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ABSTRACT

Protecting sensitive data is no longer a problem restricted
to governments whose national security is at stake. With
ubiquitous Internet connectivity, it is challenging to se-
cure a network – not only to prevent attack, but also
to ensure that sensitive data are not released. In this
paper, we consider the problem of ensuring that only
pre-authorized data leave a network boundary using ei-
ther overt or covert channels, i.e., preventing exfiltra-
tion. We identify the goals oftransparency, performance,
and simplicity. A system designed to prevent exfiltra-
tion should not adversely affect the transfer of authorized
data and should work with existing protocols. Key to our
approach is: i) separating the process of vetting autho-
rized objects from line-speed data verification; and ii)
employing a restricted, but compliant, HTTP subset to
limit covert channels. In our evaluation, we show that
Glavlit adds little overhead to the operation of a software
network bridge.

1 INTRODUCTION

The protection of sensitive electronic data is an increas-
ingly difficult problem. All businesses, governments, and
individuals must process sensitive data, and improperly
releasing such data can have significant consequences.
Consider the inadvertent release of the search queries of
hundreds of thousands of AOL users [11]. While orga-
nizations must be able to process information not fit for
release like intellectual property, financial records, and
medical information on their internal network, they must
simultaneously process and distribute public data to the
outside world.

The goal of our work is to ensure that only approved
data exit an organization’s protected internal network.
We wish to prevent the transmission of data either overtly
in the payload channelof layer 7 protocols such as
HTTP or FTP or in hidden covert channels in thepro-
tocol channelof these protocols. To prevent informa-
tion leaks through these channels, everything beyond the
TCP header must be verified before allowing each packet
to exit the network. Performing such verification at line
speed has thus far been limited to pattern searching for
sensitive information such as social security or credit
card numbers. We, on the other hand, wish to enable ver-
ification at the granularity of entire files.

There are known techniques for detecting covert chan-
nels in layer 3 and 4 protocols [3, 8, 12]. There is rela-
tively little work in detection at layer 7 despite the exis-
tence of many layer 7 channels [4, 6, 9]. We target HTTP
for verified data transfer across a network boundary be-
cause it is the dominant layer 7 protocol used for interac-
tive data transfer and it is general to a variety of deploy-
ment settings. We believe that our techniques extend to
other layer 7 protocols, but we leave it to future work to
test this hypothesis.

We have developed a system,Glavlit1, which can
prevent unauthorized release from a protected network
while allowing authorized information to pass unhin-
dered. Our goals for Glavlit aretransparency, perfor-
mance,and simplicity. Glavlit provides stringent secu-
rity guarantees by enforcing complexexit policieswhile
trusting only the systems responsible for authorizing in-
dividual files for release and for inspecting the packets
leaving the network. At the same time, the common case
performance of Glavlit is comparable to a software net-
work bridge.

We first partition information intoobjects. An object
is contiguous related information that can be analyzed
independently, such as a file. We split the process of con-
tent control on objects into two distinct phases:vetting
andverification. Vetting is the process a designated au-
thority follows to determine whether an object is appro-
priate for external release. Verification is the process of
ensuring an object was previously vetted before releas-
ing it across a designated network boundary. Glavlit ver-
ification assumes thatanymachine within the protected
network is subject to compromise or negligence.

Many powerful vetting techniques cannot be imple-
mented directly in the network because of performance
overheads and the need to operate on entire files rather
than individual packets. For example, digital review of
complex files such as Microsoft Office formats, PDF, or
multimedia can be compute-intensive and potentially re-
quire whole-file analysis. Additionally, some organiza-
tions are not willing to depend entirely on digital re-
view and require human intervention. One could imagine
a new protocol where external users queue requests for
particular data. Glavlit allows objects to exit the network

1We have named Glavlit for the organization of the former Soviet
Union that handled official state censorship matters.
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upon verification that they are authorized for release. Un-
fortunately, this process imposes significant per-request
overhead and makes object access highly asynchronous.
Hence, we provide a means todecouplethe vetting pro-
cess for objects from their verification at a gateway.

To address information leaks in the protocol, we en-
force HTTP protocol compliance to detect or limit most
covert channels. We perform on-the-fly parsing of the
protocol, verify the contents of structured fields, and
restrict the HTTP RFC where necessary. We also pre-
vent unstructured channels and timing attacks by corre-
lating request-response pairs and normalizing server re-
sponse time. In general, eliminating all covert channels
for transferring unauthorized data is difficult to impossi-
ble. Therefore, we limit the bandwidth of such channels
and essentially “raise the bar” for attackers.

