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Abstract enviable task of developing appropriate models for each
Evaluating novel networked protocols and services reOf these important network characteristics. Thus, while

quires subjecting the target system to realistic InterneEmulation offers the promise of evaluating applications
conditions. However, there is no common understandt/Nder @ range of conditions, the huge space of potential
ing of what is required to capture such realism Conven_conditions makes it difficult, if not impossible, for most
tional wisdom suggests that competing background trafd€Velopers to take advantage of this flexibility.
fic will influence service and protocol behavior. Once ©One long term goal of our work is to enable develop-
again however, there is no understanding of what as€rS to use emulation to evaluate their applications under a
pects of background traffic are important and the extenfange of scenarios with realistic models of traffic, topol-
to which services are sensitive to these characteristics. 09, routing, and host characteristics. We leave a study
Earlier work shows that Internet traffic demonstratesCf the relative sensitivity of appllcatmns to different as
significant burstiness at a range of time scales. UnforP€Cts of the network, e.g., routing protocols versus traffic
tunately, existing systems evaluations either do not concharacteristics [21, 19] versus topology [7, 11], to future
sider background traffic or employ simple synthetic mod-Work. Our goal in this paper is to understand applica-
els, e.g., based on Poisson arrivals, that do not captuéon sensitivity to background traffic. Itis clear that ap-
these burstiness properties. In this paper, we show th4tlications behave differently when competing with other
realistic background traffic, has qualitatively different raffic. Thus, it is not surprising that researchers have
impact on application and protocol behavior than Sim_begunto include packground traffic models in the|reya_l-
ple traffic models. One conclusion from our work is Uations (see Section 2 for a summary). However, it is
that applications should be evaluated under a range d#S0 well-known that Internet traffic has rich and com-
background traffic characteristics to determine the relaP!€x properties not captured by models for background
tive merits of applications and to understand behavior in"affic, €.9., self-similarity and burstiness at a range of

corner cases of live deployment. timescales [[8, 22]) not captured by the simple models
) employed by practitioners. A natural question to answer
1 Introduction then, is whether these complex but realistic models, war-

There has been significant interest in understanding theant attention as candidates for background traffic.
characteristics of network services and protocols under In this paper, we quantify application sensitivity to a
realistic deployment conditions|[2,'3, 4, 13]. Application range of background traffic characteristics. That is, are
developers typically have two high-level options whensimple models of background traffic, such as constant bit
evaluating their prototype: live deployment or emula- rate, Poisson arrivals, or deterministic link loss rates, s
tion/simulation. Live deployment on a testbed such adficient to capture the effects of background traffic? Or
PlanetLab allows developers to subject their system to redo we require more complex background traffic mod-
alistic network conditions and failures. However, exper-€ls that capture the burstiness on a particular network
iment management/control and reproducibility becomdink? We begin with a literature survey to understand
more difficult. Further, while the deployment environ- the common techniques for modeling background traf-
ment is realistic, there is no guarantee that it is represerfic. We also leverage recent work [19, 21] on modeling
tative or that any series of experiments will experience aand recreating background traffic characteristics for ex-
range of desired potential network conditions. isting Internet links. Using accurate, real-time network
Emulation and simulation on the other hand simplify emulation, we subject a number of applications to a spec-
experiment management and make it relatively easy térum of background traffic models and report variations
obtain reproducible results. However, while recent em-n end-to-end application behavior.
ulation environments [15, 20] allow unmodified applica- We find qualitative differences in application behav-
tions, they must still simulate some target network condi-ior when employing simple synthetic models of back-
tions, including topology, failure characteristics, iogt ~ ground traffic rather than realistic traffic models. We
and background traffic. Practitioners are left with the un-investigate the cause of this difference and present our



initial findings. Specifically, we find that differences in 2 Motivation and Related Work

burstiness between two background traffic models at Tonsider the problem of determining the sensitivity of a

range of timescales significantly impacts overall appli- _. - .
cati?)n behavior, even gvhen negNorE links are not IC<J:l?)n-glven application to a range of background traffic char-

gested Existing synthetic models for background traffic acteristics. One approach would simply be to run the

. . . .~ application across the Internet on a testbed such as Plan-
do not demonstrate the rich variances in the packet arriva -
. ) L etLab. Unfortunately, the difficulty to measure the char-
process for competing traffic presentin live network traf-

acteristics of background traffic at any point in time is
)éompounded by the fact that one cannot guarantee re-

roducing a particular set of background traffic charac-
eristics. Finally, experiments would be restricted to the
type of background traffic experienced in a particular de-
ployment scenario, making it difficult to extrapolate to
sensitivity in other settings.

mischaracterize the impact of background traffieur-

ther, we find that even seemingly small differences in th
burstiness of background traffic for realistic traffic mod-
els can lead to important differences in application be-
havior. Hence, one conclusion of this work is that studies

of network application behavior should include experi- L o
Hence, a careful study of application sensitivity to

ments with a range of realistic background traffic mod-b K d traffi " . lati iUl
els. Ideally, the research community would evolve a suite>2cKground tra tIC r_nu? 1_un '; aln emu "’tl gﬂ_orbsmutr?—
of background traffic models representative of a range opon environment prior 1o five deployment. * is begs the

network conditions and locations. We hope that our ﬁnd_question as to what kind of background traffic to employ.

ings in the paper will serve as a means to spur sufficienpne approach is o take a trace of background traffic at

interest in the community to collectively develop such an]‘f_1 partul:(ulta[) point l'(” tthe Internetl atr_1d 0 replay tha’; trif'
appropriate benchmark suite in the future. IC packel-by-packet In an emuiation environment. - As

we quantify later, such background traffic will not tee
hi kes the followi i sponsiveo the application traffic. It will blindly trans-
In summary, this paper makes the following contribu- i qata in a preconfigured sequence; real Internet traf-

tions. This work is the f|rst_ to quantlfy_ the impact of fic responds and adapts to prevailing traffic conditions as
a range of background traffic characteristics on a NUM3 result of end-to-end congestion control. Other simple

ber of applications. Prior to this work, it was not pos- 5,504 ches involve playing back traffic at a constant bit
sible to deterministically subject application traffic t0 a e according to a Poisson arrival process, or using de-
range of realistic network conditions while accounting o ministic loss rates. Unfortunately, these simple tech-

for the complexity of real network traffic, e.g., as ‘?'etef' niques are known not to reproduce the characteristics of
mined by TCP. We present a methodology for doing SOnternet traffic and, as we quantify later, will result in

and use this methodology to carry out a systematic Sefj . rectly estimating the impact of background traffic.
sitivity study of applications to a range of network char- In this paper, we present a methodology for quantify-

actens_'uc_s. We show that techniques such as re_playmg %g the impact of realistic Internet traffic on a range of ap-
pre-existing trace packet-by-packetdo not exhibit the " >lications. We build on our earlier work [21] that shows
sponsiveness of real Internet traffic. Similarly, we show :

