
50

By any metric, the Internet has
scaled remarkably—from four nodes in 1969
to an estimated 40 million hosts today. This
reflects a sustained growth rate over three
decades of more than 80% per year, during
continuous service. In system growth, the
Internet has been matched only by the major
infrastructure projects of the early 1900s: the
electric power grid, the automobile, and the
telephone network.

The Internet’s scalability is the result of the
single-minded focus of its designers on robust-
ness and adaptability.1 Over the past three
decades, the Internet has added support for
automatic name translation, hierarchical rout-
ing, congestion avoidance, dynamic address
assignment, multicast, mobility, and most
recently, attempts at real-time support. Future
Internet challenges will require continued evo-
lution. For example, consider the fact that
four billion microprocessors were fabricated
in 1997. In the future, many of these embed-
ded microprocessors will be Internet-con-
nected, requiring the Internet to continue its
rapid scaling well into the future.

Unfortunately, although its design has
focused overridingly on robustness, for all prac-
tical purposes the Internet is the largest per-
formance and availability bottleneck today for
end-to-end applications. Indeed, it is possible

to build highly available end servers using net-
works of workstations (NOWs)2 and redun-
dant arrays of inexpensive disks (RAIDs).3

However, as anyone who has used the Web
knows, the path to a server can be very slow or
often completely unavailable. The result is lost
productivity while users wait for Web docu-
ments to be transmitted over the network.

The Internet’s scale, heterogeneity, and
dynamic nature make it difficult to determine
the exact causes of Internet performance prob-
lems.4 However, it is clear that several of the
assumptions made during the design of the
Internet protocols have less validity today than
they did in the early 1980s—see the box, “The
evolving Internet.”

In this article, we describe inefficiencies in
routing and transport protocols in the mod-
ern Internet. We also attempt to quantify
these effects. Although our results are prelim-
inary, they suggest that there is considerable
room for improvement through intelligent
routing and congestion control.

We are constructing a prototype, called
Detour, to investigate these ideas and to gain
experience with potential solutions. Detour is
a virtual Internet, in which routers “tunnel”
packets over the commodity Internet instead
of using dedicated links. This design allows easy
deployment of an experimental infrastructure

Stefan Savage,
Thomas Anderson,

Amit Aggarwal,
David Becker, Neal

Cardwell, Andy
Collins, Eric Hoffman,

John Snell, Amin
Vahdat, Geoff Voelker,

and John Zahorjan
University of Washington,

Seattle

DESPITE ITS OBVIOUS SUCCESS, THE INTERNET SUFFERS FROM END-TO-END

PERFORMANCE AND AVAILABILITY PROBLEMS. WE BELIEVE THAT INTELLIGENT

ROUTERS AT KEY ACCESS AND INTERCHANGE POINTS COULD IMPROVE

INTERNET BEHAVIOR BY ACTIVELY MANAGING TRAFFIC.

0272-1732/99/$10.00  1999 IEEE

DETOUR: INFORMED INTERNET
ROUTING AND TRANSPORT

.

and, unlike dedicated network testbeds, it is
subject to real Internet traffic loads. We do not
envision a tunneled network as a long-term
solution, but as a vehicle for research.

We describe the Detour prototype along
with several of the research challenges we are
addressing. Detour can potentially provide
better end-to-end application performance by
routing around Internet performance and
availability bottlenecks and by enhancing con-
gestion control mechanisms using aggregate
traffic information.

Routing inefficiencies
A routing system is responsible for forward-

ing traffic between nodes of a network. There
are several ways such a system can be inefficient.
It can forward packets along nonoptimal
routes, or it can spread load unequally, overuti-
lizing some links while leaving others idle.
There is significant anecdotal evidence that the
Internet does both. For instance, Figure 1
depicts measured round-trip times (in mil-
liseconds) between three hosts in California’s
Bay Area. Curiously, we find that the Walnut
Creek host can reach the host in Los Altos
much faster by sending packets through Santa
Clara rather than taking the “direct” route. This
is because the “direct” route, chosen by the
Internet, is via Chicago. In this section, we

describe reasons that Internet routing may be
inefficient; we then provide data quantifying
the magnitude of this effect.

