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ABSTRACT
This paper presents Swing, a closed-loop, network-responsive
traffic generator that accurately captures the packet interactions of
a range of applications using a simple structural model. Starting
from observed traffic at a single point in the network, Swing au-
tomatically extracts distributions for user, application, and net-
work behavior. It then generates live traffic corresponding to the
underlying models in a network emulation environment running
commodity network protocol stacks. We find that the generated
traces are statistically similar to the original traces. Further, to the
best of our knowledge, we are the first to reproduce burstiness in
traffic across a range of timescales using a model applicable to a
variety of network settings. An initial sensitivity analysis reveals
the importance of capturing and recreating user, application, and
network characteristics to accurately reproduce such burstiness.
Finally, we explore Swing’s ability to vary user characteristics,
application properties, and wide-area network conditions to project
traffic characteristics into alternate scenarios.

Categories and Subject Descriptors
C.4. [Computer Communication Networks]: Modeling tech-
niques

General Terms
Measurement, Design, Experimentation.

Keywords
Modeling, Traffic, Generator, Internet, Burstiness, Wavelets, En-
ergy plot, Structural Model

1. INTRODUCTION
The goal of this work is to design a framework capable of

generating live network traffic representative of a wide range of
both current and future scenarios. Such a framework would be valu-
able in a variety of settings that includes: capacity planning [27],
high-speed router design, queue management studies [23], worm
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propagation models [37], bandwidth measurement tools [15, 18],
network emulation [39, 40] and simulation [30]. We define traffic
generation to result in a time-stamped series of packets arriving at
and departing from a particular network interface with realistic val-
ues for at least the layer 3 (IP) and layer 4 (TCP/UDP) headers. This
traffic should accurately reflect arrival rates and variances across a
range of time scales, e.g., capturing both average bandwidth and
burstiness. Packets should further appropriately map to flow and
packet-size distributions, e.g., capturing flow arrival rate, length
distributions, etc.

We consider two principal challenges to achieving this goal.
First, we require an underlying model with simple, semantically
meaningful parameters that fully specify the characteristics of a
given trace. By semantically meaningful, we mean that it should
be straightforward to map high-level application and network con-
ditions to the model. For example, changing network conditions,
application mix, or individual application behavior should result in
appropriate and realistic effects on the generated traffic. Second,
we require techniques to populate the model from existing packet
traces to validate its efficacy in capturing trace conditions. That
is, traffic based on a model populated from a given packet trace
should reproduce the essential characteristics of the original trace.
Of course, the model can be populated from a designer’s “first
principles” as well, enabling traffic generation corresponding to a
variety of scenarios, both real and projected.

In this paper, we present the design, implementation, and
evaluation of Swing, a traffic generation tool that addresses these
challenges. The principal contribution of our work is an under-
standing of the requirements for matching the burstiness of the
packet arrival process of an original trace at a variety of timescales,
ranging from fine grained (1 ms) to coarse grained (multiple
minutes). Swing matches burstiness for: i) both bytes and packets,
ii) both directions (arriving and departing) of a network interface),
iii) a variety of individual applications within a trace (e.g., HTTP,
P2P, SNMP, NNTP, etc.), and iv) original traces at a range of speeds
and taken from a variety of locations.

Critical to the success of this effort is our ability to both
measure and reproduce in our traffic generation infrastructure the
prevailing wide-area network characteristics at the time of the
trace. Earlier work shows that it is possible to recreate aggregate
trace characteristics (e.g., average bandwidth over a period of
minutes) without reproducing wide-area network conditions [36].
We show that reproducing burstiness at a range of timescales
(especially sub-RTT) requires recreating network conditions for
the transmitting/receiving hosts in the original trace. Of course,
extracting wide-area network conditions from a single packet trace
is a difficult problem [20, 44]. Thus, a contribution of this work
is an understanding of the extent to which existing techniques for



passively measuring wide-area network conditions are sufficient to
accurately reproduce the burstiness of a given trace and whether
changing assumptions about prevalent network conditions result in
correspondingly meaningful changes in resulting traces (e.g., based
on halving or doubling the prevalent round trip time).

In the Sections that follow we first describe our methodology
(§ 2.3) to parameterize (§ 3.1) a given trace and use it to generate
(§ 3.3) live traffic and the corresponding packet trace. We first
validate (§ 5) Swing’s ability to faithfully reproduce trace character-
istics, critically examine (§ 5.3) the sensitivity of generated traces
to individual model parameters and finally explore Swing’s ability
to project (§ 5.4) traffic characteristics into the future.

2. THE SWING APPROACH

2.1 Requirements
This section describes our goals, assumptions, and approach

to packet trace generation. We extract bi-directional characteristics
of packets traversing a single network link, our target. Before we
describe our approach to trace generation, we present our metrics
for success: realism, responsiveness, and maximally random.

Packet trace generation is not an end in itself, rather a tool
to aid higher-level studies. Thus, the definition of realism for a
trace generation mechanism must be considered in the context of
its usage. For instance, generating traces for capacity planning
likely only requires matching aggregate trace characteristics such
as bandwidth over relatively coarse timescales. Trace generation for
high-speed router design, queue management policies, bandwidth
estimation tools, or flow classification algorithms has much more
stringent requirements.

We aim to generate realistic traces for a range of usage
scenarios and hence our goal is to generate traces that accurately
reflect the following characteristics from an original trace: i) packet
inter-arrival rate and burstiness across a range of time scales, ii)
packet size distributions, iii) flow characteristics including arrival
rate and length distributions, and iv) destination IP address and port
distributions. In this paper, we present our techniques and results
for the first three of these goals.

To be responsive, a trace generation tool must flexibly and
accurately adjust trace characteristics by allowing the user to
change assumptions about the ambient conditions of the original
trace, for example the: i) bandwidth capacity of the target link, ii)
round trip time distributions of the flows traversing the link, iii)
mix of applications sharing a link, e.g., if P2P traffic were to grow
to 40% of the traffic on a link or UDP-based voice traffic were
to double, and iv) changes in application characteristics, e.g., if
average P2P file transfer size grew to 100MB.

By maximally random, we mean that a trace generation tool
should be able to generate a family of traces constrained only
by the target characteristics of the original trace and not the
particular pattern of communication in the trace. Thus, multiple
traces generated to follow a given set of characteristics should vary
(perhaps significantly) across individual connections while still
following the appropriate underlying distributions. This require-
ment eliminates the trivial solution of simply replaying the exact
same connections in the exact same order seen in some original
trace. While quantifying the extent to which we are successful in
generating maximally random graphs is beyond the scope of this
paper, this requirement significantly influences our approach to,
and architecture for, trace generation.