The remainder of the paper is organized as follows:
We introduce and motivate the Glavlit system architec-
ture in Section 2. Our techniques for preventing leaks are
given in Section 3. We briefly evaluate our system’s per-
formance in Section 4.

2 GLAVLIT DESIGN

We have designed Glavlit to ensure thatall information
leaving a protected network has been approved for re-
lease. In this section we first describe the motivation for
creating such a system by examining usage scenarios. We
then describe our system architecture and threat model.

Consider the following scenarios: A companyX out-
sources its customer service to another companyY, and
they have established a shared network connecting their
corporate LANs.X must provide proprietary documents
and manuals toY, but it does not wish to share its cus-
tomers’ personal information or financial records.X can
use Glavlit to ensure that private information does not
leak from its network to the network shared withY.

Glavlit could also be used to enforce classified data
handling policies among government agencies. Glavlit
can dictate that all data that cross an organizational
boundary are appropriate for release (e.g., to foreign na-
tionals or to other networks with different classification
levels). Glavlit’s centralized vetting can also strictly en-
force and track the set of grantedexit capabilities. For ex-
ample, Glavlit can require that only project leaders may
vet files. It can further ensure that each vetting action is
fully documented to provide an audit trail.

2.1 System Components

Figure 1 shows the system architecture of Glavlit. A cen-
tral server called the Warden vets objects. Client software
provides an interface to content providers to manage exit
policy at the Warden (Step 1). Mechanisms for submit-
ting objects for review and the actual approval process
are orthogonal to this effort. The Warden can implement

Figure 1: Glavlit System Architecture

any type of digital and/or human reviews to determine if
the object is fit for release. The Warden shares a reposi-
tory of white-listed content allowed to leave the network
with the Guard. Asignaturestores hash values and meta-
data to later verify the content at the Guard (Step 2). Af-
ter vetting, the user can place the file on a Web server
accessible from outside the protected network (Step 3).

The Guard is a high-speed transparent network bridge
at the perimeter of the protected network. When an ex-
ternal request arrives for a new object, the Guard parses
the request and waits for the server response. The Guard
checks verifiable fields in the server response, enforces
ordering, and performs timing analysis on the response
time to mitigate protocol channels. The Guard deter-
mines the boundary between the protocol header and ob-
ject payload. For every packet containing payload data,
the Guard verifies that the (partial) contents match some
previously vetted object (Step 4). If verification fails, the
Guard can actively stop data from leaving the network by
terminating the connection.

To support verification of HTTPS, the Guard can use
techniques from intrusion detection systems [2]. Each
Web server’s private keys can be shared with the Guard,
allowing it to perform in-line decryption of all traffic.
This sharing is possible because the owner of the Glavlit
protected network also controls the internal Web servers.

2.2 Threat Model

We further explore the motivation behind developing this
system by examining the threats to information leaks. We
categorize these threats into the following:

Accidental Release– In this scenario, a valid sys-
tem user inadvertently releases information. For exam-
ple, this could happen because the user did not know a
file’s content was sensitive and places the it on a public-
facing Web server. Since this threat is most common,
Glavlit counters it through high-speed content control.

Malicious Use of Standard HTTP– An attacker (e.g.,
disgruntled employee, external hacker, user inadvertently
compromised by virus or malware) compromises a host
in the protected network and maliciously places sensitive
content on an existing Web server. Since Web servers are
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often replicated, allowed through firewalls, and accessed
routinely by many parties, it follows that an attacker can
use an existing server to deface existing content or use
new/existing content to leak sensitive data. For example,
Web servers often serve content from shared file systems
(e.g., for user home directories) that can be accessed by
underprivileged users. Glavlit detects any modification to
vetted files and rejects files that are not vetted.

Malicious Use of Another Layer 7 Protocol– An at-
tacker can use a non-HTTP protocol to steal information.
We believe that our techniques for preventing leaks ex-
tend to other protocols, but must now rely upon other
systems and policy to prevent leaks in these protocols.
For example, many protected network firewalls only al-
low certain ports to be accessed externally (by intention
implying that only the protocols associated with those
ports are allowed). Glavlit provides the additional assur-
ance that another protocol is not being used on an HTTP
port.