We classify potential sources of routing inef-
ficiencies into four principal categories:

• Poor routing metrics. Today’s backbone,
or “default-free,” routers generally
exchange only connectivity information,
and not performance information. In the
absence of explicit policy rules, these
routers make decisions by minimizing
the number of independent autonomous
systems (ASs) traversed along the way to
the destination. This metric correlates
poorly with performance characteristics
such as latency and drop rate. This is not
surprising when one considers that ASs
generally correspond to organizational
domains and can have enormous scope.
For instance, MCI’s entire Internet back-

51JANUARY–FEBRUARY 1999

Figure 1. Round-trip time (in ms) of packets
sent between three Internet hosts in
Northern California.

The evolving Internet
The TCP/IP Internet protocol architecture was designed in the early 1980s, at a time when

there were many fewer hosts connected to it and typical long-haul links carried only 56 Kbps.
Many of the assumptions underlying the Internet’s design have changed since then. For exam-
ple, the designers of Internet congestion control intended it to work well with connections
that last many round-trips—long enough for end-to-end feedback to work. Most connec-
tions today, however, carry only a small number of packets. Transferring a typical 10-Kbyte
Web page requires a minimum of six to seven round-trips as the server probes the network
to determine the maximum rate at which it can send. If there is excess capacity in the net-
work, the overhead of these probes will prevent the server from fully utilizing the network.
If the network is congested, these short, bursty connections will increase the probability of
dropped packets. The designers of Internet transport protocols assumed that packet loss
rates would be less than 1%, yet current packet loss rates have been measured as averag-
ing 5% to 6%.

Assumptions about Internet routing have changed as well. The Internet was originally
designed to provide universal reachability between networks; all network links were avail-
able to carry traffic for any host. Today’s Internet restricts the exchange of routing informa-
tion according to business agreements between service providers. This results in situations
where A can reach B and B can reach C, but A can’t reach C. Further, because current Inter-
net routing ignores performance information, two hosts may be forced to communicate over
excessively long or overloaded links. Adding a slow link can actually hurt performance,
because packets can be routed over it in preference to faster links.

Finally, the Internet was built by a small community of researchers. In that environment,
it was reasonable to assume that end hosts would cooperate in the management of network
resources. As the Internet has evolved from a research project into a popular consumer tech-
nology, this assumption has lost some of its validity. For example, there are several com-
mercial Internet “accelerators” that provide better performance for a single user at the
expense of other users. Expecting billions of Internet devices to cooperate to prevent network
congestion in the future is arguably too optimistic.

.

bone is represented by a single AS num-
ber.

• Restrictive routing policies. Policy routing
allows each AS to define its own rules for
where to send traffic, which routes to
advertise, and what traffic to carry. Indi-
vidual service providers construct these
policies to support their own interests, so
they can sometimes negatively affect over-
all reachability and performance. For
instance, the common early-exit policy
attempts to dispatch a packet bound for a
host on a foreign network as soon as pos-
sible, even if this means sending it in the
opposite geographical direction from
where it is going. This is suboptimal but,
for lack of alternative mechanisms, service
providers use it to limit the amount of traf-
fic one network carries for another. For
similar reasons, large providers have estab-
lished private relationships to exchange
routing information and traffic; small
providers are left at the congested public
exchange points. Consequently, packets
sent from or destined to smaller networks
have less diversity in their choice of routes
and poorer connectivity as a result. Final-
ly, some government-funded networks
have legal limitations on how they may be
used; this results in policies that allow
them to carry only traffic meeting their
acceptable-use criteria.

• Manual load balancing. Internet service
providers and multihomed organizations
generally must pay a fixed fee for the links
they use to connect their routers. Con-

sequently, they are interested in balancing
the amount of load on their links to take
the best advantage of their fixed cost.
There is no mechanism for doing this
automatically, so operators balance load
by adding and removing policy rules on
a daily basis in response to measured link
utilization. While this may keep link uti-
lization high, it does not make for the
best routing decisions. In fact, it is
extremely likely that an alternative assign-
ment of routes to links would achieve
both equal utilization and better overall
performance.

• Single-path routing. Current Internet
routers select a single path to reach a
given destination. Alternate paths to the
same destination may have underutilized
links. This capacity can only be exploit-
ed by routing traffic along multiple paths
to each destination.

Although it is clear that each of these factors
contributes to making a less efficient routing
system, the magnitude of the overall problem
is not obvious. We have undertaken a study
to estimate the degree of routing inefficiency
in the Internet. We call a route between two
hosts inefficient when there is some alternate
route with superior latency or packet drop
rate. Our goal is to measure the fraction of
routes for which this occurs and the magni-
tude of this inefficiency.