. . how to create traffic that is botiealisticandresponsive
that common models for generating background traffic, - :
- . i By realistic, we mean that the traffic matches the com-
such as transmitting traffic at a constant bit rate, traffic

with a Poisson arrival process. or deterministically set plex characteristics of traffic across some original link,
. proc ' A y s including traffic burstiness at a range of timescales. By
ting loss rates to network links has significantly less im-

act on application traffic than realistic Internet traffic responsive, we mean that the background traffic adapts
P pplicat ! ISt © 1o application traffic in the same manner that they would

in the wild. That is, the flows in aggregate ramp up and

Investigating the cause of these observations, our d&gcover from loss in a similar manner that they would
tailed performance evaluation shows that the propertiegcross the Internet, e.g., as determined by TCP’s re-
of Internet traffic, in particular its burstiness across asponse to round trip times, bottleneck bandwidths, etc.
range of time scales, can have unpredictable impact on' i1 to our methodology are techniques to repro-
arange of applications relative to simpler traffic models.y,ce the application- and user-level characteristicsef th
We establish that it is not enough to simply use “some”yy,\s in some original trace, e.g., session initiation ac-

bursty source as a background traffic model_. AS anOthe&ording to user behavior, packet sizes according to proto-
example, we reproduce the results of an earlier study thaly| pepayior, etc. We also recreate the bandwidths, laten-
employed synthetic traffic models to compare bandwidthjes and loss rates observed in the original trace. Repro-
estimation tools. After validating the original result®® W ,,¢ing these network conditions is important to enabling

found that some of the conclusions of the earlier study.eqnqnsjveness of our generated background traffic to the
ma)c; hlave been reversed when employing realistic traffiG,, 54 cteristics of the foreground/application traffic.
models.



Explanation (%) | Project/Paper Title and the Conference Name

No Background Traffic 25.6 | SIGCOMM '06 - Churn in distributed systems, SpeakUp,

SIGCOMM 04 - Modeling P2P, Mercury, OSDI '04 - FUSE, NSDI ‘0Quorum, Low
bandwidth DHT routing, NSDI '04 - Macedon, Thor-SS,

SIGCOMM ’'07 - Structured streams, NSDI '07 - SET

Constant Bit Rate Traffic | 2.33 | SIGCOMM '04 - CapProbe

Fixed Loss Rate 2.33 | OSDI '04-FUSE

Lowered Link Capacity 2.33 | NSDI'06 - DOT

Only Latencies 2.33 | NSDI'06-Colyseus

“Some” Background Flowg 2.33 | NSDI 05 - Trickles

“Some” TCP source 2.33 | SIGCOMM '04 - CapProbe

Custom Built Simulator 4.65 | NSDI 05 - Myths about structured/unstructured overlayagigr
Pareto Flow Arrival 4.65 | SIGCOMM '05 - VCP, NSDI '06 - PCP

Fixed Length Flows 2.33 | NSDI'06 - PCP

Long Lived flows 4.65 | SIGCOMM '05 - TFRC, SIGCOMM '07 - PERT

LRD Traffic 2.33 | SIGCOMM '04 - CapProbe

Pareto Length Flows 2.33 | NSDI'06 - PCP

SpecWeb 6.98 | OSDI '06 - TCP offload, NSDI '06 - Connection conditioning, Ki&a.
Run on PlanetLab 18.6 | NSDI '06 - CoBlitz, OASIS, NaKika. NSDI '05 - Shark, Botz4%al

NSDI '04 - Saxons, NSDI '07 - BitTyrant, SET

Real World Deployment 9.3 | NSDI 06 - Overcite, NSDI '04 - BAD-FS, TotalRecall, NSDI '0/BitTyrant
Harpoon 2.33 | SIGCOMM '05 - End-to-end loss rate measurement

RON Testbed 2.33 | NSDI'05 - MONET

Table 1: Literature survey of SIGCOMM, SOSP/OSDI and NSDBhir2004-2007.

Background. To motivate the importance of back- to what type of background traffic should be employed.
ground traffic for a range of studies, we conducted a lit-Finally, in virtually all (29/35) papers jusbnemodel of
erature survey of SIGCOMM, SOSP/OSDI and NSDI background traffic is used with no analysis of application
from 2004-2007. We determined whether each papesensitivity to different background traffic conditionsisth
contained a performance evaluation of a distributed sysean partially be attributed to the large space of possible
tem and, if so, what types of background traffic were em-models of traffic.
ployed in the evaluation. Overall, we four3d papers A goal of our work is to enable the community to
that conducted a total of3 such experiments. Table 1 make informed decisions about whether background traf-
summarizes a subset of these experiments, along with f¢ should be considered in a particular scenario, and
descriptive project name and the publication venue. Wef 5o, the particular characteristics of background traf-
divide the set of techniques into four main categories.  fic that are important to consider. Thus, we consider the
Our study is vulnerable to sampling bias, howeverinteraction of a variety of applications with a range of
we make the fO”OWing high'level observations. More Competing background traffic. |dea”y' we would con-
than 25% (11/43) of the experiments use no backgroundider all of the background traffic models summarized in
traffic (NBG). The application to be evaluated is typi- Taple/1 against all of the3 experiments that we found
Cally run on a cluster of machines with high-speed in'in those papers. In this paper, we take a few steps to-
terconnect. Another 14% of the experiments accounyard this goal. For instance, we show that CBR and
for congestion using simple models such as constanboisson traffic have very similar impact on the applica-
bit rate (CBR) traffic or simply constraining link laten- tjons we consider and that setting probabilistic loss rates
cies/capacities in a synthetic topology. does not capture the complexity of real interactions with
At the other extreme (bottom of Table 1), approxi- packground traffic. We also study the impact of realistic

mately 30% of the experiments employ live deploymenthackground traffic models on application performance.
on testbeds such as PlanetLab, RON, and Harpoon. Fi-

nally, in the middle of the table we have 25% of exper- Related Work. WASP [14] is perhaps most closely re-
iments that are done with some sophisticated models ttated to our work in spirit. It shows that HTTP perfor-
account for background traffic, for instance, Caprobe eximance can be significantly impacted by setting realis-
periments use Long Range Dependent (LRD) traffic.  tic delays and loss rates for the flows. The work con-
Based on this study, we observe significant confusiorcludes that web services cannot be evaluated on high
in the community regarding whether background traf-speed LANs, but must instead consider wide-area net-
fic is an important consideration in carrying out exper-working effects. Relative to this effort, we consider
imental evaluations. Further, there is no consensus a@s number of application classes and background traffic