Compromised Web Server– An attacker has full access
to a protected Web server and may modify its configura-
tion or replace it with a rogue server. The attacker can
now embed covert channels in HTTP protocol or tim-
ing to encode information. Glavlit detects this activity by
verifying the validity of all protocol responses and nor-
malizing the server’s response time. Even if an attacker
creates a rogue server that does not use covert channels,
Glavlit only allows it to servevettedcontent.

Compromised Warden or Guard– Unfortunately, we
must prevent this type of attack by assumption. For ex-
ample, a malicious insider with appropriate permissions
can use the Warden to vet unauthorized content, allow-
ing it be released by the Guard. We assume that access
to the Warden and Guard is more closely controlled than
other hosts in the system like user workstations or Web
servers. We also assume that the Warden uses its ownin-
dependentauthentication system to grant vetting access.

3 PREVENTING I NFORMATION L EAKS

In this section we describe the techniques Glavlit uses
to prevent unauthorized content release. Since we must
control data release through authorized channels with the
same vigor as covert ones, we use two complementary
techniques: content control and protocol mitigation.

3.1 Content Control

Since powerful vetting can be time-intensive, we perform
content control by splitting vetting from verification. The
Guard can then verify at high speed that all content cross-
ing the network boundary is pre-vetted.

There are commercial content control solutions that
perform vetting and verification simultaneously on the
gateway [7]. The primary drawback to this approach is

that it is unable to perform whole-object analysis, criti-
cal for supporting modern transfer protocols. Thus, these
approaches restrict vetting and verification to pattern
matching, e.g., ensuring that individual packets do not
contain substrings that resemble social security or credit
card numbers. The rate at which this approach can send
packets is limited by the speed of its vetting process.
Another previous approach is to proxy access to pro-
tected content and individually analyze the authorization
of each request [5]. Since this requires special client con-
figuration which is not feasible for external clients, it has
been restricted to intra-organizational protected networks
or for outgoingclient requests.

3.1.1 Vetting and Static Verification

Users send objects they wish to vet to the Warden, which
grants or denies each object the ability to leave the net-
work as specified by policy. This process can be as sim-
ple as a keyword search, or as rigorous as requiring ap-
proval from a committee of human analysts. Once ap-
proved, the Warden partitions the object intochunks
of 1024 bytes, each hashed with SHA-1. The resulting
collection of hashes, named asignature, supports high-
speed verification at the Guard.

Verification ensures that all information crossing the
network boundary was previously vetted. This process
consists of locating the data within the network stream
and comparing the hash of individual chunks to a pre-
existing object signature. To identify an object, the Guard
hashes the first 256 bytes of the file content (lookup size).
This hash keys the signature table shared with the War-
den. We use the Content-Length header to identify files
smaller than 256 bytes. Hash collisions are not yet im-
plemented; however, a tree structure within the signature
table could implement support for collisions.

Once the Guard identifies the object’s signatures, it
hashes each chunk of object data and compares the result
with the known hash. If any hash value does not match,
the connection is bidirectionally terminated by injecting
a TCP RESET packet.

To perform verification transparently in the network,
the Guard must be able to reconstruct the network com-
munications on-the-fly. Since the Guard performs hashes
at a chunk granularity, the packets associated with a
chunk can egress as soon as all chunks within a packet
are fully verified. Since chunks may cross packet bound-
aries and since packets may arrive out of order at the
gateway, we may have to perform some packet buffer-
ing. Content verification is complicated by the presence
of the layer 7 protocol in the network byte-stream. We
discuss protocol verification in Section 3.2.

The Guard creates a data structure called aflow for
each TCP connection. As packets arrive, it classifies
them by protocol, type, and TCP connection. To sim-
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Figure 2: Dynamic Template Model

plify the packet vs. chunk boundary problem, the Guard
reconstructs the TCP in-order byte stream in a structure
called astream. The Guard maintains an offset to the last
verified byte in the stream. As the verifiers operate on
the stream, this offset advances until it crosses a packet
boundary. The corresponding fully verified packet can be
sent out of the protected network at this point.

Since verification may cross packet boundaries, re-
transmitted packets cannot be re-verified. We handle re-
transmissions by keeping a window called apacket cache
of already verified data within the stream. The Guard
compares retransmitted packet data with the packet cache
and sends it immediately without having to repeat verifi-
cation.

3.1.2 Dynamic Content Verification

Web traffic is increasingly generated dynamically. The
same mechanism used for static content cannot be di-
rectly deployed. To solve this problem, we must en-
hance the vetting and verification process to be aware
of the structure of dynamic content. While we believe it
is intractable to vet/verify arbitrarily generated dynamic
content, we present an approach to handle a subset of
dynamically-generated content.