Unfortunately, while it is easy to directly
measure the performance of the default route
between two hosts, it is difficult to obtain the
same metrics for alternate routes or even to
discover what those alternate routes might be.
Instead, we have opted for a conservative
approximation based only on pairwise host
measurements.

Our methodology was as follows: For a
group of hosts, we collected a full set of pair-
wise latency and drop-rate measurements.
Then, for each pair of hosts A and B, we
searched our data for some third host C, such
that the round-trip times or drop rates of AC
+ CB were less than those for AB.

We used 43 publicly available servers run-
ning the traceroute program, over the course of
35 days, to perform repeated traceroute queries
between each pair of hosts. We randomly dis-
tributed the time intervals between these

52

DETOUR

IEEE MICRO

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fraction of paths measured

R
at

io
 o

f d
ef

au
lt-

ro
ut

e
la

te
nc

y
to

 a
lte

rn
at

e-
ro

ut
e

la
te

nc
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2. The ratio of best-alternate-route latency to default-route latency.

.

requests, with a mean of 15 minutes per host.
For the purpose of these experiments, we
examined only the last record of the traceroute
output, thereby avoiding well-known biases
resulting from Internet routers that are slow to
respond to Internet control-message protocol
messages. We also filtered our data to elimi-
nate hosts that rate-limit ICMP responses.

For each sample between a pair of hosts, we
recorded the round-trip time as the average of
the three samples returned by the last record
of traceroute. Similarly, we recorded the drop
rate as the number of these samples that were
unable to successfully complete a round-trip.
We accumulated these samples, and calculat-
ed the median round-trip time and mean drop
rate for each path.

The graph in Figure 2 illustrates our laten-
cy results. For roughly half of the paths mea-
sured, there is a faster route. For 15% of the
paths, there is an alternative that offers an
improvement in latency better than 25%. The
absolute benefits are also significant. For more
than 15% of the paths, our alternate route
choice will shave at least 25 ms from the
round-trip time of our connection.

The results are similar when we look at
packet loss rates. Figure 3 graphs the average
drop rate of the default route for each path,
compared to the packet loss rate observed for
the alternate route with the fewest packet loss-
es. For almost 80% of the paths, an alternate
route offers a lower probability of dropping
packets. In almost 50% of the paths, the
improvement is a factor of six or better.

An ongoing part of this work is determin-
ing the relationship between these measure-
ments and the underlying causes. As we
continue our study, we hope to quantify the
individual effects of common routing policies,
limited metrics, and single-path routing.

There are several reasons to believe that our
measurements underestimate the Internet’s
routing inefficiency. First, we considered only
a small number of hosts, so our choices for
alternate routes are relatively limited. Second,
we considered only a single intermediate host,
ignoring alternate routes with two or more
intermediate hosts. Third, our sample hosts
are not routers. Hence, any packet traversing
the path ABC would undoubtedly traverse B’s
access links twice: once from A to B and again
from B to C. Finally, our study concerns long-

term averages and does not reflect the benefit
of selecting an alternate path to avoid short-
term hot spots. We observed anecdotally that
some hot spots did in fact change over short
time scales.

However, it is important to remember that
our measurements are of routing inefficiency,
not of alternative routing policies. Both laten-
cy and packet loss depend on traffic; without
additional information about capacity and
load, we cannot predict the effects of rerout-
ing traffic. One of our motivations for build-
ing Detour is to experimentally evaluate the
impact of alternative routing policies.

Transport inefficiencies
The behavior of the Internet infrastructure,

as we described in the previous section, has a
direct impact on the performance that users
experience. However, it is not immediately
clear how large this impact can be. In this sec-
tion, we attempt to quantify the effects of
latency and packet loss, and we show that for
today’s transport protocols the effect on
throughput can be quite dramatic. As an
example, we’ll show that the delivered band-
width of a Web page transfer over a 10-Mbps
link can be as small as 75 Kbps.

To understand these effects, we must first
recall that, in the Internet architecture, the net-
work is a black box and provides no guaran-
tees. Consequently, when sending a message,
a host starts with no information and must

53JANUARY–FEBRUARY 1999

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fraction of paths measured

D
ro

p
pr

ob
ab

ili
ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Default route
Alternate route

Figure 3. Average drop rates for default routes compared to those for best-
alternative routes. The dark line represents the observed probability that a
packet is dropped while traversing the default route between two hosts.
The light dots represent the same probability assuming that the packet is
sent along the best alternate route. Most dots are at zero on the y axis.