2.2 Overview
Our hypothesis is that our goals for realistic and responsive

packet generation must be informed by accurate models of: i) the
users and programs initiating communication across the target link,
ii) the hardware, software, and protocols hosting the programs, and
iii) the large space of other network links responsible for carrying
packets to and from the target link. Without modeling users, it is
impossible to study the effects of architectural changes on end users
or to capture the effects of changing user behavior (e.g., if user
patience for retrieving web content is reduced). Similarly, without
an understanding of a wide mix of applications and protocols,
it is difficult to understand the effects of evolving application
popularity on traffic patterns at a variety of timescales. Finally,
the bandwidth, latency, and loss rate of the links upstream and
downstream of the target affect packet inter-arrival characteristics
and TCP transmission behavior of the end hosts communicating
across the target link (see § 5.3).

We first describe our methodology for trace generation as-
suming perfect knowledge of these three system components. In
the following sections we describe how to relax this assumption,
extracting approximate values for all of these characteristics based
solely on a packet trace from some target link. § 5 qualitatively and
quantitatively evaluates the extent to which we are able to generate
packet traces matching a target link’s observed behavior given our
approximations for user, end host, and network characteristics.

To generate a packet trace we initiate (non-deterministically)
a series of flows in a scalable network emulation environment
running commodity operating systems and hardware. Sources and
sinks establish TCP and UDP connections across an emulated
large-scale network topology with a single link designated as the
target. Simply recording the packets and timestamps arriving and
exiting this link during a live emulation constitutes our generated
trace. The characteristics of individual flows across the target link,
e.g., when the flow starts, the pattern of communication back and
forth between the source and the sink, is drawn from our models
of individual application and user behavior in the original trace.
Similarly, we set the characteristics of the wide-area topology,
including all the links leading to and from the target link, to
match the network characteristics observed in the original trace.
We employ ModelNet [39] for our network emulation environment,
though our approach is general to a variety of simulation and
environment environments.

Assuming that we are able to accurately capture and play back
user, application, and network characteristics, the resulting packet
trace at the target would realistically match the characteristics
of the original trace, including average bandwidth and burstiness
across a variety of timescales. This same emulation environment
allows us to extrapolate to other scenarios not present when the
original packet trace was taken. For instance, we could modify
the emulated distribution of round trip times or link bandwidths
to determine the overall effect on the generated trace. We could
similarly modify application characteristics or the application mix
to determine effects on the generated trace.

A family of randomly generated traces that match essential
characteristics of an original trace or empirical distributions for
user, application, and network characteristics (that may not have
been originally drawn from any existing packet trace) serves
a variety of useful purposes. These traces can serve as input
to higher level studies, e.g., appropriate queueing policies, flow
categorization algorithms, or anomaly detection. Just as interesting
however would be employment of the trace generation facility in
conjunction with other application studies. For instance, bandwidth
or capacity measurement tools may be studied while subject to



a variety of randomly-generated but realistic levels of compet-
ing/background traffic at a given link in a simulated or emulated
environment. The utility of systems such as application-layer mul-
ticast or other overlay protocols could similarly be evaluated while
subjecting the applications to realistic cross traffic in emulation
testbeds. Most current studies typically: i) assume no competing
traffic in an emulated/simulated testbed, ii) subject the application
to ad hoc variability in network performance, or iii) deploy their
application on network testbeds such as PlanetLab that, while
valuable, do not easily enable subjecting an application to a variety
of (reproducible) network conditions.

2.3 Structural model
Earlier work [41] shows that realistic traffic generators must

use structural models that account for interactions across multiple
layers of the protocol stack. We follow the same philosophy and
divide our task of finding suitable parameters for Swing’s structural
model into four categories:

Users: End users determine the communication characteris-
tics of a variety of applications. Important questions include how
often users become active, the distribution of remote sites visited,
think time between individual requests, etc. Note that certain
applications (such as SNMP) may not have a human in the loop,
in which case we use this category as a proxy for any regular, even
computer-initiated behavior.

Sessions: We consider individual session characteristics. For
instance, does an activity correspond to downloading multiple
images in parallel from the same server, different chunks of the
same mp3 file from different servers, etc. An important question
concerns the number and target of individual connections within a
session.

Connections: We also consider the characteristics of connec-
tions within a session, such as their destination, the number of
request/response pairs within a connection, the size of the request
and corresponding response, wait time before generating a response
(e.g., corresponding to CPU and I/O overhead at the endpoint),
spacing between requests, and transport (e.g., TCP vs. UDP). We
characterize individual responses with the packet size distribution,
whether it involves constant bit rate communication, etc.

Network characteristics: Finally, we characterize the wide-
area characteristics seen by flows. Specifically, we extract link loss-
rates, capacities, and latencies for paths connecting each host in the
original trace to the target-link.

Using these observations, we developed a parameterization
of individual application sessions, summarized in Table 1. A
set of values for these parameters constitutes an application’s
signature. For instance HTTP, P2P, and SMTP will all have dif-
ferent signatures. To successfully reproduce packet traces, we
must extract appropriate distributions from the original trace to
populate each of the parameters in Table 1. If desired, it is also
possible to individually set distribution values for these parameters
to extrapolate to a target environment.

While we do not claim that our set of parameters is either
necessary or sufficient to capture the characteristics of all applica-
tions and protocols, in the experiments that we conducted we found
each of the parameters to be important for the applications we
considered. § 5 quantifies the contribution of a subset of our model
parameters to accurately reproduce trace characteristics through an
initial sensitivity analysis.

3. ARCHITECTURE
In this section, we present our approach to populating the

model outlined above for individual applications, extracting wide-

area characteristics of hosts communicating across the target link,
and then generating traces representative of these models.

3.1 Parameterization methodology
We begin with a trace to describe how we extract application

characteristics from the target link. While our approach is general
to a variety of tracing infrastructures, we focus on tcpdump traces
from a given link.

The first step in building per-application communication mod-
els is assigning packets and flows in a trace to appropriate ap-
plication classes. Since performing such automatic classification
is part of ongoing research [22, 28, 42] and because we do not
have access to packet bodies (typically required by existing tools)
for most publicly available traces, we take the simple approach
of assigning flows to application classes based on destination port
numbers. Packets and flows that cannot be unambiguously assigned
to an appropriate class are assigned to an “other” application
class; we assign aggregate characteristics to this class. While
this assumption limits the accuracy of the models extracted for
individual applications, it will not impact our ability to faithfully
capture aggregate trace characteristics (see § 5). Further, our
per-application models will improve as more sophisticated flow-
classification techniques become available.

