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Abstract— This paper presents Swing, a closed-loop, network- instance, and faithfully reproduce the correspondingcesfe
responsive traffic generator that accurately captures the acket on the generated traffic.
interactions of a range of applications using a simple struwiral
model. Starting from observed traffic at a single point in the
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network, Swing automatically extracts distributions for user, 100 ‘ ‘ ‘

application, and network behavior. It then generates live taffic & & _ HHTTP
corresponding to the underlying models in a network emulatbn 80! H H é <-NNTP
environment running commodity network protocol stacks. We | p= = —<SMTP

find that the generated traffic is statistically similar to the original
traffic. Further, to the best of our knowledge, we are the firstto
reproduce burstiness in traffic across a range of timescalessing
a model applicable to a variety of network settings. An inital
sensitivity analysis reveals the importance of our individial model
parameters to accurately reproduce such burstiness. Fingl, we
explore Swing’s ability to vary user characteristics, appication
properties, and wide-area network conditions to project traffic
characteristics into alternate scenarios.
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Second, we require techniques to populate the model from
I. INTRODUCTION existing packet traces [11]-[13] to validate its efficacy in
capturing trace conditions. That is, traffic based on a model
The goal of this work is to design a framework capablgopulated from a given packet trace should reproduce the
of generating live network traffic representative of a widessential characteristics of the original trace. Of coutise
range of both current and future scenarios. Such a framewenkdel can be populated from a designer’s “first principles” a
would be valuable in a variety of settings [1], includingwell, enabling traffic generation corresponding to a varigt
capacity planning [2], high-speed router design, queue-matenarios, both real and projected.
agement studies [3], worm propagation models [4], bandwidt In this paper, we present the design, implementation, and
measurement tools [5], [6], network emulation [7], [8] an@valuation ofSwing a traffic generation tool that addresses
simulation [9]. We define traffic generation to result in agim these challenges. The principal contribution of our workiris
stamped series of packets arriving at and departing fromuaderstanding of the requirements for matching the buassin
particular network interface with realistic values for at$t of the packet arrival process of an original trace at a vaoét
the layer 3 (IP) and layer 4 (TCP/UDP) headers. This traffitmescales, ranging from fine grained (1 ms) to coarse giaine
should accurately reflect arrival rates and variances acaos(multiple minutes). Swing matches burstiness for: i) botteb
range of time scales, e.g., capturing both average bankwigdhd packets, ii) both directions (arriving and departing) o
and burstiness. The traffic should further appropriatelp toa a network interface, iii) a variety of individual applicatis
flow and packet-size distributions, e.g., capturing flowvair within a trace (e.g., HTTP, P2P, SMTP, NNTP, etc.), and iv)
rate, length distributions, etc. original traces at a range of speeds and taken from a variety
We consider two principal challenges to achieving this goaif locations.
First, we require an underlying model with simple, semanti- Critical to the success of this effort is our ability to both
cally meaningful parameters that fully specify the chaact measure and reproduce in our traffic generation infrastract
istics of a given trace. By semantically meaningful, we meahe prevailing wide-area network characteristics at thmetof
that it should be straightforward to map high-level applicahe trace. Earlier work shows that it is possible to recreate
tion and network conditions to the model. It is well knowraggregate trace characteristics (e.g., average bandwicth
that traffic characteristics across a given link change ovarperiod of minutes) without reproducing wide-area network
time for a variety of reasons including changing appliaatioconditions [14]. We show that reproducing burstiness at a
mix [10]. Consider packet-level traces from the Wide wogkinrange of timescales (especially sub-RTT) requires reicigat
group [11] over a five-year period in Figufe for instance, network conditions for the transmitting/receiving hosisthe
that shows a shift in popularity among HTTP, NAPSTERpriginal trace. Of course, extracting wide-area network-co
NNTP and SMTP. Any traffic generation model should extenditions from a single packet trace is a difficult problem [15]
the ability to express such changes in application mix, f¢t6]. Thus, a contribution of this work is an understandirig o



the extent to which existing techniques for passively measin correspondingly meaningful changes in the charactesist
ing wide-area network conditions are sufficient to accuyateof the resulting trace.
reproduce the burstiness of a given trace and whether changBy maximally random, we mean that a trace generation
ing assumptions about prevalent network conditions rasulttool should be able to generate a family of traces constaine
correspondingly meaningful changes in resulting traces.,(e only by the target characteristics of the original trace aatl
based on halving or doubling the prevalent round trip time)the particular pattern of communication in the trace. Thus,
Given the ability to reproduce original trace charactersst multiple traces generated to follow a given set of charac-
Swing can then be used to explore a variety of what-if sceeristics should vary (perhaps significantly) across iifisl
narios by tuning user, application, and network parametec®nnections while still following the appropriate undeémty
Further, because Swing uses real TCP connections and €los#stributions. This requirement eliminates the trivialuiomn
loop sessions, the generated traffic is “responsive” faamse, of simply replaying the exact same connections in the exact
to changing network conditions, or competing applicatiosame order seen in some original trace. While quantifyirg th
traffic. extent to which we are successful in generating maximally
In the Sections that follow we first describe our methodotandom traffic is beyond the scope of this paper, this require
ogy (§ II-C) to parameterizeg(lll-A) a given trace and use it ment significantly influences our approach to, and architect
to generate{ 11I-C) live traffic and the corresponding packefor, trace generation.
trace. We then validate§ (V) Swing’s ability to faithfully
reproduce trace characteristics, critically examif&~C) the
sensitivity of generated traces to individual model parianse
and finally explore Swing’s ability to projecg (V-D) traffic Our hypothesis is that realistic and responsive packet gen-

B. Overview

characteristics into the future. eration must be informed by accurate models of: i) the users
and programs initiating communication across the targ, li
II. THE SWING APPROACH i) the hardware, software, and protocols hosting the o,

) and iii) the large space of other network links responsible f
A. Requirements carrying packets to and from the target link. Without moatgli
This section describes our goals, assumptions, and agproasers, it is impossible to study the effects of architedtura
to packet trace generation. We extract bi-directional chashanges on end users or to capture the effects of changing
acteristics of packets traversing a single network linky owser behavior (e.g., if user patience for retrieving webteon
target Before we describe our approach to trace generatias reduced). Similarly, without an understanding of a widg m
we present our metrics for successalism responsiveness of applications and protocols, it is difficult to understathe
and maximally random effects of evolving application popularity on traffic patie at
Packet trace generation is not an end in itself, rather a taolvariety of timescales. Finally, the bandwidth, latenayl a
to aid higher-level studies. Thus, the definition of realfema loss rate of the links upstream and downstream of the target
trace generation mechanism must be considered in the ¢ontgfect packet inter-arrival characteristics and TCP tnaission
of its usage. For instance, generating traces for capalzty p behavior of the end hosts communicating across the target li
ning likely only requires matching aggregate trace charast (see§ V-C).
tics such as bandwidth over relatively coarse timescalexel  We first describe our methodology for trace generation
generation for high-speed router design, queue managemesguming perfect knowledge of these three system compo-
policies, bandwidth estimation tools, or flow classificationents. In the following sections we describe how to relax
algorithms have much more stringent requirements. this assumption, extracting approximate values for alhest
We aim to generate realistic traces for a range of usage sckaracteristics based solely on a packet trace from somettar
narios and hence our goal is to generate traces that adguraliek. § \VV qualitatively and quantitatively evaluates the extent
reflect the following characteristics from an original #ad) to which we are able to generate packet traces matching a
packet inter-arrival rate and burstiness across a rangienef t target link's observed behavior given our approximationis f
scales, ii) packet size distributions, iii) flow charactéios in- user, end host, and network characteristics.
cluding arrival rate and length distributions, and iv) destion To generate a packet trace we initiate (non-determinitjca
IP address and port distributions. In this paper, we present a series of flows in a scalable network emulation environ-
techniques and results for the first three of these goals. ment running commodity operating systems and hardware.
To be responsive, a trace generation tool must flexibly asburcesand sinksestablish TCP and UDP connections across
accurately adjust trace characteristics by allowing ther usan emulated large-scale network topology with a single link
to change assumptions about the ambient conditions of thesignated as the target. Simply recording the packets and
original trace, such as the: i) bandwidth capacity of thgaar timestamps arriving and exiting this link during a live ewrul
link, ii) round trip time distributions of the flows travergj tion constitutes our generated trace. The characterisfios
the link, iii) mix of applications sharing a link, e.g., if P2 dividual flows across the target link, e.g., when the flowtstar
traffic were to grow to 40% of the traffic on a link orand the pattern of communication back and forth between the
UDP-based voice traffic were to double, and iv) changes source and the sink, is drawn from our models of individual
application characteristics, e.g., if average P2P filesfiem application and user behavior in the original trace. Sirtyija
size grew to 100MB. Changing such conditions should resule set the characteristics of the wide-area topology, dinty