.

learn the resource limitations of the receiver
and the intermediate nodes in the network.
Roughly speaking, the network’s latency lim-
its how quickly a host may learn about changes
in the receiver’s resources, and the packet drop
rate indicates limitations in the resources of
intermediate nodes in the network. As laten-
cy increases, the host must wait longer to
receive acknowledgments indicating that more
data can be sent, and consequently will send
more slowly. As the packet loss rate increases,
the host assumes that congestion is occuring
and will also send more slowly.

As shown by the results we presented in the
section on routing inefficiencies, many Inter-
net paths suffer high background drop rates.
This limits the baseline throughput that a con-
nection can expect. Here, we’ll focus particu-
larly on how latency and packet drop rate
affect the popular transmission-control pro-
tocol (TCP). Other kinds of traffic, such as
real-time traffic, face a somewhat different set
of trade-offs.

TCP is the dominant transport protocol in
use today; it underlies protocols for Web
access, e-mail, file transfer, and news distrib-
ution. It is a reliable, connection-oriented pro-
tocol that uses a sliding-window mechanism
for explicit flow control. TCP has several
mechanisms for learning about and adapting
to network resource limitations.5,6 These
mechanisms have proved immensely success-
ful at preventing more of the congestion col-
lapse events of the late 1980s:

• Slow start. When TCP opens a connec-
tion it “learns” the bottleneck bandwidth
by exponentially expanding the size of the
sender’s window, starting from a single
packet, until there is a loss. After a loss,
TCP resumes sending using the last win-
dow size for which there was no loss.

• Congestion avoidance. After finishing the
slow start mechanism, TCP continues to
probe the network to see if the capacity
has changed. In the absence of a loss, the
protocol increases the allowable window
additively by one packet for each round-
trip time. After a loss, it decreases the
window multiplicatively by half.

• Time-outs and fast retransmit. There are
two mechanisms for detecting a loss. The
first is the expiration of the time-out

timer TCP sets when it sends a packet.
The protocol chooses the time-out value
somewhat conservatively to accommo-
date changes in measured round-trip
time due to increased load on the net-
work. The second loss indication is the
arrival of three duplicate acknowledg-
ments. This is because the receiver sends
an acknowledgment for the last in-
sequence packet for every out-of-
sequence packet it receives. Thus,
duplicate acknowledgments are an
implicit indication that packets have
been reordered or, more likely, dropped.
In this latter case, TCP assumes the miss-
ing packet was dropped and retransmits
the next in-sequence packet immediate-
ly. This is the source of the algorithm’s
name, fast retransmit.

Next, we explain how latency and packet
loss affect TCP’s delivered bandwidth. We’ll
start with an idealized network connection
and iteratively refine the model to incorpo-
rate more detail. To illustrate, we’ll use an
example consistent with downloading a Web
page over a cross-country link into a typical
LAN environment: a 10-Kbyte transfer over
a link with 10-Mbps bandwidth, a 70-ms
round-trip time, and a 536-byte maximum
segment size (MSS).

Ideal connection
Because TCP is a sliding-window protocol,

it can send at most a full window of packets
before receiving an acknowledgment from the
receiver. Therefore, the maximum reliable
throughput TCP can achieve is

BW < WIN / RTT.

Here, BW is bandwidth, WIN is the maxi-
mum window size advertised by the receiver,
and RTT is the round-trip time.

TCP can advertise a window up to 64 Kbytes
(larger with window-scaling options, but these
rarely matter in practice, for reasons we will see
shortly). Therefore, TCP’s maximum band-
width over a 10-Mbps link is a little under 7.5
Mbps. For our 10-Kbyte document, the win-
dow size is not a limitation; however, we are
still limited by the round-trip time needed to
positively acknowledge the data’s arrival. Divid-

54

DETOUR

IEEE MICRO

.

ing the transfer size (10 Kbytes) by the sum of
the transmission time (about 8 ms) and the
round-trip time (70 ms) yields an average
throughput of just over 1 Mbps.

