing a
file across a 10Mbps dumbbell link and constrained ac-
cess links of 10Mbps. All links have a one-way latency
of 5ms. We run a total of 40 clients (with half on each
side of the dumbbell). Figure 5 plots the cumulative dis-
tribution of transfer times across all clients for different
file sizes (10MB and 50MB). We show the baseline case
using solid lines and use dashed lines to represent the
DieCast-scaled case. With DieCast scaling, the distribu-
tion of download times closely matches the behavior of
the original system. For instance, well-connected clients
on the same side of the dumbbell as the randomly cho-
sen seeder finish more quickly than the clients that must
compete for scarce resources across the dumbbell.

Having established a reasonable baseline, we next con-
sider sensitivity to changing system configurations. We
first vary the network topology by leaving the dumbbell
link unconstrained (1 Gbps) with results in Figure 5. The
graph shows the effect of removing the bottleneck on the
finish times compared to the constrained dumbbell-link
case for the 50-MB file: all clients finish within a small
time difference of each other as shown by the middle pair
of curves.

Next, we consider the effect of varying the total num-
ber of clients. Using the topology from the baseline ex-
periment we repeat the experiments for 80 and 200 simul-
taneous BitTorrent clients. Figure 6 shows the results.
The curves for the baseline and DieCast-scaled versions
almost completely overlap each other for 80 clients (left
pair of curves) and show minor deviation from each other
for 200 clients (right pair of curves). Note that with 200
clients, the bandwidth contention increases to the point
where the dumbbell bottleneck becomes less important.

Finally, we consider an experiment that demonstrates
the flexibility of DieCast to reproduce system perfor-
mance under a variety of resource configurations start-
ing with the same baseline. Figure 7 shows that in addi-
tion to matching 1:10 scaling using 4 physical machines
hosting 10 VMs each, we can also match an alternate
configuration of 8 physical machines, hosting five VMs
each with a dilation factor of five. This demonstrates that
even if it is necessary to vary the number of physical ma-
chines available for testing, it may still be possible to find



Figure 3: Topology for BitTorrent experiments. Figure 4: RUBiS Setup.
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Figure 5: Performance with varying file sizes.
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Figure 6: Varying #clients.
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Figure 7: Different configurations.

an appropriate scaling factor to match performance char-
acteristics. This graph also has a fourth curve, labeled
“No DieCast”, corresponding to running the experiment
with 40 VMs on four physical machines, each with a di-
lation factor of 1—disk and network arenot scaled (thus
match the baseline configuration), and all VMs are allo-
cated equal shares of the CPU. This corresponds to the
approach of simply multiplexing a number of virtual ma-
chines on physical machines without using DieCast. The
graph shows that the behavior of the system under such a
nave approach varies widely from actual behavior.

4.3 RUBiS
Next, we investigate DieCast’s ability to scale a fully
functional Internet service. We use RUBiS [6]—an auc-
tion site prototype designed to evaluate scalability and
application server performance. RUBiS has been used
by other researchers to approximate realistic Internet Ser-
vices [12–14].

We use the PHP implementation of RUBiS running
Apache as the web server and MySQL as the database.
For consistent results, we re-create the database and pre-
populate it with 100,000 users and items before each ex-
periment. We use the default read-write transaction ta-
ble for the workload that exercises all aspects of the sys-
tem such as adding new items, placing bids, adding com-
ments, viewing and browsing the database. The RUBiS
workload generators warm up for 60 seconds, followed
by a session run time of 600 seconds and ramp down for
60 seconds.

We emulate a topology of 40 nodes consisting of 8
database servers, 16 web servers and 16 workload gen-
erators as shown in Figure 4. A 100 Mbps network
link connects two replicas of the service spread across
the wide-area at two sites. Within a site, 1 Gbps links
connect all components. For reliability, half of the web
servers at each site use the database servers in the other
site. There is one load generator per web server and all
load generators share a 100 Mbps access link. Each sys-
tem component (servers, workload generators) runs in its
own Xen VM.