all the links leading to and from the target link, to matcmetwork connections to multiple destinations. For inséganc
the network characteristics observed in the original tr&¢e does an activity correspond to downloading multiple images
employ ModelNet [7] for our network emulation environmentin parallel from the same server, different chunks of theesam
though our approach is general to a variety of simulation ahdiP3 file from different servers, etc. An important question
emulation environments. concerns the number and target of individual connections
Assuming that we are able to accurately capture and plegthin a session.
back user, application, and network characteristics, ¢iselt- Connections: We also consider the characteristics of con-
ing packet trace at the target would realistically match theections within a session, such as their destination, thebeu
characteristics of the original trace, including averageds of request/response pairs within a connection, the sizéef t
width and burstiness across a variety of timescales. Thigsarequest and corresponding response, wait time before giener
emulation environment allows us to extrapolate to scemarimg a response (e.g., corresponding to CPU and 1/O overhead
different from when the original packet trace was taken. Fat the endpoint), spacing between requests, and trangpgrt (
instance, we could modify the emulated distribution of @unTCP vs. UDP). We characterize individual responses with the
trip times or link bandwidths to determine the overall effeqpacket size distribution, whether it involves constantrhiie
on the generated trace. We could similarly modify applaati communication, etc.
characteristics or the application mix and study its impact  Network characteristics: Finally, we characterize the wide-
the generated trace. area characteristics seen by flows. Specifically, we extirdct
A family of randomly generated traces that match essentlas-rates, capacities, and latencies for paths conmgeetich
characteristics of an original trace or empirical disttibns host in the original trace to the target-link.
for user, application, and network characteristics (thatym The final parameterization that we developed for individual
not have been originally drawn from any existing packetejacapplication sessions is summarized in Tablgsee § III).
are useful in multiple ways. These traces can serve as inpMbile we base the above categories on an understanding of
to higher level studies, e.g., appropriate queueing psici the general way in which applications, users and the network
flow categorization algorithms, or anomaly detection. Asst interact, finding the specific parameters within each catego
interesting however would be employment of the trace gels-a complex feedback based iterative process. We startavith
eration facility in conjunction with other application sies. much smaller set of parameters, which we believe to be suffi-
For instance, bandwidth or capacity measurement tools meignt for our cause. We then add a new parameter when at least
be studied while subject to a variety of randomly-generaté&de application in at least one of the sample traces exhibits
but realistic levels of competing/background traffic ateegi a behavior that cannot be captured by the already existing
link. The utility of systems such as application-layer rimalst set of parameters. For instance, only when we discovered a
or other overlay protocols could similarly be evaluated levhi significant number of persistent connections did we decide
subjecting the applications to realistic cross traffic inuemto model thereqthink time (see§ Ill) between successive
lation testbeds. Most current studies typically: i) assume requests on a single connection. This iterative procegsssto
competing traffic in an emulated/simulated testbed, ii)jattb When either the number of parameters become intractalgg lar
the application to ad hoc variability in network performaner or a small set of parameters capture a wide variety of trace
iii) deploy their application on network testbeds such anP| characteristics across multiple traces. We were fortutate
etLab that, while valuable, do not easily enable subjecting be able to conclude with the latter scenario. A set of values
application to a variety of (reproducible) network conatits. for these parameters constitutes an applicati@i¢mature
For instance HTTP, P2P, and SMTP will all have different
signatures. To successfully reproduce packet traces, wa mu
extract appropriate distributions from the original traime
Earlier work [17] shows that realistic traffic generatorpopulate each of the parameters in Tahldf desired, it is
must use structural models that account for interactionssac also possible to individually set distribution values foese
multiple layers of the protocol stack. We follow the samearameters to extrapolate to a target environment.
philosophy (see our hypothesis inll-B), and thus set out While we do not claim that our set of parameters is either
to find suitable parameters for Swing’s structural model teecessary or sufficient to capture the characteristicsl| @fpal
capture sufficient aspects of users, applications and mietwalications and protocols, in the experiments that we cotetlic
We divide the parameter space into four categories: we found each of the parameters to be important for the appli-
Users: End users determine the communication charact@ations we considered.V quantifies the contribution of our
istics of a variety of applications. Important questionslimle model parameters to accurately reproduce trace chastatsri
how often users become active, the distribution of remdéss sithrough an initial sensitivity analysis.
visited, think time between individual requests, etc. Nibigt
certain applications (such as SNMP) may not have a human IIl. ARCHITECTURE
in the loop, in which case we use this category as a proxy forin this section, we present our approach to populating the
any regular, even computer-initiated behavior. model outlined above for individual applications, extiagt
SessionsA session consists of the network activity requiretvide-area characteristics of hosts communicating across t
to carry out some higher-level task such as retrieving a wédrget link, and then generating traces representativbexfet
page or downloading a MP3 file. It may consist of multiplenodels.

C. Structural model



TABLE |
Structural Model of Traffic . FOR EACH NEWHTTP SESSION FOR INSTANCE, WE PICK A RANDOMLY GENERATED VALUE (FROM THE CORRESPONDING
DISTRIBUTION) FOR EACH OF THE VARIABLES FIRST WE PICK A CLIENT AND THEN DECIDE HOW MANY RRES TO GENERATE ALONG WITH THEIR
INTERRRE TIMES. FOR EACHRRE WE DECIDE HOW MANY PARALLEL CONNECTIONS(SEPARATED BY INTERCONN TIMES) TO OPEN AND TO WHOM
(SERVER). WITHIN A CONNECTION WE DECIDE THE TOTAL NUMBER OF REQUEST RESPNSE EXCHANGES ALONG WITH THE REQUESTRESPONSE SIZES
AND THE REQUEST THINK TIME (REQTHINK) SEPARATING THEM.

| Layer | Variable in our Parameterization model : Description |
| Users | ClientlP_; numRRE: Number of RREs jnterRRE: think time |
RRE numconn: Number of ConnectionsinterConn: Time between start of connections

Connection | numpairs: number of Request/Response exchanges per connectimmsport: TCP/UDP based on the application|;
ServerlP ; RESPonse sizes REQuest sizes reqthink: User think time between exchanges on a connection

Packet packetsize (MTU); bitrate: packet arrival distribution (only for UDP right now)
[ Network | Link Latency ; Delay, Loss rates |
A. Parameterization methodology retransmitted packets, lost packets, and packets with ogu

We begin with a trace to describe how we extract application’ \/ACK values. Rather, we adopt strategies employed by
characteristics from the target link. While our approach @2rlier efforts faced with similar challenges [15], [2122].

general to a variety of tracing infrastructures, we focus drPr mstan_ce, in the tcpdump output in Figiré the response
tcpdump traces from a given link. packet with sequence numbed49:2897 was lost then we