We assume that the dynamic object fits a template
model. The template defines static content as well as gaps
that contain other templates and static content (Figure 2).
The dynamic object can be modeled as a tree where the
base template is the root and the leaves are static data.
Each layer of the tree defines sub-templates and static
content allowed in each gap. Gaps may be filled by an-
other template or a list of valid static objects. For exam-
ple, a dynamic Web page might randomly choose from
a set of images for the header of the page. The web de-
veloper must express the template structure and valid ob-
jects for each gap as part of the content development [1].
Glavlit vetting and verification processes can now under-
stand this structure because it is self-describing.

We cannot use the Content-Length header to deter-
mine the size of embedded objectssmaller than the
lookup size. To solve this problem without an exhaus-
tive search, we propose a solution that requires the Web
server to cooperate but does not assume trust using hints.

Since the server constructs the content, we require the
server to include the size of small dynamic objects within
each gap. This does not place trust on the Web server
since any false description will misalign the hash.

3.2 Protocol Channel Mitigation

The previous discussion shows how to prevent the trans-
fer of unauthorized data in the payload of HTTP. How-
ever, one can transfer unauthorized data within the pro-
tocol using covert channels. In this section, we exam-
ine the channels for information release using HTTP and
what Glavlit does to mitigate them. We discuss the car-
rier data where information could be encoded covertly.
We classify carriers as structured or unstructured [8] and
separate them by the degree to which the organization of
the data is apparent.

3.2.1 Structured Carriers

Structured data have explicit organization and semantics.
We further partition structured carrier channels by their
syntactic compliance to the relevant RFC and semantic
validity.

We first examine non-compliant channels that deviate
from the protocol syntax. For example, a server response
could include arbitrary information. Conventional pars-
ing can easily detect this technique. A common case of
a non-compliant protocol channel is one that uses the
HTTP port to tunnel another protocol.

Since the RFC loosely defines header syntax, adding
Credit-Card: 1234-5678-9012-3456as a header is actu-
ally compliant. The RFC does not explicitly require re-
sponse headers be in a certain order or to be used at all.
An attacker can use list order steganography to encode
data by reordering the response headers [13]. In addition
to custom headers, the presence or lack of headers could
also encode data. Glavlit defines a fixed set of acceptable
response headers per request type. The Guard parses out-
going responses using a more restrictive grammar than
the one given in the RFC. It also parses incoming re-
quests, but uses the standard RFC grammar to allow any
client to connect to a protected Web server.

Responses that do not deviate syntactically are compli-
ant; however, compliance does not imply that the server’s
response iscorrect. For example, a server may return
Content-Length 1024 and 1025 on consecutive requests
for the same file of size 1024. Such responses could en-
code a series of 1’s and 0’s for covert data delivery. The
peak bandwidth in bits per secondB of a compliant chan-
nel is:

B = c∗ log2(n)∗ (t +
RTT

2
)

wherec = # connections, n = # distinct server re-
sponses,t = server CPU time,RTT= round trip time
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For example, with a 10ms RTT, server processing time of
3ms with 2 connections and 8 distinct server responses,
the bandwidth of the covert channel would be 48 bits per
second.

In addition to Content-Length, a covert channel can
encode data in fields like Last-Modified or Content-Type
[4]. Most HTTP header fields areverifiablegiven suffi-
cient information about the nature of the request and the
content served. We have examined the HTTP RFC to de-
termine the verifiability of each header. Once we verify a
field, only a single response may leave the network, sig-
nificantly reducing channel capacity. Some header fields
are not verifiable because they are based upon server
state and load. For example, the Content-Range header
specifies the particular chunk of data being transmitted
that could vary with respect to the OS buffer cache.

Headers often must be restricted in the server configu-
ration to enable verification. This leads to less flexibility
because a header may only take on a few values. In prac-
tice, operating a Web server only requires a small number
of headers; therefore, we feel this limitation is accept-
able. For example, the Allow header specifies the HTTP
commands that the server can understand and could be
set statically (e.g., only GET/HEAD/PUT methods). Re-
stricted configuration can also be based upon the cor-
responding request. The Connection header defines the
TCP connection state the server will use for the connec-
tion. To aid verification, this header can be standardized
to alwayskeep-alivewhen an HTTP/1.1 connection is re-
quested and alwaysclosewhen HTTP/1.0 or close state
is requested.