We now evaluate DieCast’s ability to predict the be-
havior of this RUBiS configuration using fewer re-
sources. Figures 8(a) and 8(b) compare the baseline
performance with the scaled system for overall system
throughput and average response time (across all client-
webserver combinations) on the y-axis as a function of
number of simultaneous clients (offered load) on the x-
axis. In both cases, the performance of the scaled ser-
vice closely tracks that of the baseline. We also show the
performance for the “No DieCast” configuration: reg-
ular VM multiplexing with no DieCast-scaling. With-
out DieCast to offset the resource contention, the aggre-
gate throughput drops with a substantial increase in re-
sponse times. Interestingly, for one of our initial tests, we
ran with an unintended mis-configuration of the RUBiS
database: the workload had commenting-related opera-
tions enabled, but the relevant tables were missing from
the database. This led to an approximately 25% error rate
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Figure 8: Comparing RUBiS application performance: Baselinevs. DieCast.
Figure 10:Architecture of Isaac.
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Figure 9: Comparing resource utilization for RUBiS: DieCastcan accurately emulate the baseline system behavior.

with similar timings in the responses to clients in both the
baseline and DieCast configurations. These types of con-
figuration errors are one example of the types of testing
that we wish to enable with DieCast.

Next, Figures 9(a) and 9(b) compare CPU and mem-
ory utilizations for both the scaled and unscaled experi-
ments as a function of time for the case of 4800 simul-
taneous user sessions: we pick one node of each type
(DB server, Web server, load generator) at random from
the baseline, and use the same three nodes for compari-
son with DieCast. One important question is whether the
average performance results in earlier figures hide signif-
icant incongruities in per-request performance. Here, we
see that resource utilization in the DieCast-scaled exper-
iments closely tracks the utilization in the baseline on a
per-node and per-tier (client, web server, database) ba-
sis. Similarly, Figure 9(c) compares the network utiliza-
tion of individual links in the topology for the baseline
and DieCast-scaled experiment. We sort the links by the

amount of data transferred per link in the baseline case.
This graph demonstrates that DieCast closely tracks and
reproduces variability in network utilization for various
hops in the topology. For instance, hops 86 and 87 in the
figure correspond to access links of clients and show the
maximum utilization, whereas individual access links of
Webservers are moderately loaded.

4.4 Exploring DieCast Accuracy

While we were encouraged by DieCast’s ability to scale
RUBiS and BitTorrent, they represent only a few points
in the large space of possible network service configura-
tions, for instance, in terms of the ratios of computation
to network communication to disk I/O. Hence, we built
Isaac, a configurable multi-tier network service to stress
the DieCast methodology on a range of possible config-
urations. Figure 10 shows Isaac’s architecture. Requests
originating from a client (C) travel to a unique front end
server (FS) via a load balancer (LB). The FS makes
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Figure 11: Request completion time.
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a number of calls to other services through application
servers (AS). These application servers in turn may is-
sue read and write calls to a database back end (DB)
before building a response and transmitting it back to the
front end server, which finally responds to the client.

Isaac is written in Python and allows configuring the
service to a given interconnect topology, computation,
communication, and I/O pattern. A configuration de-
scribes, on a per request class basis, the computation,
communication, and I/O characteristics across multiple
service tiers. In this manner, we can configure experi-
ments to stress different aspects of a service and to in-
dependently push the system to capacity along multiple
dimensions. We use MySQL for the database tier to re-
flect a realistic transactional storage tier.