The first step in building per-application communicatioHVOUId be able to infer this using the packets before and after

models is assigning packets and flows in a trace to appreprigt
application classes. Since performing such automaticsielas Given per-flow, per-application information, we apply a
fication is part of ongoing research [18]-[20] and becau&é€ries of rules to extract values for our target parameTérs.
we do not have access to packet bodies (typically requirBiEt step is to generate session information from connectio
by existing tools) for most publicly available traces, weta information. We sort the list of all connections correspiogd
the simple approach of assigning flows to application ckss® an application in increasing order of connection estab-
based on destination port numbers. Packets and flows thgfiment times. The first time a connection appears with a
cannot be unambiguously assigned to an appropriate C|assg5iyen source IP address we designate a session initiation an
assigned to an “other” app|ication class; we assign agmeg&i‘cord the start time. A session consists of one or more RREs
characteristics to this class. While this assumption 8ntite (Request-Response-Exchanges). An RRE consists of one or
accuracy of the models extracted for individual applicatio More connections. For instancé) parallel connections to
it will not impact our ability to faithfully capture aggrega download images in a web page constitutes a single RRE.
trace characteristics (see V). Further, our per-application Likewise, the request for the base HTML page and its response
models will improve as more Sophisticated flow-classifmati will be another RRE. We also initialize the start time of the
techniques become available. first connection as the beginning of the first RRE and set the
After assigning packets to per-appiication CiasseS, we néwmber of connections in this session to 1. Fina”y, we recor
group these packets into flows. We use TCP flags (whée FIN time for the connection.
present) to determine connection start and end times. NextlUpon seeing additional connections for an already disckrne
we use the sequence number and acknowledgment numifeaddress, we performne of the following actions.
advancements to calculate the size of data objects flowinglf the SYN time of this new connection is within an
in each direction of the connection. Consider for instand@REtimeout limit (a configurable parameter), we conclude th
a portion of an example tcpdump trace shown in Figlire the connection belongs to the same RRE (i.e., it is a paailel
The first line marks the SYN sent from a HTTP server at IBBmultaneous connection), and update our number of connec-
10.0.3.172 to the client at IP 10.128.3.129. The next line i®ns parameter. We also update the RREENd (terminatios tim
for the ACK from the server; the acknowledgment number aff all connections) of the RRE as the max of all connection
351 suggests a 351 byte request from the client. The thteemination times. Finally, we record the difference inrsta
lines that follow show that the server sent a total of 434ftimes of this new connection from the previous connection
bytes of data in response. Of course, there are many vagatiaterConn) in the same RRE.
in determining the start and end of connections in a noidy If the SYN time of this new connection is not within the
trace. We use the timestamp of the first SYN packet sent byrR&Etimeout limit, we declare the termination of the current
host as the connection start time. Unless sufficient inftiona RRE and mark the beginning of a new RRE. We also calculate
is available in the trace to account for unseen packets fibe time difference in the max FIN of the previous RRE
connections established before the trace began, we consaled the start of this RRE. If that time difference is within
the first packet seen for a connection as the beginning of thla¢ SESStimeout limit (another configurable parameter), we
connection when we do not see the initial SYN. Similarlyassociate the new RRE with an existing session. Otherwise, w
we account for connections terminated by a connection menclude that a new session has started. For each connection
set (RST) rather than a FIN. Due to space constraints, we also record the request think time as the time difference
omit additional required details such as: out-of-orderkpés; between a response from the server and the subsequenttreques
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09:32:02.96 10.0.3.172.80> 10.0.3.129.47838: S 2277557:2277557(0) ack 2267511 wi@257
09:32:02.98 10.0.3.172.80> 10.0.3.129.47838: . ack 351 win 6432

09:32:02.98 10.0.3.172.80> 10.0.3.129.47838: . 1:1449(1448) ack 351 win 6432
09:32:02.98 10.0.3.172.80> 10.0.3.129.47838: . 1449:2897(1448) ack 351 win 6432
09:32:02.99 10.0.3.172.80> 10.0.3.129.47838: P 2897:4345(1448) ack 351 win 6432
09:32:20.76 10.0.3.172.80> 10.0.3.129.47838: F 4345:4345(0) ack 351 win 6432

Fig. 2. Tcpdump output format

from the client. We have analyzed a variety of values for oumto single logical links with aggregate capacity, los®ratnd
configurable thresholds such as RREEnd and SESStimedatency corresponding to the links that make up this agdgeega

While we omit the details for brevity, usin§REtimeout = Thus, in our model we employ four separate logical links re-
30sec and S ESStimeout = 5min works well for a range of sponsible for carrying traffic to and from the target link &k
scenarios. communicating hosts. For cases where sufficient informatio

In summary, each session consists of a number of RRESNnot available—for instance if we do not see ACKs in the
which in turn consist of a number of protocol connectionseverse direction—we approximate link characteristigstiie
Given information on individual sessions and their coroggp host as the mean of the observed values for all other hosts on
ing RREs, we extract a frequency distribution for each of thts side of the target link for the same application.
model parameters to generate empirical cumulative distrib Link delays: Consider a flow from a clienC initiating
tion functions (CDF). At this stage, we have the choice & TCP connection to a servéf as shown in Figure3. We
either stopping with the empirical distributions or penfing use each flow in the underlying trace between these hosts
curve-fitting to analytical equations [23]. For this workew as samples for the four sets of links responsible for cagryin
choose the former approach for simplicity and becausetigffic between the flow endpoints. We record four quantities
accurately represents observed data (for instance, dagturfor packets arriving at the target link in both directiongsg
outliers), and leave the derivation and use of analytiaidist we record the time difference between a SYN (fréthand the
tions to future work. corresponding SYN+ACK (from) as a sample to estimate
the sum of link delay$, andis (Figure4). Next, we measure
the difference between the SYN+ACK and the corresponding
ACK packet as samples to estimate the sum of delagsdi;

Given models of individual flows crossing a target networiot shown). We use the difference between a response packet
link, we next require an understanding of the charactesstiand its corresponding ACK (frony’) to estimate the sum of
of the network links responsible for transmitting data tal andelaysi4 andl; as shown in Figur&. Finally, we measure the
from the target link for the hosts communicating across thigne between a data packet and its corresponding ACK (from
link. Our results show§(V) that accounting for such networkS) as further samples fdk + I3 (not shown).
conditions is critical to faithfully reproducing the araivand For this analysis, we only consider hosts that have five or
burstiness characteristics of a packet trace. Of course, mere sample values in the trace. We use the median (per
can only approximate the dynamically changing bandwidthpst) of the sample values to approximate the sum of link
latency and loss rate characteristics of all links thatycBows delays (;+l4 or Io+l3). We chose the median because in our
that eventually arrive at our target from a single packeatdra current configuration we assign static latency values to the
While we developed a number of techniques independentigks in our topology and we believe that the median should
and while it is impossible to determine the extent to whiche representative of the time it takes for a packet to reaeh th
our approach differs from techniques in the literature (@hetarget link once it leaves hosts on either end. One assumptio
important details may be omitted and source code is oftéehind our work is that flows follow symmetric paths in the
unavailable), we do not necessarily innovate in our abilifiprward and reverse direction, allowing us to assign vafoes
to passively extract wide-area network conditions from an andi, from samples of; + /4.
existing packet trace. Rather, our contribution is to shoat it Link Capacities: We employ the following variant of
is possible to both capture and replay these network camditi packet-pair techniques to estimate link capacities.
with sufficient fidelity to reproduce essential characterss  We extract consecutive data packets not separated by a
of the original trace.§ V quantifies the extent to which corresponding ACK from the other side. The time difference
we are successful. Likewise, we assume that the modelsstween these packet-pairs gives an estimate [23], [23)eof t
parameters (CDFs) are stationary for the duration of theetratime for the packets to traverse the bottleneck link from the
Augmenting our models to account for changing netwotkost to the target link. It is then straightforward to caidel
characteristics [24] is part of ongoing work. For the traaes the bottleneck capacity using the formula:
consider, non-stationarity has not been a significant clesta LinkCapacity * TimeDifference = PacketSize.