conditions. We show that simple models of wide-areacation traffic and background traffic share the common
conditions (such as higher round trip times and non-zerdink, we can quantify the impact on the application as a
loss rates) are insufficient to capture the effects of realisfunction of a range of background traffic characteristics.
tic Internet background traffic either. In a real network environment, applications must com-
Our work will benefit from ongoing work in produc- pete with background traffic at multiple links between
ing realistic Internet traffic, including Tmix [9], Har- the source and destination. However, there are no known
poon [19], Surge [6], and Swing [21]. We chose to gen-techniques to model desired background traffic charac-
erate realistic background traffic using Swing, but we ex-teristics at multiple successive links in some larger topol
pect qualitatively similar results had we employed alter-ogy. For instance, there may be strong correlations be-
native tools. We make no claims, positive or negative tween the background traffic characteristics of links in
about whether the traffic we generate is realistic or notthe topology. For the purposes of this study, we feel
Rather, we consider a range of qualitatively and quantiit reasonable to quantify and understand the impact of
tatively differenttraffic conditions and show the resulting background traffic at a single link before attempting to
effect on application performance. However, we do likeextrapolate to more complex scenarios. In all likelihood,
to add that before the advent of Swing, it was not possithe effect of background traffic at multiple links will be
ble to create realistic and responsive network traffic in aeven more pronounced than our findings. Hence, our re-
testbed environment[21]. This partially explains why re- sults should be interpreted as a conservative estimate of
searchers have been using ad-hoc traffic models in thethe effects of background traffic, while still demonstrat-
experiments to date. ing application sensitivity to varying background traffic
3 Methodology characteristics.
We begin by describing the architecture used for carryingg'2 Applications
out the experiments followed by the list of applications Of course, the impact of background traffic heavily de-
we used. We then describe the background traffic modelgends upon the characteristics of the particular applica-
used followed by the experiments we conducted. tion under consideration. For this study, we chose three
. applications with diverse communication patterns and re-
3.1 Architecture quirements: Web traffic, multimedia streaming, and end-
to-end bandwidth estimation. Note that each of these ap-
Background Traffic Background Traffic plications exercise one end-to-end path, and hence, we
Sources/Sinks Swing/Harpoon/ Sources/Sinks explicitly omit more distributed applications such as Bit-
SURGE/Poisson ! . . . .
) — Torrent that simultaneously exercise multiple indepen-
dent Internet paths. While this class of application is im-

'EE';”“ ‘ = portant, considering complex topologies is beyond the
‘ = ’%J scope of this paper (see above). We did run experi-
ments (not discussed further here) for the case where all
/" Dumb-bel Link \+ BitTorrent clients were subject to a dumbbell topology;
%H |'streaming - N these results were qualitatively similar to our findings for
;glMedla Server @, Mijltifnedia HTTP.
Apache Webserver Web Browser Client

Web Traffic For Web applications, we set out to de-
Figure 1: Evaluation architecture. termine the effect of background traffic on the response
times perceived by end clients. We placed a single
Figurel 1 depicts our approach to quantifying and un-Apache Web server on one side of the dumbbell (e.g.,
derstanding the impact of background traffic on individ- the bottom left in Figure 1). We programmed httperf
ual applications. We place traffic sources and sinks ortlients to fetch objects of various sizes from the server
either side of a constrained/dumb-bell link such that alland placed them on the other side of the dumbbell. The
traffic in both directions crosses the common link. Two links connecting the clients and server to the dumbbell
classes of sources and sinks generate the traffic croshave large capacity and low latency, such that the dumb-
ing the link. In the first class depicted at the bottom,bell is the constrained link for all client-server commu-
nodes generate application traffic, for instance, Apachaication (we vary the capacity of the dumbbell link in
Web server and httperf clients. Then on top, we havevarious experiments described below).
sources and sinks responsible for generabiackground To generate background traffic, we place sources and
traffic for the target link, for instance using Swing [21], sinks of the appropriate traffic generator on either sides
Harpoon[[19], SURGE [6] or simpler traffic sources suchof the target link (top left/right in Figurie 1). We set the
as Poisson or Constant Bit Rate (CBR). Because applibandwidths, latencies, and loss rates of the links connect-



Trace | Secs Trace BW Trace Collection | Number | Dominant Unique
l Aggregate | DirO Date of flows | applications IPs
(Mbps) | (Mbps) (1000s)
Auck | 600 55 3.3 June 11, 2001 155K | HTTP, SQUID 3
Mawi | 900 17.8 7.8 September 23,2004 476 K | HTTP, RSYNC 15
Mawi2 | 900 11.9 10.8 | December 30,2003 160K | HTTP, NNTP 8

Table 2: Trace characteristics for three different links.

ing background traffic sources and sinks based on théhe exact pattern specified by an available tcpdump of
traffic generation model. For instance, we simply playtraffic across an existing Internet link (Table 2). One

back CBR traffic over unconstrained links; whereas fordrawback of this approach is that the generated back-
Swing, we assign assign latencies, bandwidths and losground traffic is not congestion responsive. That is, the
rates based on observed path characteristics in some oritraffic will be played back in exactly the same pattern as
inal packet trace [21]. the original trace irrespective of the behavior of the ap-

The second application class we plication traffic. Another drawback is that it is difficult

Multimedia Traffic . o .
consider is video streaming. Video clients are sensilo extrapolate to alternative, but similar, scenarios when

tive to the arrival times of individual packets, whereasPlaying back a fixed trace (e.g., changing the available

web clients are typically sensitive to end-to-end transfef?@ndwidth across the constrained link, the distribution of
times. Overall, we wish to quantify the impact of vari- Found trip times between sources and sinks, etc.).

ous types of background traffic on client-perceived video Thus, for our fourth technique, we use Swing [21] to
quality. For streaming audio/video we use the free vergenerate responsive and realistic network traffic. Swing
sion of Helix on the server side and Real Player on thds a closed-loop, network responsive traffic generator that
client side. We generate background traffic across théualitatively captures the packet interactions of a range

dumbbell topology as with Web traffic. of applications using a simple structural model. Starting
from a packet trace, Swing automatically extracts distri-

butions for user, application, and network behavior. It
then generates live packet traffic corresponding to the
underlying models in a network emulation [15, 20] en-
vironment running commaodity network protocol stacks.