For our first experiment, we configure Isaac with four
DBs, four ASs, four FSs and28 clients. The clients gen-
erate requests, wait for responses, and sleep for some
time before generating new requests. Each client gener-
ates20 requests and each such request touches five ASs
(randomly selected at run time) after going through the
FS. Each request from the AS involves10 reads from and
2 writes to a database each of size1KB. The database
server is also chosen randomly at runtime. Upon com-
pleting its database queries, each AS computes500 SHA-
1 hashes of the response before sending it back to the FS.
Each FS then collects responses from all five AS’s and fi-
nally computes 5,000 SHA-1 hashes on the concatenated
results before replying to the client. In later experiments,
we vary both the amount of computation and I/O to quan-
tify sensitivity to varying resource bottlenecks

We perform this40-node experiment both with and
without DieCast. For brevity, we do not show the re-
sults of initial tests validating DieCast accuracy (in all
cases, performance matched closely in both the dilated
and baseline case). Rather, we run a more complex ex-
periment where a subset of the machines fail and then
recover. Our goal is to show that DieCast can accurately
match application performance before the failure occurs,
during the failure scenario, and the application’s recovery
behavior. After 200 seconds, we fail half of the database
servers (chosen at random) by stopping MySQL servers

on the corresponding nodes. As a result, client requests
accessing failed databases will not complete, slowing the
rate of completed requests. After one minute of down-
time, we restart the MySQL server and soon after we
expect to see the request completion rate to regain its
original value. Figure 11 shows fraction of requests com-
pleted on the Y-axis as a function of time since the start of
the experiment on the X-axis. DieCast closely matches
the baseline application behavior with a dilation factor
of 10. We also compare the percentage of time spent
in each of the three tiers of Isaac averaged across all re-
quests. Figure 12 shows that in addition to the end-to-end
response time, DieCast closely tracks the system behav-
ior on a per-tier basis.

Encouraged by the results of the previous experi-
ment, we next attempt to saturate individual compo-
nents of Isaac to explore the limits of DieCast’s accuracy.
First, we evaluate DieCast’s ability to scale network ser-
vices when database access dominates per-request ser-
vice time. Figure 13 shows the completion time for re-
quests, where each service issues a 100-KB (rather than
1-KB) write to the database with all other parameters re-
maining the same. This amounts to a total of 1 MB of
database writes for every request from a client. Even for
these larger data volumes, DieCast faithfully reproduces
system performance. While for this workload, we are
able to maintain good accuracy, the evaluation of disk di-
lation summarized in Figure 2(c) suggests that there will
certainly be points where disk dilation inaccuracy will
affect overall DieCast accuracy.

Next, we evaluate DieCast accuracy when one of
the components in our architecture saturates the CPU.
Specifically, we configure our front-end servers such that
prior to sending each response to the client, they compute
SHA-1 hashes of the response 500,000 times to artifi-
cially saturate the CPU of this tier. The results of this ex-
periment too are shown in Figure 13. We are encouraged
overall as the system does not significantly diverge even
to the point of CPU saturation. For instance, the CPU
utilization for nodes hosting the FS in this experiment
varied from50− 80% for the duration of the experiment
and even under such conditions DieCast closely matched



the baseline system performance. The “No DieCast”
lines plot the performance of the stress-DB and stress-
CPU configurations with regular VM multiplexing with-
out DieCast-scaling. As with BitTorrent and RUBiS, we
see that without DieCast, the test infrastructure fails to
predict the performance of the baseline system.

5 Commercial System Evaluation
While we were encouraged by DieCast’s accuracy for the
applications we considered in Section 4, all of the ex-
periments were designed by DieCast authors and were
largely academic in nature. To understand the generality
of our system, we consider its applicability to a large-
scale commercial system.

Panasas [4] builds scalable storage systems target-
ing Linux cluster computing environments. It has sup-
plied solutions to several government agencies, oil and
gas companies, media companies and several commer-
cial HPC enterprises. A core component of Panasas’s
products is the PanFS parallel filesystem (henceforth re-
ferred to as PanFS): an object-based cluster filesystem
that presents a single, cache coherent unified namespace
to clients.

To meet customer requirements, Panasas must ensure
its systems can deliver appropriate performance under a
range of client access patterns. Unfortunately, it is of-
ten impossible to create a test environment that reflects
the setup at a customer site. Since Panasas has several
customers with very large super-computing clusters and
limited test infrastructure at its disposal, its ability toper-
form testing at scale is severely restricted by hardware
availability; exactly the type of situation DieCast tar-
gets. For example, the Los Alamos National Lab has de-
ployed PanFS with its Roadrunner peta-scale super com-
puter [5]. The Roadrunner system is designed to deliver
a sustained performance level of one petaflop at an esti-
mated cost of $90 million. Because of the tremendous
scale and cost, Panasas cannot replicate this computing
environment for testing purposes.