We extract network characteristics as follows. For each hos Since we do passive estimation we cannot control which
(unique IP address) communicating across the target link wackets are actually sent in pairs as opposed to active mea-
wish to measure the delays, capacities and loss rates of sheement techniques. To account for this shortcoming, we
set of links connecting the host to the target link as shown sort the packet-pair time separation values in ascending or
Figure 3. For simplicity, we aggregate all links from a sourceler and ignore the bottom half exploiting the fact that with
to the target and the links from the target to the destinatiovidespread use of delayed ACKs in TCP, half of the packets

B. Extracting network characteristics
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Fig. 3. Approximating wide-area characteristics. Patimfro Fig. 4. Time difference between a SYN  Fig. 5. Time difference between a re-
C to the target link approximated as a single link with and the corresponding SYN+ACK is an  sponse packet and the corresponding ACK
capacityC1, delayl; and loss rate; . estimate ofla+i3. is an estimate of4+1;.

between the timestamp of the packet and the corresponding
hole is smaller than the RTT of the flow.

On the other hand, if there is an out-of-order TCP packet
(retransmission) with no corresponding hole, it is therliik
that the packet arrived at the target but was lost en-route to
the destination. We use this loss event to estimateWe
estimatep; andp, in a similar manner when we see flows in
the opposite direction.

Figure9 shows the loss rate values extracted for both direc-
0.1 % loss rate tions of traffic of a trace. There are a number of assumptions
@ that we make in the above algorithm to extract loss rates.

@ @ We assume that losses experienced by a flow are typically
not caused by the traffic we measure directly, i.e., losses
Fig. 6. Target link modeled as a Dumb-bell. on upstream and downstream links are caused by ambient
congestion elsewhere in the network and not at some other
are sent as packet-pairs. Of course, it is known that packetngestion point shared by multiple hosts from our trace.
pair techniques overestimate the bottleneck capacity. [28] Using this assumption, we assign distinct loss rates fdslin
instance, queuing at a higher capacity downstream link cannnecting each host to the target rather than attempting to
reduce the packet-pair separation thereby inflating tha@sp account for such shared congestion [28]. Our methodology
estimate. Likewise, packets sent in pairs might not arrive@& cannot detect losses of retransmitted packets and losseg du
bottleneck in pairs [26]. To account for these, we usediitt  TCP handshake. We do not disambiguate between losses on
percentile of the remaining sample values to approximatie pahe path from the target link to the server and the corre-
capacity from a given host to the target link and leave a mogponding ACK on the path from the Server to the Target link
exhaustive capacity estimation based on these recenestudFigure 3). Finally, the algorithm will be inaccurate during
for future work. For instance, in Figu® we can estimate; correlated losses, because of our assumption of independen
and ¢ in this fashion. Finally, we assume the incoming linkosses. For instance, when an entire TCP window of packets
to a host has capacity at least as large as the outgoing lare lost we count each packet as lost instead of counting it
and hence we approximatg andc; to the values:; andcs as a single loss-event. Improving our algorithm with more
respectively. sophisticated techniques [15] is part of our ongoing effort

10 Mbps, 100 ms,

/ 2% loss rate

TARGET LINK

ETP 100 Mbps, 20 ms delay
GENERATOR 1% link loss rate
1Gbps, 1ms dela/

Loss Rates:Extracting loss rates accurately proved to be- Generating Swing packet traces
the most challenging aspect of capturing the network charac Given application and network models, we are now in a
teristics we considered. We measure loss rates using setrgrosition to generate the actual packet trace based on these
missions and a simple algorithm based on [27]. The algorithoharacteristics. Our strategy is to generate live comnatioia
starts by arranging packets of a flow, based on increasiagiong endpoints exchanging packets across an emulated net-
timestamps. In the absence of any losses, retransmissiamsrk topology. We implement custogeneratorsandlisteners
reordering etc. we would expect to see a series of increasengd pre-configure each to initiate communication according
TCP sequence numbers. However, if a packet en-route to thethe application characteristics extracted in the previo
target link is lost, the corresponding sequence numberbeill step. We also configure the network topology to match the
“missing” in our series, i.e, we will see the packets beforeandwidth, latency, and loss rate characteristics of thgnad
and after the lost packet as consecutive arrivals at thettargace as described below. We designate a single link in the
link. This likely candidate for a loss is established if tlostl configured topology as thearget Our output trace then is
packet (and the corresponding TCP sequence number) is ssiemply a tcpdump of all packets traversing the target duittireg
at a later time (i.e. out-of-order) indicating retransrgasrom duration of a Swing experiment. We run Swing for five minutes
the sender. Such a missing sequence number is called a “hatedre than the duration of the target trace and then ignore the
and we count it as a loss event for estimatingin Figure 3. first five minutes to focus on steady state characteristics.
It is, however, possible that the out-of-order packet might For each application in the original trace, we generateta lis
well have been a retransmitted packet. In order to disanalbéguof sessions and session start times according to the dittnib
these two cases while use a simple heuristic that considlerscd inter-session times measured in the original trace. Wa th
such candidates as packet losses unless the time differermelomly assign individual sessions to generators to seed



the corresponding configuration file. For each session, Wwest generators and listeners. Ideally, we would create one
set values for number of RREs, inter-RRE times, number nbde/edge in our target topology for every unique host in the
connections per RRE, etc., from the distributions measimmredoriginal trace. However, depending on the size of the track a
the original trace. the capacity of our emulation environment, it may be neagssa

At startup, each generator reads a configuration file that collapse multiple sources from the original trace onto a
specifies: i) its IP address, ii) a series of relative timavgis single IP address/generator in our target topotodor the
designating session initiation times (as generated abdi)e) experiments described in the rest of the paper, we typically
the number of RREs for each session, iv) the destinatigollapse up to 10,000 endpoints (depending on the size of
address and communication pattern for each connectioinwitithe trace) from the original trace onto 1,000 endpoints in ou
an RRE, and v) the packet size distribution for each connesmulation environment.

tion. For our target scenarios, we typically require thowsa  Our mapping process ensures that the generated topology
of generators, each configured to generate traffic matchieg teflects characteristics of the mamttive hosts. We base the
characteristics of a single application/host pair. We teréde number of generators we assign to each application on the
necessary configuration files for all generators accordimit bytes contributed by each application in the original trdes
extracted application characteristics. We similarly agurfé all instance, if 60% of the bytes in the original trace is HTTP,
listeners with their IP addresses and directives for redpon then 60% of our generators (each with a unique IP address)
to individual connections, e.g., how long to wait before ren the emulation topology will be responsible for genemtin
sponding (server think time) and the size of the response. HTTP traffic. We discuss the limitations of this approach in
We run the generators and listeners on a cluster of cogy/|. Next, we assign hosts to both sides of the target link
modity workstations, multiplexing multiple instances cick  based on the number of bytes flowing in each direction in
workstation depending on the requirements of the generatgé original trace for that application. For instance, & is
trace. To date, we have generated traces up to approximat@lite as much HTTP traffic flowing in Figuré from left to
200Mbps. For the experiments in this paper, we use eleven Zdght as there is from right to left, we would then have twice
Ghz Xeon processors running Linux 2.6.10 (Fedora Core 23 many HTTP hosts on the left as on the right in the emulated
with 1GB memory and integrated Gigabit NICs. For examplegpology.
for a 200Mbps trace, assuming an even split between generaz) Assigning link characteristics to the topologyBiven

tors and IisFeners (five machir.1e.s. egch), each generato@on(ljlse"ne graph interconnectivity consisting of an unbagan
be responsible for accurately initiating flows correspagdio dumb-bell, we next assign bandwidth and latency values to