ing block for many higher-level services. We employ . o
. Because Swing generates the traffic using real TCP/UDP
Pathload [10], and pathChirp [17] tools for our study. stacks, the resulting traffic is responsive both to fore-

We place bandwidth senders and receivers along with ' . -
. ! ground traffic and varying characteristics of the con-
competing traffic generators across the dumbbell topol=

! ; ' . . strained link and end-to-end loss rates/round trip times.
ogy identically to our configuration for Web and video ) T i
streaming. Swing extracts a range of distributions from an orig-

) . inal trace to model user behavior, e.g., think time be-
3.3 Traffic Generation tween requests, application behavior, e.g., distribution

We consider four techniques for generating competing€guest and response sizes, and network characteristics.
background traffic, in increasing order of complexity and One particularly important aspect of network traffic that
realism. First, for constant bit rate (CBR) traffic, we Swing is able to reproduce is burstiness in the packet ar-
wrote simple sources to generate packets at a specifigdval process at a range of time scales|[21]. Doing so
rate to sinks on the opposite side of the dumbbell link.requires Swing to assign latencies, bandwidths, and loss
In aggregate, the sources generate a target overall ra[@tes to the links Ieading to and from the shared link in
of background traffic. Second, for Poisson traffic, weOur evaluation architecture based on the observed distri-
modify the sources to generate traffic with byte arrival bution of round trip times, link capacities, and loss rates
per unit time governed by a Poisson process with a givef? Some original trace. This way, TCP flows ramping up
mean. We evaluated variants of CBR and Poisson usiné their fair share bandwidth or recovering from loss will
both UDP and TCP transports. do so with statistically similar patterns (including binst
While CBR and Poisson processes do not capture thB€ss in aggregate) as in the original trace conditions.
complexities of real Internet traffic [16], we wish to  An additional benefit of employing high-level mod-
quantify the resulting differences in end-to-end applica-els of user, application, and network characteristics for
tion behavior relative to more realistic, but complex traf- background traffic is that it becomes possible to mod-
fic generation techniques. Hence, for our third techniqueify certain model parameters to extrapolate to alternative
we modify the sources and sinks to play back packets irscenarios [21]. For instance, when reducing the round

Bandwidth Estimation Tool We chose bandwidth es-
timation for our third application. While not an end
application, it displays fundamentally different charac-
teristics than our first two applications and is a build-
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Figure 2: Auck-based background traffic (Energy plot). Figure 3: Auck-based background traffic (Time Series).

trip times for flows, overall burstiness tends to increaseructure. To avoid contention between physical resources
because flows tend to increase their transmission ratesith the traffic generator we use a separate set of ma-
more quickly. We refer to alternate background traffic chines to host the target application; for instance, httper
generated by perturbing distributions of various parameelients. In this fashion, any performance impact and vari-
ters in Swing avariantsof the original trace. ations that we measure results purely from network be-
We run all our experiments, including the sourceshavior.
and sinks for both foreground (Web, multimedia, band- We first describe the traces we use to generate realis-
width estimation) and background traffic (CBR, Poisson tic background traffic for the experiments in this paper.
Playback, Swing) in the ModelNet emulation environ- We use traces from Mawi [12], a trans-Pacific line, as
ment [20]. For our experiments, we configure all sourceswyell as an OC3c ATM link traces from the University of
and sinks of both foreground and background traffic toAuckland, New Zealand [5]. These traces come from
route all of their packets through ModelNet. Briefly, different geographical locations (New Zealand, Japan)
ModelNet subjects each packet to the per hop bandwidtrand demonstrate variation in application mix, average
delay, queueing, and loss characteristics of the targethroughput, number of users etc. (see Table 2). All traces
topology by inspecting both the source and destination ofvere taken on 100Mbps links. The Mawi traces were
the packet and routing it through the emulated topologyconstrained to 18Mbps over long time periods (though it
ModelNet operates in real time, meaning that it movescould burst higher).
packet from queue to queue in the target topology before \yhile all original and the corresponding Swing-
forwarding it on to the destination machine assuming thagenerated traces are bidirectional, we focus on the im-

the packet was not dropped. Earlier work [20] validates, .t of competing traffic in one direction of traffic (Dir0

ModelNet's accuracy using a single traffic shaper at traf§, 1ap1e2) for simplicity in our plotted results. In other
fic rates up to 1Gbps (we can operate at higher speeds

> ) ) ¢ tWords, we design all experiments such that the dominant
employing multiple traffic shapers in parallel). direction of application traffic (HTTP responses, video,
bandwidth estimation packet train) matches DirO of the
generated background traffic.

We run our experiments on a cluster of commodity work-  We use wavelet-scaling plots/[1, 8, 22] to character-
stations, multiplexing multiple instances on each work-ize traffic burstiness. Intuitively, these plots allow \asu
station depending on the requirements. For the expelinspection of burstiness for a range of timescales. The x-
iments in this paper, we use eight 2.8 Ghz Xeon pro-axis of these plots shows the time scale on a log scale
cessors running Linux 2.6.10 (Fedora Core 2) with 1GBgnd the y-axis shows the corresponding energy value.
memory and integrated Gigabit NICs. We generate backHigher levels of energy correspond to more burstiness.
ground traffic using 000 nodes in the emulated topology Figure/ 2 plots burstiness corresponding to five variants
(meaning that we multiplex hundreds of emulated nodesf the Auck trace for a 20Mbps link (along with the av-
onto each physical machine). erage bandwidth for each variantin square brackets). We
For example, for a 200Mbps trace, assuming an everonfigured Swing to generate constant-bitrate (CBR) and
split between generators and listeners (four machineRoisson traffic with the same average bandwidth as the
each), each generator would be responsible for accuAuckland (Auck) trace. In addition to reproducing the
rately initiating flows corresponding to 50Mbps on av- Auck trace using Swing, we also created a very bursty
erage. Each machine can comfortably handle the avetraffic variant, calledHighBurst (HB), by setting the
age case, though there are significant bursts that makeund trip times artificially talms while generating traf-
it important to “over-provision” the experimental infras- fic using Swing. The lower round trip times (relative to

3.4 Topology and Experiments
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the distribution in the original trace) means that TCP traf-trace and playing back TCP flows whose communica-
fic ramps up more quickly, recovers more quickly from tion patterns are statistically similar to the originalhwit
losses, etc. For an alternate visualization of the relativeut making an attempt to match the patterns found in the
difference in burstiness, consider the time series plats fooriginal trace.