After assigning packets to per-application classes, our first
task is to group these packets into flows. We use TCP flags (when
present) to determine connection start and end times. Next, we use
the sequence number and acknowledgment number advancements
to calculate the size of data objects flowing in each direction of
the connection. Of course, there are many vagaries in determining
the start and end of connections in a noisy trace. We use the
timestamp of the first SYN packet sent by a host as the connection
start time. Unless sufficient information is available in the trace
to account for unseen packets for connections established before
the trace began, we consider the first packet seen for a connection
as the beginning of that connection when we do not see the
initial SYN. Similarly, we account for connections terminated
by a connection reset (RST) rather than a FIN. Due to space
constraints, we omit additional required details such as: out-of-
order packets, retransmitted packets, lost packets, and packets with
bogus SYN/ACK values. Rather, we adopt strategies employed by
earlier efforts faced with similar challenges [32, 35, 20].

Given per-flow, per-application information, we apply a series
of rules to extract values for our target parameters. The first step is
to generate session information from connection information. We
sort the list of all connections corresponding to an application in
increasing order of connection establishment times. The first time
a connection appears with a given source IP address we designate a
session initiation and record the start time. A session consists of one
or more RREs (Request-Response-Exchanges). An RRE consists
of one or more connections. For instance, 10 parallel connections to
download images in a web page constitutes a single RRE. Likewise,
the request for the base HTML page and its response will be another
RRE. We also initialize the start time of the first connection as the
beginning of the first RRE and set the number of connections in this
session to 1. Finally, we record the FIN time for the connection.

Upon seeing additional connections for an already discerned
IP address, we perform one of the following actions.
i) If the SYN time of this new connection is within an RREtimeout
limit (a configurable parameter), we conclude that the connection
belongs to the same RRE (i.e., it is a parallel or simultaneous
connection), and update our number of connections parameter. We
also update the RREEnd (termination time of all connections) of
the RRE as the max of all connection termination times. Finally,



Layer Variable in our Parameterization model : Description
Users ClientIP ; numRRE: Number of RREs ; interRRE think time
RRE numconn: Number of Connections ; interConn: Time between start of connections
Connection numpairs: number of Request/Response exchanges per connection ; Transport: TCP/UDP based on the application ;

ServerIP ; RESPonse sizes ; REQuest sizes ; reqthink: User think time between exchanges on a connection
Packet packet size: (MTU); bitrate: packet arrival distribution (only for UDP right now)
Network Link Latency ; Delay; Loss rates

Table 1: Structural Model of Traffic. For each new HTTP session, for instance, we pick a randomly generated value (from the
corresponding distribution) for each of the variables. First we pick a client and then decide how many RREs to generate along with
their interRRE times. For each RRE we decide how many parallel connections (separated by interConn times) to open and to whom
(server). Within a connection we decide the total number of request response exchanges along with the request, response sizes and
the request think time (reqthink) separating them.

we record the difference in start times of this new connection from
the previous connection (interConn) in the same RRE.
ii) If the SYN time of this new connection is not within the
RREtimeout limit, we declare the termination of the current RRE
and mark the beginning of a new RRE. We also calculate the time
difference in the max FIN of the previous RRE and the start of
this RRE. If that time difference is within the SESStimeout limit
(another configurable parameter), we associate the new RRE with
an existing session. Otherwise, we conclude that a new session
has started. For each connection we also record the request think
time as the time difference between a response from the server
and the subsequent request from the client. We have analyzed a
variety of values for our configurable thresholds such as RREEnd
and SESStimeout. While we omit the details for brevity, using
RREtimeout = 30sec and SESStimeout = 5min works well
for a range of scenarios.

In summary, each session consists of a number of RREs,
which in turn consist of a number of protocol connections. Given
information on individual sessions and their corresponding RREs,
we extract a frequency distribution for each to generate empirical
cumulative distribution functions (CDF). At this stage, we have
the choice of either stopping with the empirical distributions
or performing curve-fitting to analytical equations [31]. For this
work, we choose the former approach for simplicity and because
it accurately represents observed data (for instance, capturing
outliers), and leave the derivation and use of analytic distributions
to future work.

3.2 Extracting network characteristics
Given models of individual flows crossing a target network

link, we next require an understanding of the characteristics of the
network links responsible for transmitting data to and from the
target link for the hosts communicating across the link. Of course,
we can only approximate the dynamically changing bandwidth,
latency and loss rate characteristics of all links that carry flows that
eventually arrive at our target from a single packet trace. While we
developed a number of techniques independently and while it is
impossible to determine the extent to which our approach differs
from techniques in the literature (where important details may be
omitted and source code is often unavailable), we do not necessarily
innovate in our ability to passively extract wide-area network
conditions from an existing packet trace. Rather, our contribution
is to show that it is possible to both capture and replay these
network conditions with sufficient fidelity to reproduce essential
characteristics of the original trace. § 5 quantifies the extent to
which we are successful. Likewise, we assume that the modeled
parameters (CDFs) are stationary for the duration of the trace.

Augmenting our models to account for the changing nature [45]
of these (for instance, changing bandwidth) is part of ongoing
work. For the traces we consider, non-stationarity has not been a
significant obstacle.

We extract network characteristics as follows. For each host
(unique IP address) communicating across the target link we wish
to measure the delays, capacities and loss rates of the set of links
connecting the host to the target link as shown in Figure 1. For
simplicity, we aggregate all links from a source to the target and the
links from the target to the destination into single logical links with
aggregate capacity, loss rate, and latency corresponding to the links
that make up this aggregate. Thus, in our model we employ four
separate logical links (assuming assymetric link characteristics)
responsible for carrying traffic to and from the target link for all
communicating hosts. For cases where sufficient information is
not available—for instance if we do not see ACKs in the reverse
direction—we approximate link characteristics for the host as the
mean of the observed values for all other hosts on its side of the
target link for the same application.

Link delays: Consider a flow from a client C initiating a TCP
connection to a server S as shown in Figure 1. We use each flow in
the underlying trace between these hosts as samples for the four sets
of links responsible for carrying traffic between the flow endpoints.
We record four quantities for packets arriving at the target link
in both directions. First, we record the time difference between a
SYN (from C) and the corresponding SYN+ACK (from S) as a
sample to estimate the sum of link delays l2 and l3 (Figure 2).
Next, we measure the difference between the SYN+ACK and the
corresponding ACK packet as samples to estimate the sum of
delays l4 and l1 (not shown). We use the difference between a
response packet and its corresponding ACK (from C) to estimate
the sum of delays l4 and l1 as shown in Figure 3. Finally, we
measure the time between a data packet and its corresponding ACK
(from S) as further samples for l2 + l3 (not shown).

For this analysis, we only consider hosts that have 5 or more
sample values in the trace. We use the median (per host) of the
sample values to approximate the sum of link delays (l1+l4 or
l2+l3). We chose the median because in our current configuration
we assign static latency values to the links in our topology and the
median should be representative of the time it takes for a packet
to reach the target link once it leaves hosts on either end. One
assumption behind our work is that flows follow symmetric paths
in the forward and reverse direction, allowing us to assign values
for l1 and l4 from samples of l1 + l4. Figure 5 for instance shows
the two-way delay for hosts on either side of the target link in the
Auck trace (§5).
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Link Capacities: We employ the following variant of packet-
pair techniques to estimate link capacities. We extract consecutive
data packets not separated by a corresponding ACK from the other
side. The time difference between these packet-pairs gives an esti-
mate [11, 31] of the time for the packets to traverse the bottleneck
link from the host to the target link. It is then straightforward to
calculate the bottleneck capacity using the formula:
LinkCapacity * TimeDifference = PacketSize.