Porting Time Dilation. In evaluating our ability to ap-
ply DieCast to PanFS, we encountered one primary limi-
tation. PanFS clients use a Linux kernel module to com-
municate with the PanFS server. The client-side code
runs on recent versions of Xen , and hence, DieCast sup-
ported them with no modifications. However, the PanFS
server runs in a custom operating system derived from an
older version of FreeBSD that does not support Xen. The
significant modifications to the base FreeBSD operating
system made it impossible to port PanFS to a more re-
cent version of FreeBSD that does support Xen. Ideally,
it would be possible to simply encapsulate the PanFS
server in a fully virtualized Xen VM. However, recall
that this requires virtualization support in the processor
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Figure 14: Validating DieCast on PanFS.

which was unavailable in the hardware Panasas was us-
ing. Even if we had the hardware, Xen did not support
FreeBSD on FV VMs until recently due to a well known
bug [2]. Thus, unfortunately we could not easily employ
the existing time dilation techniques with PanFS on the
server side. However, since we believe DieCast concepts
are general and not restricted to Xen, we took this oppor-
tunity to explore whether we could modify the PanFS OS
to support DieCast, without any virtualization support.

To implement time dilation in the PanFS kernel, we
scale the various time sources , and consequently, the
wall clock. The TDF can be specified at boot time as
a kernel parameter. As before, we need to scale down
resources available to PanFS such that its perceived ca-
pacity matches the baseline.

For scaling the network, we use Dummynet [27],
which ships as part of the PanFS OS. However, there was
no mechanism for limiting the CPU available to the OS,
or to slow the disk. The PanFS OS does not support non
work-conserving CPU allocation. Further, simply modi-
fying the CPU scheduler for user processes is insufficient
because it would not throttle the rate of kernel process-
ing. For CPU dilation, we had to modify the kernel as
follows. We created a CPU-bound task, (idle), in the
kernel and we statically assigned it the highest schedul-
ing priority. We scale the CPU by maintaining the re-
quired ratio between the run times of theidle task and
all remaining tasks. If theidle task consumes suffi-
cient CPU, it is removed from the run queue and the reg-
ular CPU scheduler kicks in. If not, the scheduler always
picks theidle task because of its priority.

For disk dilation, we were faced by the complication
that multiple hardware and software components interact
in PanFS to service clients. For performance, there are
several parallel data paths and many operations are either
asynchronous or cached. Accurately implementing disk
dilation would require accounting for all of the possible
code paths as well as modeling the disk drives with high
fidelity. In an ideal implementation, if the physical ser-
vice time for a disk request iss and the TDF ist, then the
request should be delayed by time(t − 1)s such that the
total physical service time becomest × s, which under



dilation would be perceived as the desired value ofs.
Unfortunately, the Panasas operating system only pro-

vides coarse-grained kernel timers. Consequently, sleep
calls with small durations tend to be inaccurate. Using
a number of micro-benchmarks, we determined that the
smallest sleep interval that could be accurately imple-
mented in the PanFS operating system was 1 ms.

This limitation affects the way disk dilation can be im-
plemented. For I/O intensive workloads, the rate of disk
requests is high. At the same time, the service time of
each request is relatively modest. In this case, delaying
each request individually is not an option, since the over-
head of invoking sleep dominates the injected delay and
gives unexpectedly large slowdowns. Thus, we chose to
aggregate delays across some number of requests whose
service time sums to more than 1 ms and periodically in-
ject delays rather than injecting a delay for each request.
Another practical limitation is that it is often difficult to
accurately bound the service time of a disk request. This
is a result of the various I/O paths that exist: requests can
be synchronous or asynchronous, they can be serviced
from the cache or not and so on.