40Mbps on average. Each machine can comfortably handle {i&e |inks. We proceed with the distributions measuredién t
average Cas‘f though t_h(_are“are S|gn|f|_cant bur_sts that makSrféinaI trace § 11I-B) and further weigh these distributions
Important to “over-provision the_experlr.nen.tal infrastture. it the amount of traffic sent across those links in the oagi
Crl'glcal to our methodology is cqnﬂgurlng each of thgace. Thus, if a particular HTTP source in the original ¢rac
machines to route all packets to a single ModelNet [7] CO{fqre responsible for transmitting 20% of the total HTTP byte
responsible for emulating the hop-by-hop characteristica ,qinq 5 |ogical link with 400 kbps of bandwidth and 50 ms of
user_—specif_ied wid_e-area topology. The source code for Moq%tency, a randomly chosen 20% of the links (corresponding
Net is publicly available and we run version 0.99 on a machlrgg HTTP generators) in our target topology would be assigned

identical to tho;e hosting the generators and Iisteneieﬂﬁr. handwidth/latency values accordingly. We also assigripkr-
ModelNet Su_bJECtS each packet t(_) Fhe per-hop b"’md\’\”d‘\})"I'Us to each link based on distributions from the original
delay, queueing, and loss characteristics of the targetdgy. trace

ModelNet operates in real time, meaning that it moves packet The topology we have at the end of this stage is not one

from queue to queue in the targ.et topology before fonNard.'QHat accurately represents the total number of hosts wih th
it on to the destination machine (one of the 11 runnlng

. . ame distribution of wide-area characteristics as in tigral
generators/listeners) assuming that the packet was nppédo L
; . trace, but one that is biased towards hosts that generate the
because it encountered a full queue or a lossy link. Earlier L - L .
most traffic in the original trace. One alternative is to gssi

work [7] validates ModelNet’s accuracy using a single core . o
[7] Y g g segsions to generators based on the network characteastic

at traffic rates up to 1Gbps (we can generate higher Spqﬁe sources in the original trace. We have implemented this

traces in the future by potentially running multiple cor2s]). . .
. . > Dy P y 9 bie « I . Ptrategy as well and it producéetterresults with respect to
Simple configuration commands allow us to assign multiple

. : matching trace characteristics, but we found that it did not
IP addresses (for our experiments, typically hundredshti e - ;
offer sufficient randomness in our generated traces, he., t
end host. ) .
. . . . . resulting traces too closely matched the characterisfitheo
1) Creating an emulation topologyThe final question

: . original trace making it less interesting from the perspect
revolves around generating the network topology with ap- . X . .

. . ... Of exploring a space or extrapolating to alternative saesar
propriate capacity, delay, and loss rate values to indalidu

links in the topology. We begin with a single bi-directional

link that represents our target link (Figuf®. We assign a  !Such a collapsing impacts the IP address distribution ofglomssing the

bandwidth and Iatency (propagation delay) to this link asdarget link (i.e., it reduces the number of unique IP address our generated
. .. . trace relative to the original trace). However, as showf M, this does not

on the derived characteristics of the original traced lifke

A ) i i affect aggregate trace characteristics, such as bandwvgdtket inter-spacing
next step is to add nodes on either side of this target d@.



IV. VALIDATION at both fine- (sub-RTT) and coarse-timescales has proven

We now describe our approach for extracting and validatirﬁjdfﬁcun- To the best of our knowledge, our work is the first
our parameter values for our model from a number of availadfe Show such a match across a range of timescales.
packet traces. In particular, we focus on traces from Mawj,[1
a trans-Pacific line (18Mbps Committed Access Rate on a V. APPLICATION STUDIES
100Mbps link), CAIDA [12] traces from a high-speed OC- Given our general validation approach, we now present
48 MFN (Metropolitan Fibre Network) Backbone 1 link (Sarnhe results of case studies for: i) capturing the fine-gehine
Jose to Seattle) as well as OC3c ATM link traces from thsehavior of individual application classes in our packatés,
University of Auckland, New Zealand [13]. These traces comg validating macro properties of our generated traces| an
from different geographical locations (Japan, New Zealangl) matching burstiness of traffic across a range of time
USA) and demonstrate variation in application mix and indranularities.
vidual application characteristics as summarized in Tahle
For instance, the traces range from an aggregate bandvxfidtr}l\o
5Mbps (Auck) to200Mbps (CAIDA). ' . ) .
For each trace we first extract distributions of user, net- We first measure Swing's ability to reproduce aggre-
work and application characteristics using the methodolo§at€ frace characteristics. Table presents aggregate per-
outlined in§ Ill. Next we generate traffic using Swing andPPplication characteristics of Swing-generated tracespeoed
during the live emulation record each packet that traversi@sthe original Auck, Mawi, and CAIDA traces. We chose three
our target link. From the generated Swing-trace we re-extra/1@wi traces to demonstrate Swing's ability to capture and
parameter values and compare them to the original valukgProduce evolving traffic characteristics (see FigijyeFor
Specifically, we compare: i) application breakdown, ii) ageach of the traces HTTP was the most popular application by
gregate bandwidth consumption, iii) packet and byte arrivytes: The table shows the comparison for HTTP as well as the
burstiness, iv) per-application bandwidth consumptiord &) next_ popular appllca_tlon for each trace. For Mawi, no single
distributions for our model's parameter values. To compaf@Plication was dominant after HTTP hence we present sesult
distributions we use various techniques ranging from \Visuf@" the TCPOTHER class. In all cases, we are satisfied with
tests to comparing the median values and Inter-Quartilgemn OUr ability to reproduce aggregate trace characterisgéispe-
(the difference in the5th and25th percentile values). cially considering that we are performing no manual tuning
To determine whether we capture the burstiness characf®f- Per-trace or per-application basis. While we focus an ou
istics of the original trace, we employ wavelet-based mulfPility to reproduce per-application characteristicshe test
resolution analysis (MRA) [30]-[32] to compare byte an@f this paper, our results are t_yplcally better when repmuiy.
packet-arrival rates at varying time scales. Intuitivelgvelet adgregate trace characteristics because of the aveyjabfli
scaling plots, or energy plots, show the variance (burstje MOre information and Ie_ss dlscr_e_tlzauon error.
in the traffic arrival process at different timescales. lalgies W& next measure Swing's ability to accurately capture the
visual inspection of the complex structure in traffic prozss o_Ilstrlbutlons for the structural prop_ertles of_use_zrs anplhap_-
For example, consider the top pair of curves in Figafe FIOI’]S. We present results for the five applications considler
The x-axis represents increasing time scales (on a log)scaie Tablell, HTTP, SQUID, NAPSTER, SMTP, and KAZAA.
beginning at 1 ms and the y-axis is the Energy of the traﬁﬁegults for other application clgss.es/Frace combinatemes
at a given time scale. A sharp dip in the curve, for instanc%',m”_‘"‘r- Tablelll compares the dlstrlb_utlon qf our parameters
one that happens at time scale%of256ms) suggests a strongrelat"’e to the original t_race (Trac®Wing), with the mgdlar_1 _
periodicity (and hence lower variance and Energy) arouad tiYalués and IQR. Matching IQR values and the median indi-
time scale. The presence of a dip at the time scale of tpates similar distributions for both the extracted and getee
dominant RTT of flows is well understood [17], [32], [33]V@lUes. . _ o
and results from the self-clocking nature of TCP. Likewiée, While the required level of accuracy is application-
all flows arriving at a target link are bottlenecked upstreaffPendent, based on these results we are satisfied with our
at a link whose capacity i80Mbps, then we would expect qability to reproduce application and user charactensM[.*_mIel _
dip at1.2ms (the time to transmit 4500 byte packet across parameters that atFe_mpt to reproduce human/machine think
a 10Mbps link). For more detailed analysis and interpretatioime are the most difficult to accurately extract and repoedu
we refer the reader to [30], [33]. Fpr instance, the IQR of interconn times for'Auck/SQUID
For our purposes, if the energy plot for a generated tragdfers by 500ms. However, our sensitivity experimefts{C)
closely matches the energy plot for the original trace, tiven reveal _that_lt is important to con§|d_er some, even if coarse,
may conclude that the burstiness of the packet or byte arri@Proximation of these characteristics to reproduce éssen
process matches at a variety of timescales for the two track&ffic properties. On the other hand, we achieve near perfec
Such matching is important if the generated traces are to #furacy for more mechanistic model parameters such as
successfully employed for scenarios sensitive to burssine®duest and response size (see Table
e.g., high-speed router design, active queue management, 43iven validation of our application and user models, we

flow classification. Matching the energy plot of a given plof€Xt consider wide-area network conditions. Figdrehows
the extracted values of the two-way latencies of hosts dreeit

2UDP traffic (~ 10% by bytes) was filtered out. side of the target link in the Auck trace. More thah%

Distribution parameters



TABLE 1l
COMPARING AGGREGATE BANDWIDTH (MBPS) AND PACKETS PER SECONOPPY (TRACE/SWING) FORAUCK, MAWI(3) AND CAIDA TRACES.