With widespread use of delayed ACKs in TCP, half of the
packets are sent as packet-pairs. To account for this shortcoming,
we sort the packet-pair time separation values in ascending order
and ignore the bottom half. Of course, it is known that packet-pair
techniques overestimate the bottleneck capacity [11] and moreover
doing passive estimation means that we cannot control which
packets are actually sent in pairs. To account for this, we use the
50th percentile of the sample values to approximate path capacity
from a given host to the target link. For instance, in Figure 3, we can
estimate c1 and c3 in this fashion. We assume the incoming link to
a host has capacity at least as large as the outgoing link and hence
we approximate c4 and c2 to the values c1 and c3 respectively.

However, post bottleneck link queueing may reduce packet
spacing, inflating our capacity estimates. Likewise, packets sent in
pairs might not arrive at the bottleneck in pairs [19]. Improving
our capacity estimates based on these recent studies is part of our
ongoing work.

Loss Rates: We measure loss rates using retransmissions and
a simple algorithm based on [5]. The algorithm starts by arranging
TCP sequence numbers corresponding to packets of a flow, based
on the timestamps. Next, if there is a missing sequence number in
the timestamp sequence, it usually means that the corresponding
packet was lost en-route to the target link. This is established if
the packet (and the corresponding TCP sequence number) is seen
at a later time indicating retransmission. Such a missing sequence
number is called a “hole” and we count it as a loss event for
estimating p1 in Figure 1. Likewise, if there is an out-of-order TCP

packet (retransmission) with no corresponding hole, it is then likely
that the packet arrived at the target but was lost en-route to the
destination. We use this loss event to estimate p2. p3 and p4 are
estimated in a similar manner when we see flows in the opposite
direction.

Of course the naive algorithm described above needs to
be improved to account for spurious timeouts, correlated losses,
routing changes, etc., and we refer the reader to [5] for a detailed
explanation.

Figure 7 shows the loss rate values extracted for both direc-
tions of traffic of a trace. We assume that losses experienced by a
flow are typically not caused by the traffic we measure directly,
i.e., losses on upstream and downstream links are caused by
ambient congestion elsewhere in the network and not at some other
congestion point shared by multiple hosts from our trace. Using this
assumption, we assign distinct loss rates for links connecting each
host to the target rather than attempting to account for such shared
congestion.

3.3 Generating Swing packet traces
Given application and network models, we are now in position

to generate the actual packet trace based on these characteristics.
Our strategy is to generate live communication among endpoints
exchanging packets across an emulated network topology. We im-
plement custom generators and listeners and pre-configure each to
initiate communication according to the application characteristics
extracted in the previous step. We also configure the network topol-
ogy to match the bandwidth, latency, and loss rate characteristics
of the original trace as described below. We designate a single link
in the configured topology as the target. Our output trace then is
simply a tcpdump of all packets traversing the target during the
duration of a Swing experiment. We run Swing for 5 minutes more
than the duration of the target trace and then ignore the first 5

minutes to focus on steady state characteristics.
For each application in the original trace, we generate a list

of sessions and session start times according to the distribution
of inter-session times measured in the original trace. We then
randomly assign individual sessions to generators to seed the
corresponding configuration file. For each session, we set values
for number of RREs, inter-RRE times, number of connections per
RRE, etc., from the distributions measured in the original trace.

At startup, each generator reads a configuration file that
specifies: i) its IP address, ii) a series of relative time-stamps
designating session initiation times (as generated above), iii) the
number of RREs for each session, iv) the destination address
and communication pattern for each connection within an RRE,
and v) the packet size distribution for each connection. For our
target scenarios, we typically require thousands of generators, each
configured to generate traffic matching the characteristics of a
single application/host pair. We create the necessary configuration
files for all generators according to our extracted application
characteristics. We similarly configure all listeners with their IP



addresses and directives for responding to individual connections,
e.g., how long to wait before responding (server think time) and the
size of the response.

We run the generators and listeners on a cluster of commodity
workstations, multiplexing multiple instances on each workstation
depending on the requirements of the generated trace. To date,
we have generated traces up to approximately 200Mbps. For the
experiments in this paper, we use 11 2.8 Ghz Xeon processors
running Linux 2.6.10 (Fedora Core 2) with 1GB memory and
integrated Gigabit NICs. For example, for a 200Mbps trace, assum-
ing an even split between generators and listeners (five machines
each), each generator would be responsible for accurately initiating
flows corresponding to 40Mbps on average. Each machine can
comfortably handle the average case though there are significant
bursts that make it important to “over-provision” the experimental
infrastructure.

Critical to our methodology is configuring each of the ma-
chines to route all packets to a single ModelNet [39] core re-
sponsible for emulating the hop-by-hop characteristics of a user-
specified wide-area topology. The source code for ModelNet is
publicly available and we run version 0.99 on a machine identical
to those hosting the generators and listeners. Briefly, ModelNet
subjects each packet to the per-hop bandwidth, delay, queueing,
and loss characteristics of the target topology. ModelNet operates
in real time, meaning that it moves packets from queue to queue
in the target topology before forwarding it on to the destination
machine (one of the 11 running generators/listeners) assuming that
the packet was not dropped because it encountered a full queue
or a lossy link. Earlier work [39] validates ModelNet’s accuracy
using a single core at traffic rates up to 1Gbps (we can generate
higher speed traces in the future by potentially running multiple
cores [43]). Simple configuration commands allow us to assign
multiple IP addresses (for our experiments, typically hundreds) to
each end host.

3.3.1 Creating an emulation topology
The final question revolves around generating the network

topology with appropriate capacity, delay, and loss rate values
to individual links in the topology. We begin with a single bi-
directional link that represents our target link (Figure 4). We assign
a bandwidth and latency (propagation delay) to this link based
on the derived characteristics of the original traced link. The next
step is to add nodes on either side of this target to host generators
and listeners. Ideally, we would create one node/edge in our target
topology for every unique host in the original trace. However,
depending on the size of the trace and the capacity of our emulation
environment, it may be necessary to collapse multiple sources from
the original trace onto a single IP address/generator in our target
topology 1. For the experiments described in the rest of the paper,
we typically collapse up to 10,000 endpoints (depending on the
size of the trace) from the original trace onto 1,000 endpoints in
our emulation environment. Our mapping process ensures that the
generated topology reflects characteristics of the most active hosts.