the same traffic models shown in Figure 3. The Poisson The first technique (UDP) is not responsive to the
variant generates a relatively fixed bandwidth whereagharacteristics of foreground traffic. Thus, it will not
HighBurst variant peaks to 15Mbps at times, comparetack off in the face of congestion. The second technique
to Auck. Note that while the average bandwidth con-(TCP) is responsive, but, unfortunately it becomes im-
sumption for all traces are comparable, finer-grained bepossible to perform precise packet scheduling for TCP
havior varies significantly. Further, none of the variantsconnections. Further, because we have no knowledge of
come close to congesting a 20 Mbps link. the end-to-end network characteristics for the TCP flows
we play back, it is not possible to verify that the response
to congestion would match the behavior of flows from
We subject each of our three target application classes tthe original trace (e.g., because of variations in round
the various types of background traffic described abovdrip times or losses elsewhere in the network). Finally,
with the goal of answering the following questions: because it employs a single connection to multiplex the
i) What aspects of “realism” should we reproduce? lIs itbehavior of a much larger number of flows, its behav-
sufficient to simply “replay” individual packets in some ior is unpredictable. The third technique, corresponding
measured trace or does the generated background traffie Swing-based [21] playback, promises to be the most
need to be TCP responsive and react appropriately basddithful but is also the most complex and requires more
on the end-to-end network characteristics of the trafficresources (i.e., logic to source and sink traffic from indi-

4 Results

sources and sinks3/4.1) vidual hosts) for trace playback.
ii) Can probabilistic packet drops susbstitute for real To establish the accuracy for each of these techniques,
competing background traffic3[4.2) we run httperf clients requesting 1 MB files from an

iif) Does burstiness of background traffic matter or is it Apache Web server sharing the bottleneck link with the
sufficient to reproduce average bandwidth2.@,4.4) Mawi2 trace. We set the shared link (the point of con-
iv) Are some applications more sensitive to backgroundention between httperf and background traffic) to 15

traffic than others?(4.3) Mbps. We choose 15 Mbps to ensure that the background
v) Is application behavior sensitive to slight variations i traffic attempts to consume a significant portion of avail-
the background traffic characteristic§(4) able resources; (4.2 onwards relaxes this assumption).

. . We are interested in understanding the response time for
4.1 Background Traffic Responsiveness HTTP as a function of the characteristics of the back-

The first question we consider is the importance of re-ground traffic. As described earlier, the links connecting

alistically playing back background traffic characteris-the httperf/Apache nodes to the shared link are uncon-
tics. We consider three techniques for doing so: i)strained (large capacity and low latency), so that traffic

scheduling per-packet transmissions using UDP conneshaping takes place only at the target link. During each
tions to match the exact timings (at 1 ms granularity) andexperiment we fetch files back-to-back, using a single

packet arrival processes found in some original trace; ii)client-server pair fol 0 minutes.

scheduling per-packet transmissions using a single TCP Figure 4 shows the results for different classes of back-
connection to attempt to match the packet arrival procesground traffic. For each scenario, we plot the mean and
found in the original trace; and iii) extracting user, ap- standard deviation of response time increase relative to
plication, and network characteristics from the originalthe NBG (No Background Traffic) case. Background
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traffic consumes 66% of the shared link’s capacity in allloss rate settings, while shifting the CDF to the right, in-
cases. The first two bars plot slowdown for CBR traffic crease the size of the tail too. We hypothesize that the
with both TCP and UDP playback (CT and CU) con- difference in behavior results from the independent na-
figured to consume as much average bandwidth as thieire of losses when setting any fixed loss rate (relative to
Mawi2 trace. The next two bars show slowdown for TCPthe bursty losses common for Internet links) and the fact
and UDP variants of Poisson (PT and PU). For both ofthat setting loss rate alone does not capture any of the
the models (CBR and Poisson) UDP variants impactecffects of increased queueing delay (and hence increased
responses time much more (200% increase vs 100%pound trip times) leading up to the point of loss.

increase) than TCP variants exposing the limitation of

UDP based traffic generators. Because UDP sources afe2 Httperf/Apache

not congestion responsive, they have a much larger ImHaving established the appropriate technique for trans-
pacton HTTP. The next two bars show the slowdown formitting background traffic, we now turn our attention to