Our implementation limits the number of distinct re-
sponses by verifying protocol fields by combining object
meta-data and the corresponding client request to com-
pletely verify the server response. The incoming flow
data structure stores a queue of parsed requests. When
an HTTP response returns, the Guard parses it and com-
pares it with the incoming request and the signature
meta-data to ensure that all fields are verified.

3.2.2 Unstructured Carriers

Unstructured carriers store data subjectively or ran-
domly. For example, the order and timing of network
events can encode data in an unstructured manner. We
examine thestructured artifactsthat these channels pro-
duce and ways Glavlit can defeat them.

Request order can encode information unidirection-
ally into a server [6]. Similarly, reordering pipelined
responses enables bidirectional communications. The
Guard maintains the RFC specification that responses
should be returned in the order they were requested by
a single client by parsing and correlating incoming re-
quests.

An attacker can encode information based on the tim-
ing of network activity [3]. Because of the inherent ran-
domness in network timing,increasesin the timing car-
rier (e.g., packet inter-arrival time or HTTP response
time) frame covert data. These increases leave a struc-
tured artifact behind; therefore, a good channel imple-
mentation should affect the timing carrier as little as pos-
sible. One can model the Web server performance (e.g.,
as a function of offered load) and block deviations from
the model. This technique has two drawbacks: the model
may not be sufficient to cover the server’s behavior and
the distance metric may not detect carefully crafted devi-
ations.

We can also disrupt rather than detect a covert tim-
ing channel by introducingjitter into the data stream.
This jitter is impossible to defeat without increasing the
amount of data sent across the network, e.g., a reliable
channel, that further reduces usable bandwidth. Kang et
al. employed a similar concept to prevent timing chan-
nels in the Pump with fully stochastic acknowledgements
[10]. We can normalize Web server performance to de-
feat potential covert timing channels. Glavlit can delay
responses by a uniformly random variable or follow a
fixed probability distribution. Normalized responses are
often not apparent to a user but devastating to a covert
timing channel.

The above covert channel mitigation and content con-
trol techniques canlimit the channel capacity. However,
there still exist ways to encode information. It is compu-
tationally infeasible to completely defeat all covert chan-
nels. The only alternative is to limit the number of re-
quests the server is allowed to process per unit time.

4 PERFORMANCE EVALUATION

We evaluated the performance of our prototype Glavlit
system compared to a direct wire connection and a stan-
dard Linux kernel software bridge (Figure 3). We also
tested the Guard with verificationoff to evaluate our net-
work implementation. Our test setup consists of three
machines running Linux 2.6.9-34 with dual 2.8 GHz
Pentium 4 Xeon processors, 2 GB of memory, and giga-
bit Ethernet interfaces. The Guard is connected to a host
running a custom HTTP client on one interface and a host
running Apache version 2.2.2 on the other. The custom
client spawns 20 threads, and each thread requests files
using HTTP 1.1 for a specified time.

The Guard with verification does not impose signifi-
cant overhead for most file sizes compared with the ker-
nel bridge or direct connection. The Guardwithout ver-
ification performs slightly better than with verification
showing that the primary overhead is packet reconstruc-
tion and forwarding. The overhead of setting up new
connections (protocol parsing and TCP stream alloca-
tion) reduces the performance of the Guard with verifi-
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Figure 3: Throughput vs. File Size

cation up to 50% for small files (<8KB). Despite this,
the Guard sustained processing approximately 3000 re-
quests per second. For the cases where file size is greater
than 10KB, the Guard can hash and forward packets as
fast as the server can produce them. In these cases, the
per-connection overhead is amortized over larger data
transfers. Given this performance with a largely un-tuned
implementation, we believe it possible to perform verifi-
cation at higher speeds with a highly tuned kernel-level
software implementation or with hardware acceleration.

5 CONCLUSION

This paper presents a network content protection sys-
tem that avoids many of the drawbacks with previous
attempts to ensure that only authorized data cross a net-
work boundary. Specifically, the system maintains client-
server transparency, while only marginally decreasing
throughput. Additionally, our system can secure all files
on a network regardless of the security at a particular
host.

The key insight behind our approach is the decou-
pling of the object-vetting process (which can be variably
slow) and the object-verification process (which can be
performed at high speed and on a per-packet basis). Our
prototype implementation of Glavlit performs nearly as
well as a standard software bridge.

Malicious users often employ covert channels to trans-
port data outside the network boundary. As an overture
to this remaining exit channel, we have implemented the
first system to transparently mitigate application-layer
covert channels in HTTP.
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