Packet losses
In reality, network congestion causes

dropped packets, and bandwidth suffers as a
result. For sufficiently long network flows that
experience no time-outs, a simple model for
the average bandwidth that TCP delivers in
the presence of loss is

BW < (MSS / RTT) × (1 / √ p)

where p is the probability that a packet is
dropped.7

The rough intuition behind this model is
that 1/√ p corresponds to the average window
size in packets when using the additive-
increase/multiplicative-decrease congestion
avoidance algorithm. With larger drop rates,
the protocol can send fewer packets before
decreasing the window. Assuming a uniform
packet-drop probability of 5%, the average
bandwidth for our example transfer will be
less than 275 Kbps, little more than a quarter
of the 1 Mbps we estimated earlier.

Sometimes fast retransmit is not effective,
and the sender must wait for a time-out; this
further reduces the achievable bandwidth.
Incorporating these cases (see Padhye et al.8)
brings the average bandwidth for our transfer
down to 228 Kbps.

Start-up effects
Most network flows are short; consequent-

ly the situation is usually even worse. There
are several protocol choices and implementa-
tion artifacts that make start-up behavior par-
ticularly poor, penalizing short flows. While
new protocols such as HTTP/1.19 promise to
increase the average flow size somewhat, we
expect short flows to be an important part of
the traffic mix for some time.

The first and most obvious problem is con-
nection setup. TCP is a connection-oriented
protocol that requires a three-way handshake
during which the sender and receiver
announce and acknowledge each other’s con-
nection requests. In a short flow, the time for
this connection setup is disproportionately
large. Moreover, if the network drops the

sender’s request or the receiver’s response, the
sender waits for a period before retransmit-
ting, each time increasing the time-out expo-
nentially. Because the sending host has no
information about the round-trip time to the
destination, most implementations set the ini-
tial time-out to a conservative number (often
three seconds). If the drop probability in each
direction is 5%, the probability of losing one
of these connection packets is 1 – (1 – 0.05)2,
or 10%. That means that 10% of the attempts
to open a connection would result in a wait
of three seconds or more. Because most TCP
implementations give up completely after
three attempts to connect, one in a thousand
connections would be denied even though the
server is operating.

Having made a connection, the next prob-
lem is slow start. Because the round-trip time
limits the rate of window growth, TCP may
never reach the bottleneck bandwidth for
short flows. Without packet drops, TCP’s
bandwidth will be roughly limited by

The intuition for this bound is that the num-
ber of round-trip times necessary to send
TransferSize bytes is related to the log of
TransferSize because of slow start’s exponen-
tial growth. The extra factors deal with details
of commonly used acknowledgment policies.

An additional impediment is that many
TCP implementations poorly manage the
interaction of slow start and the receiver’s
delayed-acknowledgment algorithm. To
reduce network traffic, receivers do not typi-
cally send an acknowledgment immediately,
but instead wait to see if additional data will
arrive to allow it to send combined acknowl-
edgments. If no data arrives before the
delayed-acknowledgment timer fires (after
200 ms in implementations derived from
BSD—the Berkeley Software Distribution
version of Unix), the receiver sends an
acknowledgment. However, during slow start,
many TCP implementations start with a win-
dow size of one and therefore must wait an
average of 100 ms for the receiver’s delayed-
acknowledgment timer to fire.

W <
TransferSize

(RTT log
TransferSize

2MSS
+11.5×































55JANUARY–FEBRUARY 1999

.

Incorporating these effects, we find that our
transfer takes a minimum of seven round-trip
times: one for connection setup and six to send
the data during slow start. Additionally, we will
wait 100 ms on average for the first delayed
acknowledgment. Under these conditions, the
average bandwidth is less than 140 Kbps.

Of course, we do experience losses during
connection setup and slow start, which reduces
the average bandwidth still further. These loss-
es can be particularly expensive because the
window is too small to trigger fast retransmit,
and the time-out value has not had enough
time to converge to the round-trip time.

Figure 4 shows the results of a complete
simulation of our 10-Kbyte TCP transfer for
various error rates. With 5% packet loss, the
median bandwidth for a transfer such as ours

is about 75 Kbps.
Summarizing, for our example Web trans-

fer we observe bandwidth an order of magni-
tude lower (75 Kbps) than that theoretically
possible with a sliding-window algorithm (1.2
Mbps), and two orders of magnitude lower
than the bandwidth available (10 Mbps).