TCP- and UDP-base_d playback (TPB/UPB) of Mawi2. understanding the impact of background traffic on HTTP
TPB has much less impact than Swing-based playbaci,nefers. In order to arrive at a conservative estimate
of Mawi2 (M2), likely because its use of a single TCP ¢ 0 imnact of background traffic we first experiment
ponnectlon means that the generatgd background traﬁ\?/ith the Auck trace (lowest bandwidth and least bursty).
is less b_ursty. Finally, UPB results m_Ia_trger slowdow_n We begin by examining the impact of varying band-
than Sw_mg-based playback because it is not congestiof;gihs of background traffic (based on Auck) on httperf
responsive. performance. We fetch 1 MB files across a 20Mbps
Given the above results, we conclude thiatple tech-  ink and vary the load placed by background traffic by
niques for “playing back” background traffic, such as generating traffic for three different average throughputs
UBP and TBP, may result in significant inaccuracy as (3.3, 6.6, and13.2 Mbps) corresponding to variants of
the aggregate traffic across a link approaches the link'sthe Auck trace. In the baseline (3.3 Mbps) case, we
capacity. Thus, for the remainder of this paper, we em- employ Swing parameterized by the original Auck trace.
ploy Swing to play background traffic corresponding to In the alternative cases, we modify the distribution of
some original network condition and compare it to otherresponse sizes such that the average bandwidth increases
variants such as CBR/Poisson. by a factor of 2 and 4 (traces SwingRSP2/SwingRSP4),
Another popular technique in the literature for captur-resulting in average bandwidths of 6.6 Mbps and 13.2
ing the complexity of real background traffic is to set Mbps respectively. We compare the impact of Swing-
loss rates for particular links, with the goal of captur- generated traffic to those of TCP-generated CBR and
ing the effects of losses caused by competing traffic. Td?oisson traffic of the same average bandwidth.
determine whether this technique could capture the ef-
fects of more complex traffic scenarios, we next mea- Figures 6 and 7 show the CDFs of download times
sure the performance of httperf when setting various losgorresponding to various bandwidth/burstiness combina-
rates for the shared link. In all other respects, this ex+tions for background traffic. Along with the legend name
periment is identical to the case where we run with nowe show in square brackets the average bandwidth of the
background traffic. Figure 5 shows that httperf’'s behav-background traffic for reference. The effects of CBR and
ior when crossing a link with a range of loss rates differsPoisson traffic are similar, so we only plot the results for
from its behavior when competing with realistic Mawi2 Poisson (relative to Poisson, the CBR curves are virtu-
traffic, again, across a 15Mbps bottleneck link. For in-ally vertical with the same median value). As shown in
stance, with losses df% the CDF of retrieval times is  Figure 6, the impact of Poisson (and hence CBR) traffic
too far to the left of Mawi2. On the other hand, higher is almost entirely predicted by the average level of back-
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ground traffic bandwidth. The distribution of download to the NBG case as a function of the capacity (5-100
times shifts to the right, but with little variation in re- Mbps) of the shared link on the x-axis. On the left side
sponse times as the average level of background traffiof the graph we have cases corresponding to a highly uti-
increases. The Swing-generated Auck trace has a moied link; while on the right side, the background traf-
varied impact on application performance (Figure 7).fic consumes a small fraction of overall capacity. For
With low levels of competing traffic (3.3 Mbps), the dis- large files and low levels of link utilization, the graphs
tribution of download times is similar to Poisson. Also show that burstiness of background traffic does not mat-
of interest is the fact that the performance for the 5th-ter. For instance, for a 50Mbps link the impact on me-
percentile of retrievals is actually faster for Auck than dian response time is independent of the burstiness; the
for Poisson traffic for both the 6.6 Mbps (SwingRSP2 slowdown largely corresponds to the fraction of the link
vs. Poisson2) and the 13.2 Mbps (SwingRSP4 vs. Poissonsumed by the background traffic.
son4) bandwidths. In these cases, the flows were lucky When background traffic consumes a significant por-
to be subject to less competing traffic than their countertion of link capacity however, it is sufficient to cause sig-
parts in the Poisson trace. Bursty traffic means that perinificant losses for the HTTP transfers. Thus, at the 90th
ods of high activity coexist with periods of lower activity. percentile of slowdown, we find that transfers competing
Moving to higher levels of average utilization, the curveswith bursty traffic completed significantly more slowly,
become significantly skewed. For instance, the 90th peraround a factor of 1.5 for Auck, than with a less bursty
centile of download time for the Auck (AuckRSP4) trace traffic source, i.e., Poisson. However, unlike median re-
at 13.2 Mbps is 1484 ms compared to 759 ms for Poissogponse times, this relative ordering is present even when
(Poisson4) traffic. overall capacity is high (e.g., 100 Mbp3)hus, for large
Thus, less bursty background traffic means that perfiles, burstiness of traffic matters at all levels of link uti-
formance is governed by the average amount of availlization, but more so at high levels of utilization.
able bandwidth and, expectedly, there is relatively small The impact on transfer times for different file sizes as
variation in download times across individual object re-a function of different levels of burstiness of background
trievals. When background traffic is steady, HTTP per-traffic is futher explored ir§ 5.2. Overall we conclude
formance is predictable. As burstiness increases, ththatimpact on download time for web transfers is a func-
mean download time increases, as does the variation ition of the size of the download and the average bandwith
performance. Some flows can get lucky, behaving almosof background traffic as well as its burstiness.
as if there is no background traffic; while others may be Finally, we consider whether it is sufficient to sim-
unlucky with significantly worse performance than the ply playback a “bursty” traffic source or whether traf-
mean. fic sources with different burstiness characteristics will
Next, we consider the sensitivity of HTTP perfor- have different impacts on HTTP performance. Thus, we
mance to background traffic characteristics as a functiogonsidered the impact of six different bursty background
of the fraction of shared link capacity occupied by thetraffic characteristics competing for a shared 20 Mbps
background traffic. That is, it could be the case thatlink. We considered background traffic corresponding to
background traffic characteristics (e.g., burstiness) aréuck, Mawi, and Mawi2. We further modified each of
only important when consuming a significant fraction of these sources to be high burst variants (*HB”) by setting
link capacity. Figuré 8 shows the impact on downloadthe round trip times for all flows tdm sec while generat-
times for varying levels of background traffic with av- ing traffic using Swing. We plot the slowdown of HTTP
erage bandwidths of 3.3Mbps (same as the Auck tracefransfers (1MB file) relative to the NBG case at the 5th,
The y-axis shows the slowdown (median as well as 90thmedian, and 95th percentile in Figure 9.
percetile) of HTTP transfers of large 1 MB files relative  There are a number of interesting results here. First,
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the Mawi2 trace appears to have a larger impact on HTTlBhetween successive packets received by the client. Lower
than Mawi, even though it consumes significantly lesslevels of jitter will correspond to higher video quality.
aggregate bandwidth (s@é5 for explanation). Further, For our first experiment, we run with Auck background
the HB-variant of Mawi2 has significantly less impact traffic (3.3 Mbps average) and compare its impact on jit-
on HTTP performance at the 5th and 50th percentileter for shared links with 3.5 Mbps, 4 Mbps, and 6 Mbps
but more than a factor of 5 more impact at the 95th percapacity(Realplayer was insensitive to background traf-
centile. Its highly bursty nature means that a significanffic at higher levels of link capacity). Figure 10 shows the
number of flows are lucky and suffer comparable slow-distribution of inter-packet timing (jitter) for this expe
down to the less bursty cases. However, a number ofment. We also perform an experiment in the absence of
flows are extremely unlucky and suffer large slowdowns.any background traffic (NBG) for baseline. Fos Mbps

The tail for the Mawi2HB case is significantly longer as target link, background traffic does not change the qual-
well, an undesirable character for HTTP transfers wheraty of video (inspected by viewing the video) whereas
the humans in the loop typically value predictable be-for a 4 Mbps link the degradation is moderate. It is
havior. This experiment shows that although burstinessonly when we constrain the link capacity to 3.5 Mbps
of traffic is important to consider, simply reproducing that video quality suffers significanti®ne conclusion is

“some” bursty traffic is not enough. that unless we are operating in extreme scenarios (avail-
) ] able bandwidth approximately equal to the bandwidth of
4.3 Multimedia the stream), RealPlayer is relatively insensitive to byrst

We next consider the impact of background traffic onbackground raffic.