While we realize that this implementation is imperfect,
it works well in practice and can be automatically tuned
for each workload. A perfect implementation would have
to accurately model the low level disk behavior and im-
prove the accuracy of the kernel sleep function. Because
operating systems and hardware will increasingly sup-
port native virtualization, we feel that our simple disk di-
lation implementation targeting individual PanFS work-
loads is reasonable in practice to validate our approach.

Validation We first wish to establish DieCast accuracy
by running experiments on bare hardware and comparing
them against DieCast-scaled virtual machines. We start
by setting up a storage system consisting of an PanFS
server with 20 disks of capacity 250GB each (5TB total
storage). We evaluate two benchmarks from the stan-
dard bandwidth test suite used by Panasas. The first
benchmark involves 10 clients (each on a separate ma-
chine) running IOZone [23]. The second benchmark uses
the Message Passing Interface (MPI) across 100 clients
(again, on separate machines) [28].

For DieCast scaling, we repeat the experiment with our
modifications to the PanFS server configured to enforce a
dilation factor of 10. Thus, we allocate 10% of the CPU
to the server and dilate the network using Dummynet to
10% of the physical bandwidth and 10 times the latency
(to preserve the bandwidth-delay product). On the client
side, we have all clients running in separate virtual ma-
chines (10 VMs per physical machine), each receiving
10% of the CPU with a dilation factor of 10.

Figure 14 plots the aggregate client throughput for
both experiments on the y-axis as a function of the
data block size on the x-axis. Circles mark the read

Aggregate
Throughput

Number of clients

10 250 1000

Write 370 MB/s 403 MB/s 398 MB/s
Read 402 MB/s 483 MB/s 424 MB/s

Table 1: Aggregate read/write throughputs from the IOZone benchmark
with block size 16M. PanFS performance scales gracefully with larger
client populations.

throughput while triangles mark write throughput. We
use solid lines for the baseline and dashed lines for the
DieCast-scaled configuration. For both reads and writes,
DieCast closely follows baseline performance, never di-
verging by more than 5% even for unusually large block
sizes.

Scaling With sufficient faith in the ability of DieCast to
reproduce performance for real-world application work-
loads we next aim to push the scale of the experiment
beyond what Panasas can easily achieve with their exist-
ing infrastructure.

We are interested in the scalability of PanFS as we
increase the number of clients by two orders of magni-
tude. To achieve this, we design an experiment similar
to the one above, but this time we fix the block size at
16MB and vary the number of clients. We use 10 VMs
each on 25 physical machines to support 250 clients to
run the IOZone benchmark. We further scale the exper-
iment by using 10 VMs each on 100 physical machines
to go up to 1000 clients. In each case, all VMs are run-
ning at a TDF of 10. The PanFS server also runs at a
TDF of 10 and all resources (CPU, network, disk) are
scaled appropriately. Table 1 shows that the performance
of PanFS with increasing client population. Interestingly,
we find relatively little increase in throughput as we in-
crease the client population. Upon investigating further,
we found that a single PanFS server configuration is lim-
ited to 4 Gb/s (500 MB/s) of aggregate bisection band-
width between the servers and clients (including any IP
and filesystem overhead). While our network emulation
accurately reflected this bottleneck, we did not catch the
bottleneck until we ran our experiments. We leave a per-
formance evaluation when removing this bottleneck to
future work.

We would like to emphasize that prior to our experi-
ment, Panasas had been unable to perform experiments at
this scale. This is in part due to the fact that such a large
number of machines might not be available at any given
time for a single experiment. Further, even if machines
are available, blocking a large number of machines re-
sults in significant resource contention because several
other smaller experiments are then blocked on avail-
ability of resources. Our experiments demonstrate that
DieCast can leverage existing resources to work around



these types of problems.

6 DieCast Usage Scenarios
In this section, we discuss DieCast’s applicability and
limitations for testing large-scale network services in a
variety of environments.