Trace | | Length TOTAL Date Application 1 - HTTP Application 2
Secs Mbps pps Mbps pps Name Mbps pps
Auck 599 5.53 979 2001-06-11 3.33/3.24 591 /509 SQUID 0.55/0.55 58 /57
Mawi 899 17.79 | 2229 | 2004-09-23 9.90 /9.04 1209 /1101 TCPOTHER | 5.58 /4.96 720 /609
Mawi2 899 15.30 | 2309 | 2003-05-05 5.37 /5.13 776 /1693 SMTP 1.85/1.76 281 /267
Mawi3 1325 10.95 | 1485 | 2001-12-20 6.70 /6.19 832 /703 NAPSTER 1.93/1.83 199 /176
CAIDA 300 184.17 | 22786 | 2003-04-24 || 134.93 /127.56 | 17404 /14625 KAZAA 49.24 145,97 | 5382 /4523

TABLE Il
MEDIAN AND IQR PARAMETER VALUES (TRACE/SWING) FORAUCK, MAwI (3) AND CAIDA TRACES.
Model Parameters— REQ RSP numconn | interconn | numpairs | numrre interRRE reqthink
(Trace)Application(Statistic) | (Bytes) (Bytes) (Secs) (Secs) (Secs)
(Auck) HTTP (Median) 420 /421 747 /735 1/1 0.4/0.4 1/1 1/1 10.9/105| 0.1/0.1
(Auck) HTTP (IQR) 201 /203 3371 /3357 1/1 1.0/0.9 0/0 0/1 8.8/8.4 0.8/0.8
(Auck) SQUID (Median) 535 /536 1649 /1523 2/2 1.0/1.0 1/1 1/1 8.6/7.7 0.6 /0.6
(Auck) SQUID (IQR) 178 /181 5224 /5225 6/6 27122 212 1/1 76/4.1 14/1.4
(Mawi) HTTP (Median) 415 /414 462 /438 1/1 0.7 /0.7 1/1 1/1 10.6 /10.2 | 0.2/0.2
(Mawi) HTTP (IQR) 406 /408 2956 /2947 0/0 221/2.0 0/0 0/0 9.4/8.4 2.0/1.9
(Mawi) TCPOTHER (Median) 36 /36 68 /80 1/1 15/15 1/1 1/1 10.7 /114 | 0.1/0.1
(Mawi) TCPOTHER (IQR) 1014 /642 516 /755 0/0 49/33 5/5 0/0 9.5/10.3 | 0.3/0.3
(Mawi2) HTTP (Median) 485 /485 424 1412 1/1 0.9/0.9 1/1 1/1 10.3/10.2 | 0.4/0.3
(Mawi2) HTTP (IQR) 390 /393 4052 /3991 0/0 261723 0/0 0/0 9.5/8.8 291728
(Mawi2) SMTP (Median) 28 /28 33/33 1/1 40/26 4/4 1/1 11.3/11.1 | 0.0/0.0
(Mawi2) SMTP (IQR) 50 /50 451741 0/0 9.2/4.6 6/6 0/0 9.3/8.3 0.8/0.6
(Mawi3) HTTP (Median) 167 /167 2935 /3072 1/1 1.47/0.9 1/1 1/1 10.2/9.6 | 0.3/0.3
(Mawi3) HTTP (IQR) 392 /392 | 11916 /11948 1/1 3.6/27 0/0 0/1 85/7.4 24124
(Mawi3) NAPSTER (Median) 39/41 68 /76 1/1 0.6/0.6 1/1 1/1 13.4/23.2| 1.1/0.9
(Mawi3) NAPSTER (IQR) 258 /265 278 /287 0/0 0.0/0.0 1/1 0/0 9.6 /115 | 3.9/3.7
(CAIDA) HTTP (Median) 341 /341 361 /355 1/1 0.5/0.6 1/1 1/1 10.2/10.5| 0.1/0.0
(CAIDA) HTTP (IQR) 446 /464 6705 /6649 1/1 18/1.8 0/0 0/1 8.9/9.0 0.6 /0.5
(CAIDA) KAZAA (Median) 57 /57 100 /96 1/1 13/1.4 1/1 1/1 12.0/16.2 | 0.2/0.1
(CAIDA) KAZAA (IQR) 319 /316 317 /324 0/0 27126 0/0 0/0 149/12.2 | 0.6/0.5
Comparing CDFs of link capacities

Comparing CDFs of host delays
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Fig. 7. Two-way link delay for hosts. Fig. 8. Upstream/downstream capacities. Fig. 9. Loss rates for feeding links

of the hosts see a delay greater thiidms on one side of B. Wavelet based analysis

the link (Direction1) matching our expectation for a cross-

continental link. Figure8 compares Auck’s link capacities Figure 10 compares the wavelet scaling plots for byte

for the path connecting the hosts to the target-link. Whilgrrivals for HTTP/Auck and the corresponding Swing traces.

in one direction the capacities range frarl00Mbps, hosts In both plots, the top pair of curves corresponds to the isgali

appear to be bottlenecked upstream at approximatéMbps plots for one traffic direction (labele®) and the bottom curves

in the other direction. These values match our understandisre for the opposite direction (labeldd. A common dip in

of typical host characteristics on either side of the Auck i the top curve corresponds to the dominant RTT200ms

(we had similarly good results for Mawi and CAIDA). Finally,(scale9) as shown in Figure/. Likewise, the common dip

Figure9 presents the loss rate for the trace. For validation, vé@en for the bottom pair at a scale b{8ms) corresponds to

also plot the extracted values for delay, capacity, andidas the bottleneck upstream capacity bMbps (see Figure).

for our Swing-generated traces. We obtain good matches inRigure 11 compares the scaling plots for byte arrivals for

cases. The discrepancy in loss rate behavior results frem $QUID for the same trace. The relatively flat structure in

difficulty of disambiguating between losses, retransnissi Direction 1 relative to the HTTP plot results because most

multi-path routing, correlated losses etc. in a noisy patrkee of the data flows in Direction 0. The significant difference

as discussed ifi III-B. in SQUID’s behavior relative to HTTP shows the importance
of capturing individual application characteristics, esplly
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Fig. 13. HTTP/Mawi Energy plot (bytes). Fig. 14. HTTP/Mawi2 Energy plot (bytes). Fig. 15. SMTP/Mawi2 Energy plot (bytes).