multimedia traffic. We aim to understand the impact To test this hypothesis, we next attempt to stress the
as a function of the capacity of the link, the burstinesslimits of RealPlayer. We modify the client-side imple-
of the generated traffic as well as the amount of client-mentation to reduce the amount of buffering from a de-
buffering. We run the publicly available Helix Server to fault of 10 seconds to 0 seconds. Figure 11 plots the
serve real media content to RealPlayer. As with all ourdistribution of jitter with and without buffering for the
experiments, the application traffic competes with vari-4Mbps link. With 10 seconds of buffering, background
ous types of background traffic at the shared link. Liketraffic had no impact on jitter (Auck 4Mbps). However,
httperf, we considet client-server pair. We tested with there is significant impact (verified by visual inspection)
various streaming rates but the results in this paper are fovhen we remove the buffering. Without buffering, the
a450K bps CBR stream encoded using RealVideo codecreal server attempts to retransmit lost packets more ag-
at30 frames per second that runs f& seconds. gressively in order to meet real time deadlines, consum-
One important question for multimedia traffic is the INg more network resources and negatively impacting
“metric of goodness” for a multimedia stream, which overall jitter. With sufficient buffering, the server can af
should correspond to the quality of the video playedford to be more relaxed about retransmissions, resulting
back. However, developing such a metric based on thé& an overall smoother transmission rate.
data stream received at clients is challenging. Thus, as a Finally, we consider the highburst background traffic
proxy for such a quality metric we use a range of statis-source by setting RTTs in Swing to 4msec. In this case,
tics based on the stream delivered to the client and coflows ramp up and down very quickly causing bursty traf-
roborate it with visual inspections. For a 450 kbps videofic on the shared link. Figufe 11 also plots the distribu-
stream, we can roughly assume that receiving more thafion of jitter corresponding to this experiment. The result
450 kbps of instantaneous bandwidth results in acceptshows that even for tight links and bursty background
able video quality at that particular point in time. traffic the performance degradation in realplayer is mod-
Another important metric of interest jiter, the time  erate (again verified by visual inspection).
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Figure 12: Augmenting to and validating pathload vs. paitipotxperiments from [17].

Overall, we conclude that for RealPlayer, unless weavailable bandwidth and does not distinguish between a
are operating in regimes of low buffering, low avail- low and a high value.

able bandwidth or very high burstiness, any reasonable Gjven our exact knowledge of the generated back-
background traffic model should suffice in performanceground traffic, we also calculate the true values of the
evaluations for systems similar to RealPlayar most  ayajlable bandwidth for one second bins. In the graphs
cases, RealPlayer’s default buffering will likely resuit i that follow, we plot the percentage error reported by each

acceptable quality of service for a range of backgrounthandwidth estimation tool relative to our calculated val-
traffic characteristics, as long as sufficient average band;es for available bandwidth.

width levels are available. Interestingly, RealPlayer’s : 1 . i
(successful) buffering and retransmission scheme is in- The experiments from [17] compare available band

formed by significant experience with live Internet de- width across a 100Mbps link as measured by pathload

. : and pathchirp against various flavors of background traf-
ployments subject to a range of bursty competing Crosg, . They employ CBR UDP traffic and UDP Poisson
traffic. '

traffic to create three different scenarios with available
. - . bandwidths of 30, 50 and 70 Mbps. Figlrel 12 shows
4.4 Bandwidth Estimation these results. Additionally, we also playback Mawi, and
For our final experiments, we consider the sensitivity of& HighBurst variant of Mawi (labeled HB) for the three
bandwidth estimation tools to background traffic characJevels of available bandwidth. In each case, we increase
teristics. We use Pathload [10] and pathChirp [17] for ourthe number of user-sessions (in Swing) by an appropri-
study because they are publicly available and because réi€ value to maich the levels of bandwidth consumed by
cent studies indicate that they are among the most acci=BR and Poisson traffic. For instance, to get the avail-
rate for bandwidth estimation [18]. To determine the sen-2ble bandwidth of 70mbps, we multiplied the number of
sitivity of existing tools to a range of background traffic Sessions for Mawi by 3.3 times.
characteristics, we repeat experiments from earlier pub- We initially discuss the results for Poisson and CBR
lished work comparing the relative merits of Pathload tomodels, reproducing the earlier experiments [17]. First,
pathChirp [17]. In these experiments, the authors emwe confirm the earlier result [17] that when background
ployed Poisson and CBR models for background traffictraffic is low (BG 30Mbps) or moderate (BG 50Mbps)
Below, we show that at least the conclusions from thisthe estimates of pathload as well as pathchirp are close to
earlier work may be reversed if the experiments had conthe actual values. We also observe that indeed pathchirp
sidered more realistic background traffic characteristics takes 10-20% the amount of bytes consumed by pathload
For our experiments, we overprovision all links such t0 arrive at similar estimates (not shown here). However,
that the available bandwidth measured for the path is dewe note that a couple of results differed. For instance,
termined by the bandwidth available on the shared linkPathchirp overestimated the bandwidth for a heavily uti-
in our model topology. We set Pathload’s timeout to fivelized link, ie.  when background traffic was around 70
minutes, and we report the average and standard devibps. Similarly, for low link utilization (BG 30Mbps),
ation for thelow and high estimates of available band- Pathchirp is slightly less accurate than pathload.
width across 25 runs. In practice, a small spread between We next move to the effects of bursty background traf-
the low and high estimates of available bandwidth and dic, not considered by the earlier work, the bars corre-
low standard deviations for multiple reported values re-sponding to Mawi and HB in Figure 12. We make a num-
flects likely accurate bandwidth estimates. PathChirp, orber of new interesting observations here. First, the result
the other hand, periodically outputs an estimate of thdor both tools degrade when competing with more bursty
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Figure 13: Significance of traffic in the reverse direction.

traffic sources, indicated by either an inaccuracy in theb.1 Bi-directional Traffic Characteristics

mean or large standard deviation. PathChirp appears t?o this point, we have largely focused on traffic charac-

be a bit less sensitive to burstiness of background traf: ~.~ = ¥, L . :
g teristics in one direction of a link (though in all cases,

fic. We also no longer see that pathchirp is always con- o )
S 9 P P y Jve played back bi-directional traces). We now consider
servative in its estimates. In fact, when the backgroun a case where traffic characteristics in the reverse direc
traffic occupies a significant portion of the link we see

that pathchirp overestimates available bandwidth, e.gtlon can impact application performance depending on

Mawi/HB traffic with 70 Mbps background traffic. The the deplpyment settlng. In the first experiment, we re-
authors [17] saw that both pathchirp and pathload estipeat retrievals of 1MB files using httperf/Apache (as Sec-

tign 4.2) across a shared 100 Mbps target link. We use
mates are close to each other, however, we see that thef