We base the number of generators we assign to each appli-
cation on the bytes contributed by each application in the original
trace. For instance, if 60% of the bytes in the original trace is HTTP,
then 60% of our generators (each with a unique IP address) in the
emulation topology will be responsible for generating HTTP traffic.

1Such a collapsing impacts the IP address distribution of flows
crossing the target link (i.e., it reduces the number of unique IP
addresses in our generated trace relative to the original trace).
However, as shown in § 5, this does not affect aggregate trace
characteristics, such as bandwidth, packet inter-spacing etc.

We discuss the limitations of this approach in § 6. Next, we assign
hosts to both sides of the target link based on the number of bytes
flowing in each direction in the original trace for that application.
For instance, if there is twice as much HTTP traffic flowing in
Figure 4 from left to right as there is from right to left, we would
then have twice as many HTTP hosts on the left as on the right in
the emulated topology.

3.3.2 Assigning link characteristics to the topology
Given baseline graph interconnectivity consisting of an un-

balanced dumb-bell, we next assign bandwidth and latency values
to these links. We proceed with the distributions measured in the
original trace (§ 3.2) and further weigh these distributions with the
amount of traffic sent across those links in the original trace. Thus,
if a particular HTTP source in the original trace were responsible
for transmitting 20% of the total HTTP bytes using a logical link
with 400 kbps of bandwidth and 50 ms of latency, a randomly
chosen 20% of the links (corresponding to HTTP generators) in
our target topology would be assigned bandwidth/latency values
accordingly. We also assign per-link MTUs to each link based on
distributions from the original trace.

The topology we have at the end of this stage is not one
that accurately represents the total number of hosts with the same
distribution of wide-area characteristics as in the original trace, but
one that is biased towards hosts that generate the most traffic in the
original trace. One alternative is to assign sessions to generators
based on the network characteristics of the sources in the original
trace. We have implemented this strategy as well and it produces
better results with respect to matching trace characteristics, but we
found that it did not offer sufficient randomness in our generated
traces, i.e., the resulting traces too closely matched the charac-
teristics of the original trace making it less interesting from the
perspective of exploring a space or extrapolating to alternative
scenarios.

4. VALIDATION
We now describe our approach for extracting and validating

our parameter values for our model from a number of available
packet traces. In particular, we focus on Mawi [26] traces, a trans-
Pacific line (18Mbps Committed Access Rate on a 100Mbps link),
CAIDA [6] traces from a high-speed OC-48 MFN (Metropolitan
Fibre Network) Backbone 1 link (San Jose to Seattle) as well as
OC3c ATM link traces from the University of Auckland, New
Zealand [2]. These traces come from different geographical loca-
tions and demonstrate variation in application mix and individual
application characteristics (Table 2).

For each trace 2, we first extract distributions of user, network
and application using the methodology outlined in § 3. Next we
generate traffic using Swing and during the live emulation record
each packet that traverses our target link. From the generated
Swing-trace we re-extract parameter values and compare them
to the original values in Table 3. Specifically, we compare: i)
application breakdown, ii) aggregate bandwidth consumption, iii)
packet and byte arrival burstiness, iv) per-application bandwidth
consumption, and v) distributions for our model’s parameter values.
To compare distributions we use various techniques ranging from
visual tests to comparing the median values and Inter-Quartile 3

ranges.
To determine whether we capture the burstiness characteristics

of the original trace, we employ wavelet-based multi-resolution
2UDP traffic (∼ 10% by bytes) was filtered out.
3IQR is the difference in the 75th and 25th percentile values.



Table 2: Comparing aggregate bandwidth (Mbps) and packets per second (pps) (Trace/Swing) for Auck, Mawi and CAIDA traces.

Trace ↓ Length TOTAL Date Application 1 - HTTP Application 2
Secs Mbps pps Mbps pps Name Mbps pps

Auck 599 5.53 979 2001-06-11 3.33 / 3.24 591 / 509 SQUID 0.55 / 0.55 58 / 57
Mawi 899 17.79 2229 2004-09-23 9.90 / 9.04 1209 / 1101 TCPOTHER 5.58 / 4.96 720 / 609
Mawi2 299 21.96 2907 2004-03-18 13.88 / 12.24 1779 / 1567 TCPOTHER 7.51 / 7.63 972 / 890
CAIDA 300 184.17 22786 2003-04-24 134.93 / 127.56 17404 / 14625 KAZAA 49.24 / 45.97 5382 / 4523

Table 3: Median and IQR parameter values (Trace/Swing) for Auck, Mawi and CAIDA traces.

Model Parameters→ REQ RSP numconn interconn numpairs numrre interRRE reqthink
(Trace)Application(Statistic)↓ (Bytes) (Bytes) (Secs) (Secs) (Secs)
(Auck) HTTP (Median) 420 / 421 747 / 735 1 / 1 0.4 / 0.4 1 / 1 1 / 1 10.9 / 10.5 0.1 / 0.1
(Auck) HTTP (IQR) 201 / 203 3371 / 3357 1 / 1 1.0 / 0.9 0 / 0 0 / 1 8.8 / 8.4 0.8 / 0.8
(Auck) SQUID (Median) 535 / 536 1649 / 1523 2 / 2 1.0 / 1.0 1 / 1 1 / 1 8.6 / 7.7 0.6 / 0.6
(Auck) SQUID (IQR) 178 / 181 5224 / 5225 6 / 6 2.7 / 2.2 2 / 2 1 / 1 7.6 / 4.1 1.4 / 1.4
(Mawi) HTTP (Median) 415 / 414 462 / 438 1 / 1 0.7 / 0.7 1 / 1 1 / 1 10.6 / 10.2 0.2 / 0.2
(Mawi) HTTP (IQR) 406 / 408 2956 / 2947 0 / 0 2.2 / 2.0 0 / 0 0 / 0 9.4 / 8.4 2.0 / 1.9
(Mawi) TCPOTHER (Median) 36 / 36 68 / 80 1 / 1 1.5 / 1.5 1 / 1 1 / 1 10.7 / 11.4 0.1 / 0.1
(Mawi) TCPOTHER (IQR) 1014 / 642 516 / 755 0 / 0 4.9 / 3.3 5 / 5 0 / 0 9.5 / 10.3 0.3 / 0.3
(CAIDA) HTTP (Median) 341 / 341 361 / 355 1 / 1 0.5 / 0.6 1 / 1 1 / 1 10.2 / 10.5 0.1 / 0.0
(CAIDA) HTTP (IQR) 446 / 464 6705 / 6649 1 / 1 1.8 / 1.8 0 / 0 0 / 1 8.9 / 9.0 0.6 / 0.5
(CAIDA) KAZAA (Median) 57 / 57 100 / 96 1 / 1 1.3 / 1.4 1 / 1 1 / 1 12.0 / 16.2 0.2 / 0.1
(CAIDA) KAZAA (IQR) 319 / 316 317 / 324 0 / 0 2.7 / 2.6 0 / 0 0 / 0 14.9 / 12.2 0.6 / 0.5