if using Swing to extrapolate to other network settings,,e.g To the best of our knowledge, we are the first to reproduce
considering trace behavior in the case when SQUID becon@sserved burstiness in generated traces across a rangeeof i

the dominant application. Figure2 shows the correspondingscales. While our relatively simple model cannot captute al

plot for packet arrivals. The close match confirms our gbilitrelevant trace conditions (such as the number of internedia

to reproduce burstiness at the granularity of both bytes ahdps to the target link), an important contribution of this

packets. work demonstrates that capturing and reproducing a relgtiv

We next present results across three traces taken from $fBPIe set of trace conditions is sufficient to capture loess,
Mawi repository (Figurel). Figure 13 shows the scaling plot at least for the traces we considered. Earlier work [33] show

for HTTP byte arrivals in the Mawi trace. The plot differsthat global scaling (at time scales beyond the dominant RTT)

significantly from the corresponding Auck plot (see Figngp 2" be captured by modeling, for instance, response siza&s as

but Swing can accurately reproduce it without manual tuninf€avy-tailed distribution. Our work on the other hand, s&iow
Consider another trace (Mawi2) from the Mawi repositorl}@W © extract appropriate distributions from the undexyi

taken over a year earlier as shown in Figare Application race (rather than assuming particular distributions fadi-i

burstiness changes over time in this trace and Swing aetyrat//dual parameters), reproduces burstiness at a varietynef t

captures this evolving behavior. Swing is also able to gapt,Scales (including those smaller than the dominant RTT), and
the burstiness of SMTP, a popular application at the tinfé)n&ders both the bytes and packet arrival processesaftic tr

the trace was taken, as shown in Figure Consider yet N two directions.
another trace taken in 2001 (Mawi3) when NAPSTER [34]
was the most popular application after HTTP. FigiBsshows C. Sensitivity

the corresponding Energy plots. Wavelet-scaling plotsehav gne question is whether our model parameters are necessary
only been used for qualitative comparisons to-date. Theeclo,ng gyfficient to reproduce trace characteristics. Sityilatr
proximity of the plots pf the orl_glnal and the corre_spondmg,omd be interesting to quantify the relative importance of
Swing trace, and the difference in shape and magnitude of {§@iqual parameters under different settings. While titied
energy plots across different traces gives us sufficietht fai - 5,5y is is beyond the scope of this paper, we have invéstiga
all cases to use visual match as a validation metric. Overgll e sensitivity to our parameters and have found that all
we are satisfied by Swing's ability to track and reproducgspects of our model do indeed influence resulting accuracy
emerging application behavior over time. to varying extents. We present a subset of our findings here.
Finally, Figurel7 shows the energy plot for both directions We start with the importance of capturing and reproducing
of HTTP traffic in the CAIDA trace as validation of our ability wide-area network conditions as it appears to be the biggest
to generalize to a higher-bandwidth trace as well as to & trazontributor to burstiness in the original trace. Consitierdase
taken from a fundamentally different network location. where we omit emulating wide-area network conditions and
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Fig. 19. Energy plot sensitivity to interconn, Fig. 20. Cross-run Energy plot variability. Fig. 21. Responsiveness to doubling response
interRRE parameters. size and link latency (Mawi).

simply play back modeled user and application characiesistSwing curves, we plot average values acrossltheuns for
across an unconstrained network (switched Gigabit Etherneach time scale and show the standard deviation using error
While we roughly maintain aggregate trace characteristich bars. While the average closely follows Auck, at large time
as bandwidth (not shown), Figude shows that we lose the scales we see a few examples where the energy plot does not
rich structure present at sub-RTT scales and the overadtiburcompletely overlap with the baseline. While it is feasibbe t
ness characteristics in the curve labelled “No Network”isThreduce variability, overall we prefer the ability to expmothe
result shows that two generated traces with the same averagege of possible behavior starting with an original trace.

case behavior can have vastly different structure. Herice, i

is important to consider network conditions to reproduce th

structure in an original trace. This figure also shows th& Responsiveness

capturing any single aspect of wide-area network condition We now explore Swing's ability to project traffic into alter-
is likely insufficient to reproduce trace characteristi€®r .0 gcenarios. Figugl shows the effect of doubling the link
mstange, only reproducing I|r_1k latencies (with unconsed o ies (all other model parameters remain unchanged) fo
capacity and no loss rate) improves the shape of the Pi@1p/mawi. Once again, while aggregate trace characiesist
re!a.tlve to an unconstrallne.d netyvorK but remains far from trpemam roughly unchanged.(7mbps vs.9mbps), burstiness
original trace characteristics. Likewise, having botref&ly .., \ary significantly. Overall, we find that accurate estérsa
and capacity is also insufficient though progressivelyeiett ¢ honyork conditions (at least within a factor of two) are re
Accurate network modeling alone is insufficient to reproguired to capture burstiness and that, encouragingly,gihgn
duce burstiness. As one example, the top two curves in Figstimates for network conditions matches expectationshier
ure 19 show the degradation when we omit interRRE frorfesulting energy plot. For instance, doubling the RTT moves
our model for HTTP/Auck when compared to Swing tracege significant dip to the right by one unit as the X-axis is on
incorporating the entire model. Similarly, the bottom pair a/0g, scale. We also consider the effects of doubling request
curves show the increase in burstiness at large time sca@gl response sizes for the same trace. Once again, the energy
when we omit interconn for SQUID/Auck. plot shows the expected effect: the relative shape of theecur
As discussed if§ Il, one of our goals is to generate a familyemains the same, but with significantly more energy at all
of traces starting from a given trace using an indepedentinotime scales. The average bandwidth increases from 9mbps to
and parameters. While this approach allows us to introdut@mbps.
more variability in Swing-generated traces, it is impottém Finally, we explore Swing’s ability to project to alternate
consider the resulting deviation from the original trace. Tapplication mixes during traffic generation. For the Auck
address this question we perform the following experimertace (Tablell), we increase the number of SQUID sessions
We start with the Auck trace and vary the initial randonby a factor of 20 while leaving all other model parameters
seed to our traffic generator and generaeSwing traces. (for different applications and network conditions) ideat.
Figure 20 shows the variability across the different runs. FoFhe average bandwidth of the trace increaseslimbps.
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Smallest time scale = 1 msec In this work, we focus on generating realistic traces for a

single network link. For a variety of studies, it may be véliea
to simultaneously generate accurate communication ctesrac

28| B SwingWithSQUID*20
-r AuckBaseline
© SwingBaseline

% 24 ~AuckOnlySQUID istics across multiple links in a large topology. We conside
T 5y EEEEEE this to be an interesting and challenging avenue for future
%20 2N research though it will likely require access to simultareo

2 /x packet traces at multiple vantage points to accurately lpdgu

some extended version of our proposed model.
. : i i One limitation W_ith our current methodology is that we
Time Scale | assume that the distributions for the various parameters do
Fig. 22. Energy plot responsiveness to varying applicatitn (Auck). not change during the duration of the trace. While this as-
sumption has been true for the relatively short-duratiaces

Figures10and11 highlighted the difference in burstiness charl<<1hr) that we considered, we are currently augmenting our
acteristics of the two applications. SQUID has a much mo[@ethodology to phwde the trgce generatlon. mechanism into
pronounced dip at time scafeand the curve in smaller time ime-separated bins and use different CDFs, if neededzaith e
scales is more convex in shape. The energy plot of the over@j|those bins for user, network and application parameters.
trace is a function of the burstiness of individual appiimas Will b€ interesting to consider the effects of stationanty
and hence increasing the percentage of SQUID should m&k&rall traffic characteristics.

the overall energy plot resemble SQUID. Figute verifies

this hypothesis. For comparison we also show the energy plot VIl. RELATED WORK

corresponding to SQUID in the original trace.