. . : he background traffic models corresponding to the two
are times when the estimates are very different from eac awi traces in Table 2. The traces are in increasing order
other; for instance, Mawi for 50 Mbps. ' 9

of bandwidth in the direction of flow of HTTP responses
The conclusion from these results is that it is difficult (Dir 0). One would expect that the response time dis-
to predict a priori which bandwidth estimation tool gives tribution would correspond to the relative bandwidth of
better results and that realistic network traffic charac- each of these traces.
teristics can impact study result§ystem behavior is a Figurel 13a) plots the CDFs of retrieval times for this
function of the average amount of background traffic asexperiment. Mawi2 is of higher bandwidth than Mawi
well as burstiness. For instance, if we hypothesize tha(Tablel 2) but the CDF is to the left of Mawi as a result
only background traffic’s average throughput is impor-of background traffic in the reverse path. This effect is
tant, then we can disprove it by observing the case for 3@0nore pronounced for Mawi as it has 10 Mbps of traffic
Mbps BG traffic. For CBR background traffic, pathload in the reverse direction versus 1 Mbps for Mawi2. This
is the more accurate tool, whereas for HB, pathchirp iselative ordering, however, is not present when we repeat
more accurate in its estimate. Similarly if we hypothe-the experiments with a 20 Mbps shared link as shown
size that only burstiness matters, then we can disprovin Figure 13b). At 20 Mbps, the forward direction traf-
that by looking at HB traffic. At 30Mbps we would pre- fic dominates for both Mawi and Mawi2 so the effects
fer pathchirp for HB traffic whereas at 70Mbps pathloadof congestion on the reverse path is less pronounced.
shows superior accuracy. We leave the task of attributing hus, one simple conclusion is that thaickground traf-
the sensitivity of these tools to the underlying algorithmsfic in the reverse direction can impact application perfor-

to orthogonal future work. mance though the dominant direction is difficult to pre-
dict a priori.
5 Case Studies 5.2 Burstiness at Various Timescales

We have shown that background traffic with the same av-
Considering our evaluation to this point, sensitivity to erage bandwidth, but differing burstiness charactesstic
background traffic characteristics is application specificwill have varying impact on application behavior. We
Certain applications, such as bandwidth estimation ar@ow consider the question of whether burstiness at par-
highly sensitive to background traffic while others, suchticular timescales (for instance, burstiness at milliseto
as RealPlayer, are relatively insensitive except in extremversus second granularity) has differing impact on appli-
cases. We now turn our attention to some additional im-cation performance. Generating traffic that selectively
portant characteristics of background traffic and their im-and precisely varies burstiness at arbitrary timescales is
pact on end-to-end applications. an open problem. However, we can alter burstiness in
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Figure 14: Varying burstiness at small and large timesdalesiderstand impact on file download times.

a coarse manner at relatively small and large timescalesgevel of background traffic, its burstiness characteristic
To vary burstiness at large timescales, we set Swing'sit timescales corresponding to the duration of individ-
user think time distribution to 0 for all requests; mean-ual application operations will have the most significant
ing, for instance, that for each user session, requestspact on overall application behavior.

for subsequent objects will be initiated immediately af-

ter the previous request completes. Figure 14a) show§ Discussion

the resulting energy plot. Note that traffic becomes more

bursty at timescalekl — 14 (corresponding to the 1-8 sec While this paper shows the importance of subjecting net-
range) relative to the default Auck trace. To vary bursti-work services to a range of background traffic conditions,
ness at timescaleés— 6 (4-32 ms), we restrict all links in  there are a number of remaining open questions. First
the emulated topology for Swing sources to 2 Mbps. Fig-is the need for a suite of background traffic that capture
ure[14a) also shows the energy plot for this case. Let ughe range of conditions likely to be experienced during
call these two new tracésraf ficl andTraf fic2. We  live deployment. We have shown that the bursty traffic
will next try to understand if these seemingly small dif- present on the Internet can dramatically affect applica-
ferences in burstiness impacts application performancetion behavior relative to synthetic traffic models. How-

We run HTTP experiments across a shared 10 Mbp&Ver, We cannot yet characterize the full range of network
link. The results in Figure 14b) shows the effect of vary- conditions likely to be present on the Internet.
ing burstiness on a relatively relatively large 1 MB file  Next, we have not yet shown the best way to gener-
transfer. We see that varying burstiness at small timeate the background traffic. We have shown one plausible
scales (Traffic2) has relatively little impact on the dis- technique employing the Swing traffic generator. How-
tribution of response times. Burstiness at larger timeever, Swing requires multiple machines to generate the
scales (Trafficl) skews the CDF around the mediantraffic and a network emulator to appropriately shape in-
Few flows finish early and few take longer compared todividual flows. And yet, our current understanding indi-
Auck/Traffic2. We hypothesize that over a long transfer,cates that recreating Internet traffic burstiness crigical
burstiness at small time scales (milliseconds) averagedepends on recreating appropriate network characteris-
out over the lifetime of the connection. Burstiness overtics and closed-loop responsive traffic sources and sinks
multiple seconds however will more significantly impact that, for example, obey the dynamics of TCP [21].
transfers that complete in just over one second by default. Finally, our analysis considers the effects of back-

The situation reverses itself when we consider the disground traffic on a single link between sources and des-
tribution of download times for the same experiment buttinations. Under realistic deployment scenarios, appli-
with 4 KB objects as shown in Figure 14c). In this cation traffic must interact with background traffic at
case, increased burstiness at large timescales (Traffichultiple links across the network. Our initial experi-
has no impact on the distribution of performance rela-ments, not shown for brevity, indicate that the impact of
tive to the baseline. However, the decreased burstiness btirsty background traffic is even more pronounced and
small timescales for Traffic2 relative to Auck results in unpredictable when considering more complex network
improved download times, especially above the 80th pertopologies. We believe that capturing this full complex-
centile. Note that Traffic2 displays reduced burstiness irity will be challenging in the short term, but it would be
the 4-32 ms timescales (Figure|14a), and that retrievingaluable to determine whether relatively simple models
a 4 KB takes 29 ms in the median case for Auck. Fromcan account for most of the additional impact that comes
this initial experiment, we hypothesize thatr a given  from more complex topologies.



7 Conclusion

We set out to answer a simple question: When run-
ning simulation or emulation experiments, what kind of
background traffic models should be employed? Ad-
ditional motivation comes from recent interest in accu- ]
rately recreating realistic background traffic charasteri
tics. While there have been significant advancements in
this space, there is relatively little understanding of tvha
aspects of background traffic actually impact application
behavior. To fill this gap, we quantified the interaction
of applications with a variety of background traffic mod-
els. We found that, for instance, HTTP is sensitive to thel10]
burstiness of background traffic depending on the domi-
nant size of transferred objects; multimedia applications
have been engineered to be relatively insensitive to trafl11]
fic burstiness; and bandwidth estimation tools are highly
sensitive to bursty traffic because unstable link character
istics make convergence to stable estimates difficult. We
also observed that characteristics of background traffic inl2]
both directions of a link can impact application perfor-
mance. Finally, we hypothesize that each application i$13]
sensitive to burstiness of traffic at particular applicatio
dependent timescales.
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