analysis (MRA) [1, 17, 21] to compare byte and packet-arrival rates
at varying time scales. Intuitively, wavelet scaling plots, or energy
plots, show the variance (burstiness) in the traffic arrival process
at different timescales. It enables visual inspection of the complex
structure in traffic processes. For example, consider the top pair of
curves in Figure 8. The x-axis represents increasing time scales (on
a log scale) beginning at 1 ms and the y-axis is the Energy of the
traffic at a given time scale. A sharp dip in the curve, for instance,
one that happens at time scale of 9 (256ms) suggests a strong
periodicity (and hence lower variance and Energy) around that time
scale. The presence of a dip at the time scale of the dominant RTT
of flows is well understood [12, 21, 41] and results from the self-
clocking nature of TCP. Likewise, if all flows arriving at a target
link are bottle-necked upstream at a link whose capacity is 10Mbps,
then we would expect a dip at 1.2ms (the time to transmit a 1500

byte packet across a 10Mbps link). For more detailed analysis and
interpretation, we refer the reader to [1, 12].

For our purposes, if the energy plot for a generated trace
closely matches the energy plot for the original trace, then we may
conclude that the burstiness of the packet or byte arrival process
matches at a variety of timescales for the two traces. Such matching
is important if the generated traces are to be successfully employed
for scenarios sensitive to burstiness, e.g., high-speed router design,
active queue management, or flow classification. Matching the
energy plot of a given plot at both fine- (sub-RTT) and coarse-
timescales has proven difficult. To the best of our knowledge, our
work is the first to show such a match across a range of timescales.

5. APPLICATION STUDIES
Given our general validation approach, we now present the

results of case studies for: i) capturing the fine-grained behavior
of individual application classes in our packet traces, ii) validating

macro properties of our generated traces, and iii) matching bursti-
ness of traffic across a range of time granularities.

5.1 Distribution parameters
We first measure Swing’s ability to accurately capture the

distributions for the structural properties of users and applications.
We present results for three representative applications taken from
our three traces: KAZAA from CAIDA, SQUID from Auck, and
HTTP from Mawi. Importantly, our model is generic to each
of these application classes and requires no manual configura-
tion for the various traces/applications. Results for other appli-
cation classes/trace combinations are similar. Table 3 compares
the distribution of our parameters relative to the original trace
(Trace/Swing), with the median values and IQR. Matching IQR
values and the median indicates similar distributions for both the
extracted and generated values.

While the required level of accuracy is application-dependent,
based on these results we are satisfied with our ability to reproduce
application and user characteristics. We have found that model
parameters that attempt to reproduce human/machine think time
are the most difficult to accurately extract and reproduce. For
instance, the IQR of interconn times for Auck/SQUID differs by
500ms. However, our sensitivity experiments (§ 5.3) reveal that
it is important to consider these characteristics to reproduce trace
properties and that our approximations appear sufficient based on
the quality of the generated traces. On the other hand, we achieve
near perfect accuracy for more mechanistic model parameters such
as request and response size (see Table 3).

Given validation of our application and user models, we
next consider wide-area network conditions. Figure 5 shows the
extracted values of the two-way latencies of hosts on either side of
the target link in the Auck trace. More than 75% of the hosts see
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Figure 8: HTTP/Auck Energy plot
(bytes).
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Figure 9: SQUID/Auck Energy plot
(bytes).
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Figure 10: SQUID/Auck Energy plot
(packets).

a delay of greater than 200ms on one side of the link (Direction 1)
matching our expectation for a cross-continental link. Figure 6
compares Auck’s link capacities for the path connecting the hosts
to the target-link. While in one direction the capacities range
from 1 − 100Mbps, hosts appear to be bottlenecked upstream at
approximately 3.5Mbps in the other direction. These values match
our understanding of typical host characteristics on either side
of the Auck link (we had similarly good results for Mawi and
CAIDA). Finally, Figure 7 presents the loss rate for the trace. For
validation, we also plot the extracted values for delay, capacity, and
loss rate for our Swing-generated traces. We obtain good matches
in all cases. The discrepancy in loss rate behavior results from the
difficulty of disambiguating between losses, retransmissions, and
multi-path routing in a noisy packet trace.

Finally, Table 2 presents aggregate per-application character-
istics of Swing-generated traces compared to the original Auck,
Mawi, and CAIDA traces. In all cases, we are satisfied with
our ability to reproduce aggregate trace characteristics, especially
considering that we are performing no manual tuning on a per-trace
or per-application basis. While we focus on our ability to reproduce
per-application characteristics in this paper, our results are typically
better when reproducing aggregate trace characteristics because of
the availability of more information and less discretization error.

5.2 Wavelet based analysis
Figure 8 compares the wavelet scaling plots for byte arrivals

for HTTP/Auck and corresponding Swing traces. In both plots, the
top pair of curves corresponds to the scaling plots for one traffic
direction (labeled 0) and the bottom curves are for the opposite
direction (labeled 1). A common dip in the top curve corresponds

to the dominant RTT of 200ms (scale 9) as shown in Figure 5.
Likewise, the common dip seen for the bottom pair at a scale
of 3 (8ms) corresponds to the bottleneck upstream capacity of
3.5Mbps (see Figure 6). Figure 9 compares the scaling plots for
byte arrivals for SQUID for the same trace. The relatively flat
structure in Direction 1 relative to the HTTP plot results because
most of the data flows in Direction 0. The significant difference
in SQUID’s behavior relative to HTTP shows the importance of
capturing individual application characteristics, especially if using
Swing to extrapolate to other network settings, e.g., considering
trace behavior in the case when SQUID becomes the dominant
application. Figure 10 shows the corresponding plot for packet ar-
rivals. The close match confirms our ability to reproduce burstiness
at the granularity of both bytes and packets.

Figure 11 shows the scaling plot for HTTP byte arrivals in the
Mawi trace. The plot differs significantly from the corresponding
Auck plot (see Figure 8) but Swing can accurately reproduce it
without manual tuning. Consider another trace from the Mawi
repository taken six months earlier as shown in Figure 12. Applica-
tion burstiness changes over time in this trace and Swing accurately
captures this evolving behavior. Finally, Figure 13 shows the energy
plot for both directions of HTTP traffic in the CAIDA trace as
validation of our ability to generalize to a higher-bandwidth trace
as well as to a trace taken from a fundamentally different network
location.

To the best of our knowledge, we are the first to reproduce
observed burstiness in generated traces across a range of time
scales. While our relatively simple model cannot capture all rel-
evant trace conditions (such as the number of intermediate hops to
the target link), an important contribution of this work demonstrates
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(bytes).