Our work benefits from related efforts in a variety of disci-

plines. We discuss a number of these areas below.
VI. LIMITATIONS AND FUTURE WORK Application-specific workload generatioihere have been

In addition to the discussion in the body of the paper, waany attempts to design application-specific workload gene
identify a number of additional limitations with methodglo tors. Examples include Surge [37], which follows empiriigal
in this section. First, we model application behavior baseterived models for web traffic [38] and models of TELNET,
on the information we can glean from the available pack&MTP, NNTP and FTP [23]. Cao et.al [39] perform source-
traces containing only packet headers. A number of effotavel modeling of HTTP. However, they attempt to param-
have studied application behavior by tracing full applmat eterize the round-trip times seen by the client rather than
level information for peer-to-peer [35], multimedia [3&jnd capture it empirically. Relative to these efforts, Swingatpts
HTTP [37] workloads. In ongoing work, we aim to show thato capture the packet communication patterns of a variety of
our model can be populated from such application-leveksacapplications (rather than individual applications) conmicat-
and workload generators. Our initial results are encouagi ing across wide-area networks. Application-specific waoakl

Swing's accuracy will be limited by the accuracy of theyenerators are agnostic to particular network bandwidiits a
models it extracts for user, application, and network balrav latencies, TCP particularities, etc. Although recentri$fohar-
The quality of our traces also impacts our results. For imsta acterize P2P workloads at the packet [35] and flow level [40]
we have found inter-packet timings in pcap traces that showe are not aware of any real workload generator for such
not be possible based on the measured link’s capacity. Persgstems.
sive routing asymmetry also means that bi-directional rhode Synthetic traffic trace generatiorOne way to study sta-
extraction can introduce errors in some cases. Finallygusitistical properties of applications and users is througtkpt
homogeneous protocol stacks on end hosts limit our abdity traces from existing wide-area links, such as those availab
reproduce the mix of network stacks (e.g., TCP flavors) senm CAIDA [12] and NLANR [41]. However, these traces are
across an original trace. based on past measurements, making it difficult to extrégola

Because we are generating traffic for a dumbbell topolodg other workload and topology scenarios. RAMP [42] gen-
and we focus on producing accurate packet traces in termsegdites high bandwidth traces using a simulation environmen
bandwidth and burstiness we only focus on a subset of davolving source-level models for HTTP and FTP only. We, on
initial parameters. In particular we do not currently mothel the other hand advocate a single parameterization model wit
distribution of requests and responses among partictitamts| different parameters (distributions) for different applions.
and servers and we do not model server think time. We split tReipp et. al [43] introduce a packet trace manipulation frame
total number of hosts in the emulation topology weighed byork for testbeds. They present a set of rules to manipulate
the number of bytes transmitted per-application in theioaly a given network trace, for instance, stretch the duration of
trace. One problem with this approach is that we lose tleisting flows, add new flows, change packet size distribstio
spatial locality of the same host simultaneously engagmg ietc. Our approach is complementary as we focus on generating
e.g., HTTP, P2P and SMTP sessions. Finally, in this papise traces using a first-principles approach by constrgetal
we only consider TCP applications. Our implementation dogsicket-exchanging sources and sinks.
support UDP but we leave a detailed analysis of our techsique Structural model:The importance of structural models is
and accuracy to future work. well documented [10], [17], but a generic structural model
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for Internet applications does not exist to date. Netspd¢ [4extend it to build distinct distributions for the sender+sies
builds source models to generate traffic for Telnet, FTR;&/0i receiver-side.

video and WWW but the authors do not show whether the Our approach to measuring RTT distributions is more gen-
generated traffic is representative of real traffic. Therals® eral than the popular approach of measuring a single RTT
a source model for HTTP [39]. However, it consists of botHistribution and dividing it by two to set latencies on each
application-dependent and network-dependent paranm(@iters side of the target link. Another common approximation is
RTT), making it difficult to interpret the results and apgietn  to assume that the target link is close to the border router
to different scenarios. There are a number of other availallf an organization [47], an assumption that is clearly not
traffic generators [45], however, none attempt to captuabse general to arbitrary traces (including Mawi). Our techmgu

tic Internet communication patterns, leaving parameation for estimating link capacity measure the median dispersion
of the generator to users. To the best of our knowledge, wacket pairs sent from the sender to the target link, as if [25
present the first unified framework for structural modelirfig d26]. Finally, we resolve ambiguities in loss rate estinsate
a mix of applications. using techniques similar to [27]. Our approach to measuring

Capturing communication characteristicshere have been RTT and loss rates is also similar to T-RAT [16]. However,
attempts to classify applications based on their commtinita our goals are different: while T-RAT focuses on analyzing th
patterns [18]-[20], [22]. Generating traffic based on @wst cause for slowdowns on a per-flow basis, we are interested in
of applications grouped according to an underlying model éetermining the distribution of network characteristicsoss
part of our ongoing effort. time for individual hosts.

Harpoon [14] is perhaps most closely related to our effort. In [48] the authors profile various delay components in
However, there are key differences in the goals of the tvid¥eb transactions by tracing TCP packets exchanged between
projects, with corresponding differences in design chomed clients and servers. This work assumes the presence ostrace
system capabilities. Harpoon models background traffid-staat both the client and server side and focuses on a single
ing with measured distributions of flow behavior on a targetpplication. For our work, we utilize a single trace at an
link. Relative to their effort, we consider the charactizss arbitrary point in the network and extract information on a
of individual applications enabling us to vary the mix ofyariety of applications. Further, while we focus on geneagat
for instance, HTTP versus P2P traffic in projected futumealistic and responsive packet traces based on the mdasure
settings. More importantly, Harpoon is designed to matapplication, network, and user behavior at a single point in
distributions from the underlying trace at a coarse graityla the network, their effort focuses on root-cause analysis—
(minutes) and thus does not either extract or playback nmé&twaletermining the largest bottleneck to end-to-end perfocaa
characteristics. Swing, on the other hand, extracts bigidns in a particular system deployment.
for the wide-area characteristics of flows that cross aaér
link, enabling us to reproduce burstiness of the packetadrr VIII. CONCLUSIONS
process at sub-RTT time scales. This further allows us toln this paper, we develop a comprehensive framework for
predict the effects, at least roughly, on a packet trace génerating realistic packet traces. We argue that capturin
changing network conditions. and reproducing essential characteristics of a packee trac

Relative to recent work investigating the causes for sub-RTequires a model for user, application, and network belavio
burstiness [32], we focus on extracting the necessary cteara We then present one such model and demonstrate how it can
istics from existing traces to reproduce such burstinedisén be populated using existing packet header traces. Our tool,
packet traces. As part of future work, we hope to corroborawing, uses these models to generate live packet traces by
their findings regarding the causes of sub-RTT burstiness. matching user and application characteristics on commodit

Felix et. al [46] generate realistic TCP workloads using a@perating systems subject to the communication charatiteyi
one-to-one mapping of connections from the original tracd an appropriately configured emulated network. We show
to the test environment. Our effort differs from theirs in d&hat our generated traces match both aggregate charticteris
number of ways. We develop a session model on top of theind burstiness in the byte and packet arrival process aaross
connection model and this is crucial since the terminatiorariety of timescales when compared to the original trace- F
time of previous connections determine the start duration ther, we show initial results suggesting that users can fyodi
future connections for a user/session, thereby making aswybsets of our semantically meaningful model to extrapolat
static connection replay model essentially unresponsive tb alternate user, application, and network conditionseraN,
changes in the underlying model. As described earlier, wee hope that Swing will enable quantifying the impact on
also advocate a common parameterization model for variawaffic characteristics of: i) changing network conditipach
application classes instead of grouping them all under ome increasing capacities or decreasing round trip timés, i
class. changing application mix, for instance, determining thfeas

Passive estimation of wide-area characteristiGur effort of increased peer-to-peer application activity, and figqeging
builds upon existing work on estimating wide-area netwonkser behavior, for example, determining the effects ofaiser
characteristics without active probing. Jaiswal et. all [d$e trieving video rather than audio content. Subsequent wbfk [
passive measurement to infer round trip times by lookimdemonstrates that Swing allows developers to quantify the
at traffic flowing across a single link. Our methodology fosensitivity of their services to wide-area backgroundficaf
estimating RTTs is closely related to this effort, though weharacteristics using a LAN cluster testbed.
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