DieCast aims to reproduce the performance of an orig-
inal system configuration and is well suited for predict-
ing the behavior of the system under a variety of work-
loads. Further, because the test system can be subject to
a variety of realistic and projected client access patterns,
DieCast may be employed to verify that the system can
maintain the terms of Service Level Agreements (SLA).

It runs in a controlled and partially emulated network
environment. Thus, it is relatively straightforward to con-
sider the effects of revamping a service’s network topol-
ogy (e.g., to evaluate whether an upgrade can alleviate
a communication bottleneck). DieCast can also system-
atically subject the system to failure scenarios. For ex-
ample, system architects may develop a suite of fault-
loads to determine how well a service maintains response
times, data quality, or recovery time metrics. Similarly,
because DieCast controls workload generation it is ap-
propriate for considering a variety of attack conditions.
For instance, it can be used to subject an Internet service
to large-scale Denial-of-Service attacks. DieCast may
enable evaluation of various DOS mitigation strategies
or software architectures.

Many difficult-to-isolate bugs result from system con-
figuration errors (e.g., at the OS, network, or application
level) or inconsistencies that arise from “live upgrades”
of a service. The resulting faults may only manifest as
errors in a small fraction of requests and even then after
a specific sequence of operations. Operator errors and
mis-configurations [22,24] are also known to account for
a significant fraction of service failures. DieCast makes it
possible to capture the effects of mis-configurations and
upgrades before a service goes live.

At the same time, DieCast will not be appropriate
for certain service configurations. As discussed earlier,
DieCast is unable to scale down the memory or storage
capacity of a service. Services that rely on multi-petabyte
data sets or saturate the physical memories of all of their
machines with little to no cross-machine memory/storage
redundancy may not be suitable for DieCast testing. If
system behavior depends heavily on the behavior of the
processor cache, and if multiplexing multiple VMs onto
a single physical machine results in significant cache pol-
lution, then DieCast may under-predict the performance
of certain application configurations.

DieCast may change the fine-grained timing of indi-
vidual events in the test system. Hence, DieCast may not
be able to reproduce certain race conditions or timing er-
rors in the original service. Some bugs, such as memory

leaks, will only manifest after running for a significant
period of time. Given that we inflate the amount of time
required to carry out a test, it may take too long to isolate
these types of errors using DieCast.

Multiplexing multiple virtual machines onto a single
physical machine, running with an emulated network,
and dilating time will introduce some error into the pro-
jected behavior of target services. This error has been
small for the network services and scenarios we evalu-
ate in this paper. In general however, DieCast’s accuracy
will be service and deployment-specific. We have not
yet established an overall limit to DieCast’s scaling abil-
ity. In separate experiments not reported in this paper, we
have successfully run with scaling factors of 100. How-
ever, in these cases, the limitation of time itself becomes
significant. Waiting 10 times longer for an experiment
to configure is often reasonable, but waiting 100 times
longer becomes difficult.

Some services employ a variety of custom hardware,
such as load balancing switches, firewalls, and storage
appliances. In general, it may not be possible to scale
such hardware in our test environment. Depending on
the architecture of the hardware, one approach is to wrap
the various operating systems for such cases in scaled vir-
tual machines. Another approach is to run the hardware
itself and to build custom wrappers to intercept requests
and responses, scaling them appropriately. A final option
is to run such hardware unscaled in the test environment,
introducing some error in system performance. Our work
with PanFS shows that it is feasible to scale unmodified
services into the DieCast environment with relatively lit-
tle work on the part of the developer.

7 Related Work
Our work builds upon previous efforts in a number of
areas. We discuss each in turn below.

Testing scaled systemsSHRiNK [25] is perhaps most
closely related to DieCast in spirit. SHRiNK aims to
evaluate the behavior of faster networks by simulat-
ing slower ones. For example, their “scaling hypothe-
sis” states that the behavior of 100Mbps flows through
a 1Gbps pipe should be similar to 10Mbps through a
100Mbps pipe. When this scaling hypothesis holds, it
becomes possible to run simulations more quickly and
with a lower memory footprint. Relative to this effort, we
show how to scale fully operational computer systems,
considering complex interactions among CPU, network,
and disk spread across many nodes and topologies.