0 5 10 15

20

25

30

35

Time Scale j

lo
g 2(E

ne
rg

y(
j))

Smallest time scale = 1 msec 

LatencyCapacityLossRates
LatencyCapacities
LinkLatencies
NoNetwork
Mawi
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network characteristics.
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that capturing and reproducing a relatively simple set of trace
conditions is sufficient to capture burstiness, at least for the traces
we considered. Earlier work [12] shows that global scaling (at time
scales beyond the dominant RTT) can be captured by modeling, for
instance, response sizes as a heavy-tailed distribution. Our work on
the other hand, shows how to extract appropriate distributions from
the underlying trace (rather than assuming particular distributions
for individual parameters), reproduces burstiness at a variety of
time scales (including those smaller than the dominant RTT), and
considers both the bytes and packet arrival processes for traffic in
two directions.

5.3 Sensitivity
One question is whether our model parameters are necessary

and sufficient to reproduce trace characteristics. Similarly, it would
be interesting to quantify the relative importance of individual
parameters under different settings. While a detailed analysis
is beyond the scope of this paper, we have investigated trace
sensitivity to our parameters and have found that all aspects of our
model do indeed influence resulting accuracy to varying extents.
We present a subset of our findings here.

We start with the importance of capturing and reproducing
wide-area network conditions as it appears to be the biggest
contributor to burstiness in the original trace. Consider the case
where we omit emulating wide-area network conditions and simply
play back modeled user and application characteristics across
an unconstrained network (switched Gigabit Ethernet). While we
roughly maintain aggregate trace characteristics such as bandwidth
(not shown), Figure 14 shows that we lose the rich structure present
at sub-RTT scales and the overall burstiness characteristics. This
result shows that two generated traces with the same average-case

behavior can have vastly different structure. Hence, it is important
to consider network conditions to reproduce the structure in an
original trace. This figure also shows that capturing any single
aspect of wide-area network conditions is likely insufficient to
reproduce trace characteristics. For instance, only reproducing link
latencies (with unconstrained capacity and no loss rate) improves
the shape of the plot relative to an unconstrained network but
remains far from the original trace characteristics. Likewise, having
both latency and capacity is also insufficient though progressively
better.

Accurate network modeling alone is insufficient to reproduce
burstiness. As one example, the top two curves in Figure 15
show the degradation when we omit interRRE from our model
for HTTP/Auck. Similarly, the bottom pair of curves show the
increase in burstiness at large time scales when we omit interconn
for SQUID/Auck.

As in § 2, one of our goals is to generate a family of traces
starting from a given trace using indepedent model and parameters.
While this approach allows us to introduce more variability in
Swing-generated traces, it is important to consider the resulting
deviation from the original trace. To address this question we
perform the following experiment. We start with the Auck trace and
vary the initial random seed to our traffic generator and generate
10 Swing traces. Figure 16 shows the variability across the different
runs. For Swing curves, we plot average values across the 10 runs
for each time scale and show the standard deviation using error
bars. While the average curves closely follow Auck, at large time
scales we see a few examples where the energy plot does not
completely overlap with the baseline. While it is feasible to reduce
variability, overall we prefer the ability to explore the range of
possible behavior starting with an original trace.



5.4 Responsiveness
We now explore Swing’s ability to project traffic into alternate

scenarios. Figure 17 shows the effect of doubling the link latencies
(all other model parameters remain unchanged) for HTTP/Mawi.
Once again, while aggregate trace characteristics are roughly main-
tained (8.17mbps vs. 9mbps), burstiness can vary significantly.
Overall, we find that relatively accurate estimates of network
conditions (at least within a factor of two) are required to capture
burstiness and that, encouragingly, changing estimates for network
conditions match expectations for the resulting energy plot. For
instance, doubling the RTT moves the significant dip to the right
by one unit as the X-axis is on a log2 scale. We also consider the
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Figure 17: Energy plot responsiveness to doubling response size
and link latency (Mawi).

effects of doubling request and response sizes for the same trace.
Once again, the energy plot shows the expected effect: the relative
shape of the curve remains the same, but with significantly more
energy at all time scales. The average bandwidth increases from
9mbps to 19mbps.

Finally, we explore Swing’s ability to project to alternate
application mixes during traffic generation. For the Auck trace
(Table 2), we increase the number of SQUID sessions by a factor of
20 while leaving all other model parameters (for different applica-
tions and network conditions) identical. The average bandwidth of
the trace increased to 15mbps. Earlier figures 8 and 9 highlighted
the difference in burstiness characteristics of the two applications.
SQUID has a much more pronounced dip at time scale 9 and the
curve in smaller time scales is more convex in shape. The energy
plot of the overall trace is a function of the burstiness of individual
applications and hence increasing the percentage of SQUID should
make the overall energy plot resemble SQUID. Figure 18 shows the
curves that verify this hypothesis. For comparison we also show the
energy plot corresponding to SQUID in the original trace.

6. LIMITATIONS AND FUTURE WORK
In addition to the discussion in the body of the paper, we

identify a number of additional limitations with methodology
in this section. First, we model application behavior based on
the information we can glean from the available packet traces
containing only packet headers. A number of efforts have studied
application behavior by tracing full application-level information
for peer-to-peer [14], multimedia [38], and HTTP [3] workloads.
In ongoing work, we aim to show that our model can be populated
from such application-level traces and workload generators. Our
initial results are encouraging.

Swing’s accuracy will be limited by the accuracy of the
models it extracts for user, application, and network behavior.
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Figure 18: Energy plot responsiveness to varying application
mix (Auck).

The quality of our traces also impacts our results. For instance,
we have found inter-packet timings in pcap traces that should
not be possible based on the measured link’s capacity. Pervasive
routing asymmetry also means that bi-directional model extraction
can introduce errors in some cases. Finally, using homogeneous
protocol stacks on end hosts limit our ability to reproduce the mix
of network stacks (e.g., TCP flavors) seen across an original trace.

Because we are generating traffic for a dumbbell topology
and we focus on producing accurate packet traces in terms of
bandwidth and burstiness we only focus on a subset of our initial
parameters. In particular we do not currently model the distribution
of requests and responses among particular clients and servers and
we do not model server think time. We split the total number of
hosts in the emulation topology weighed by the number of bytes
transmitted per-application in the original trace. One problem with
this approach is that we lose the spatial locality of the same host
simultaneously engaging in, e.g., HTTP, P2P and SMTP sessions.
Finally, in this paper we only consider TCP applications. Our
implementation does support UDP but we leave a detailed analysis
of our techniques and accuracy to future work.

In this work, we focus on generating realistic traces for a
single network link. For a variety of studies, it may be valuable
to simultaneously generate accurate communication characteristics
across multiple links in a large topology. We consider this to be
an interesting and challenging avenue for future research though it
will likely require access to simultaneous packet traces at multiple
vantage points to accurately populate some extended version of our
proposed model.

7. RELATED WORK
Our work benefits from related efforts in a variety of disci-

plines. We discuss a number of these areas below.
Application-specific workload generation: There have been

many attempts to design application-specific workload generators.
Examples include Surge [3], which follows empirically-derived
models for web traffic [25] and models of TELNET, SMTP, NNTP
and FTP [31]. Cao et.al [7] perform source-level modeling of
HTTP. However, they attempt to parameterize the round-trip times
seen by the client rather than capture it empirically. Relative to
these efforts, Swing attempts to capture the packet communication
patterns of a variety of applications (rather than individual appli-
cations) communicating across wide-area networks. Application-
specific workload generators are agnostic to particular network
bandwidths and latencies, TCP particularities, etc. Although recent
efforts characterize P2P workloads at the packet [14] and flow



level [34] we are not aware of any real workload generator for such
systems.

Synthetic traffic trace generation: One way to study statistical
properties of applications and users is through packet traces from
existing wide-area links, such as those available from CAIDA [6]
and NLANR [29]. However, these traces are based on past mea-
surements, making it difficult to extrapolate to other workload and
topology scenarios. RAMP [8] generates high bandwidth traces
using a simulation environment involving source-level models for
HTTP and FTP only. We, on the other hand advocate a single
parameterization model with different parameters (distributions)
for different applications. Rupp et. al [33] introduce a packet trace
manipulation framework for testbeds. They present a set of rules to
manipulate a given network trace, for instance, stretch the duration
of existing flows, add new flows, change packet size distributions,
etc. Our approach is complementary as we focus on generating the
traces using a first-principles approach by constructing real packet-
exchanging sources and sinks.

Structural model: The importance of structural models is
well documented [13, 41], but a generic structural model for
Internet applications does not exist to date. Netspec [24] builds
source models to generate traffic for Telnet, FTP, voice, video and
WWW but the authors do not show whether the generated traffic
is representative of real traffic. There is also a source model for
HTTP [7]. However, it consists of both application-dependent and
network-dependent parameters (like RTT), making it difficult to
interpret the results and apply them to different scenarios. There
are a number of other available traffic generators [10], however,
none attempt to capture realistic Internet communication patterns,
leaving parameterization of the generator to users. To the best of
our knowledge, we present the first unified framework for structural
modeling of a mix of applications.

Capturing communication characteristics: There have been
attempts to classify applications based on their communication
patterns [22, 28, 35, 42]. Generating traffic based on clusters of
applications grouped according to an underlying model is part of
our ongoing effort.

Harpoon [36] is perhaps most closely related to our effort.
However, there are key differences in the goals of the two projects,
with corresponding differences in design choices and system capa-
bilities. Harpoon models background traffic starting with measured
distributions of flow behavior on a target link. Relative to their
effort, we consider the characteristics of individual applications
enabling us to vary the mix of, for instance, HTTP versus P2P
traffic in projected future settings. More importantly, Harpoon
is designed to match distributions from the underlying trace at
a coarse granularity (minutes) and thus does not either extract
or playback network characteristics. Swing, on the other hand,
extracts distributions for the wide-area characteristics of flows that
cross a particular link, enabling us to reproduce burstiness of the
packet-arrival process at sub-RTT time scales. This further allows
us to predict the effects, at least roughly, on a packet trace of
changing network conditions.

Relative to recent work investigating the causes for sub-RTT
burstiness [21], we focus on extracting the necessary characteristics
from existing traces to reproduce such burstiness in live packet
traces. As part of future work, we hope to corroborate their findings
regarding the causes of sub-RTT burstiness.

Felix et. al [16] generate realistic TCP workloads using a
one-to-one mapping of connections from the original trace to the
test environment. Our effort differs from theirs in a number of
ways. We develop a session model on top of their connection
model and this is crucial since the termination time of previous

connections determine the start duration of future connections for
a user/session, thereby making any static connection replay model
essentially unresponsive to changes in the underlying model. As
described earlier, we also advocate a common parameterization
model for various application classes instead of grouping them all
under one class.

Passive estimation of wide-area characteristics: Our effort
builds upon existing work on estimating wide-area network char-
acteristics without active probing. Jaiswal et. al [20] use passive
measurement to infer round trip times by looking at traffic flowing
across a single link. Our methodology for estimating RTTs is
closely related to this effort, though we extend it to build distinct
distributions for the sender- versus receiver-side.

Our approach to measuring RTT distributions is more general
than the popular approach of measuring a single RTT distribution
and dividing it by two to set latencies on each side of the target
link [9]. Such techniques assume that the target link is close to
the border router of an organization, an assumption that is clearly
not general to arbitrary traces (including Mawi). Our techniques
for estimating link capacity measure the mean dispersion of packet
pairs sent from the sender to the target link, as in [11, 19]. Finally,
we resolve ambiguities in loss rate estimates using techniques
similar to [5]. Our approach to measuring RTT and loss rates is
also similar to T-RAT [44]. However, our goals are different: while
T-RAT focuses on analyzing the cause for slowdowns on a per-flow
basis, we are interested in determining the distribution of network
characteristics across time for individual hosts.

In [4] the authors profile various delay components in Web
transactions by tracing TCP packets exchanged between clients and
servers. This work assumes the presence of traces at both the client
and server side and focuses on a single application. For our work,
we utilize a single trace at an arbitrary point in the network and
extract information on a variety of applications. Further, while we
focus on generating realistic and responsive packet traces based on
the measured application, network, and user behavior at a single
point in the network, their effort focuses on root-cause analysis—
determining the largest bottleneck to end-to-end performance in a
particular system deployment.

8. CONCLUSIONS
In this paper, we develop a comprehensive framework for

generating realistic packet traces. We argue that capturing and
reproducing essential characteristics of a packet trace requires a
model for user, application, and network behavior. We then present
one such model and demonstrate how it can be populated using
existing packet header traces. Our tool, Swing, uses these models
to generate live packet traces by matching user and application
characteristics on commodity operating systems subject to the com-
munication characteristics of an appropriately configured emulated
network. We show that our generated traces match both aggregate
characteristics and burstiness in the byte and packet arrival process
across a variety of timescales when compared to the original trace.
Further, we show initial results suggesting that users can modify
subsets of our semantically meaningful model to extrapolate to
alternate user, application, and network conditions.

Overall, we hope that Swing will enable quantifying the
impact on traffic characteristics of: i) changing network conditions,
such as increasing capacities or decreasing round trip times, ii)
changing application mix, for instance, determining the effects of
increased peer-to-peer application activity, and iii) changing user
behavior, for example, determining the effects of users retrieving
video rather than audio content. Similarly, Swingwill enable the
evaluation of a variety of higher-level application studies, such as



bandwidth/capacity estimation tools and dynamically reconfigur-
ing overlays, subject to realistic levels of background traffic and
network variability.
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