Testing through Simulation and Emulation One
popular approach to testing complex network services is
through building a simulation model of system behavior
under a variety of access patterns. While such simula-
tions are valuable, we argue that simulation is best suited
to understanding coarse-grained performance character-



istics of certain configurations. Simulation is less suited
to configuration errors or to capturing the effects of un-
expected component interactions, failures, etc.

Superficially, emulation techniques (e.g. Emulab [34]
or ModelNet [31]), offer a more realistic alternative to
simulation because they support running unmodified ap-
plications and operating systems. Unfortunately, such
emulation is limited by the capacity of the available phys-
ical hardware and hence is often best suited to consider-
ing wide-area network conditions (with smaller bisection
bandwidths) or smaller system configurations. For in-
stance, multiplexing 1000 instances of an overlay across
50 physical machines interconnected by Gigabit Ether-
net may be feasible when evaluating a file sharing ser-
vice on clients with cable modems. However, the same
50 machines will be incapable of emulating the network
or CPU characteristics of 1000 machines in a multi-tier
network service consisting of dozens of racks and high-
speed switches.

Time Dilation DieCast leverages earlier work on Time
Dilation [19] to assist with scaling the network configura-
tion of a target service. This earlier work focused on eval-
uating network protocols on next-generation networking
topologies, e.g., the behavior on TCP on 10Gbps Ether-
net while running on 1Gbps Ethernet. Relative to this
previous work, DieCast improves upon time dilation to
scaledowna particular network configuration. In addi-
tion, we demonstrate that it is possible to trade time for
compute resources while accurately scaling CPU cycles,
complex network topologies, and disk I/O. Finally, we
demonstrate the efficacy of our approach end-to-end for
complex, multi-tier network services.

Detecting Performance AnomaliesThere have been
a number of recent efforts to debug performance anoma-
lies in network services, including Pinpoint [14], Mag-
Pie [9], and Project 5 [8]. Each of these initiatives an-
alyzes the communication and computation across mul-
tiple tiers in modern Internet services to locate perfor-
mance anomalies. These efforts are complementary to
ours as they attempt to locate problems in deployed sys-
tems. Conversely, the goal of our work is to test particu-
lar software configurations at scale to locate errors before
they affect a live service.

Modeling Internet ServicesFinally, there have been
many efforts to model the performance of network ser-
vices to, for example, dynamically provision them in re-
sponse to changing request patterns [16,30] or to reroute
requests in the face of component failures [12]. Once
again, these efforts typically target already running ser-
vices relative to our goal of testing service configura-
tions. Alternatively, such modeling could be used to feed
simulations of system behavior or to verify at a coarse
granularity DieCast performance predictions.

8 Conclusion
Testing network services remains difficult because of
their scale and complexity. While not technically or eco-
nomically feasible, a comprehensive evaluation would
require running a test system identically configured to
and at the same scale as the original system. Such test-
ing should enable finding performance anomalies, failure
recovery problems, and configuration errors under a vari-
ety of workloads and failure conditions before triggering
corresponding errors during live runs.

In this paper, we present a methodology and frame-
work to enable system testing to more closely match
both the configuration and scale of the original system.
We show how to multiplex multiple virtual machines,
each configured identically to a node in the original sys-
tem, across individual physical machines. We then di-
late individual machine resources, including CPU cycles,
network communication characteristics, and disk I/O, to
provide the illusion that each VM has as much comput-
ing power as corresponding physical nodes in the orig-
inal system. By trading time for resources, we enable
more realistic tests involving more hosts and more com-
plex network topologies than would otherwise be pos-
sible on the underlying hardware. While our approach
does add necessary storage and multiplexing overhead,
an evaluation with a range of network services, includ-
ing a commercial filesystem, demonstrates our accuracy
and the potential to significantly increase the scale and
realism of testing network services.
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