Finally, because TCP uses exponential back-
off and long initial time-outs, it has very high
response time variance (seen in Figure 5). The
consequence is that the Internet has trained
many users to short-circuit its congestion con-
trol: If you are unlucky enough to get a few
packet drops, you may be stuck in back-off,
and you can get better performance by click-
ing “Stop” and then “Reload.” Needless to say,
this behavior should not be encouraged from
the network perspective.

Detour architecture
Experimenting with new approaches to

these problems in today’s Internet is a daunt-
ing task. The enormous heterogeneity and
scale make it difficult to anticipate the global
effects of any change and impossible to deploy
any such change globally. As a consequence,
our approach is to prototype a new network
virtually, on top of the existing Internet. The
resulting system, called Detour, allows us to
explore alternative host and network solutions
while using real Internet links as the infra-
structure and real Internet traffic as our input.

Figure 6 depicts the Detour architecture.
Detour consists of a set of geographically dis-
tributed router nodes interconnected using
tunnels. We can think of a tunnel as a virtual
point-to-point link. Each packet entering a
tunnel is encapsulated into a new IP packet
and forwarded through the Internet until it
reaches the tunnel’s exit point. Researchers
have used this mechanism previously to form
the multicast backbone (Mbone) and the
experimental IPv6 backbone (6Bone). Tun-
nels are useful because they allow us to pro-
totype new routing functionality while using
the existing network infrastructure.

A host wishing to use the Detour network
will direct its outbound traffic to the nearest
Detour router. The router will forward these
packets along tunnels within the Detour net-
work, and the packets will exit at a point close
to the destination. So that responses return in
the same fashion, the system must perform

56

DETOUR

IEEE MICRO

0

20

40

60

80

100

120

140

Packet loss rate (%)

B
an

dw
id

th
 (

K
by

te
s)

0 2.5 5 7.5 10 12.5 15

Median
Average

Figure 4. Median and average bandwidth delivered transferring 10 Kbytes
over a link with a 70-ms round-trip time and a 536-byte maximum segment
size, as a function of packet loss rate.

0

10

15

20

25

Packet loss rate (%)

La
te

nc
y

(s
ec

on
ds

)

0 2.5 5 7.5 10 12.5 15

Median
Average
Standard deviation

Figure 5. Median, average, and standard deviation of the time required to
transfer 10 Kbytes over a link with a 70-ms round-trip time and a 536-byte
maximum segment size, as a function of packet loss rate.

.

network address translation so that the source
address of the packet reflects the exit router
and not the actual source. This complication
is a necessary consequence of using tunnels to
superimpose a new routing framework.

Note that Detour routers are, generally
speaking, edge devices and do not appear in
network cores. We believe that controlling
routing and congestion control at the edge of
the network will be sufficient to address many
of the problems we’ve raised. At the same time,
we avoid potential problems supporting per-
flow processing at the very high traffic band-
widths in the core of the network.

Opportunities in routing
Reviewing the data we presented in the sec-

tion on routing inefficiencies, we see that one
opportunity is to use real performance met-
rics to choose routes within the routing sys-
tem. Instead of AS numbers, Detour routers
can exchange information about the measured
latency, drop rate, and bandwidth available
along their tunnels. The challenge is to use
this information to provide a routing service
that automatically adapts and routes around
emerging hot spots on the Internet, yet is sta-
ble over short time scales. The early Arpanet
used measurement-based adaptive routing,
but it was abandoned because of instability—
fluctuations in load caused routes to change,
which in turn caused the load to fluctuate.
However, recent work by Breslau10 and oth-
ers demonstrates that a well-designed routing
system can be both adaptive and stable.

Another opportunity we plan to explore is
dynamic multipath routing. Routers in the
Internet generally send all packets to a partic-
ular destination along the same path. This is
reasonable if all paths have excess capacity.
However, when one path to a destination is
congested and an alternate path is not, single-
path routing limits the network’s performance
and utilization. We hope to automatically bal-
ance loads in our system and avoid congestion
before it occurs by randomly assigning flows
to good paths and by dynamically varying
how routers spread traffic across such paths.

Finally, we recognize that there is an oppor-
tunity to specialize routing decisions to the
needs of different service classes. For example,
as we described in the section on packet loss-
es, long TCP flows are best suited by the route

that minimizes RTT/√ p. However, streaming
multimedia flows (such as RealAudio) are less
sensitive to round-trip time and may be best
served by uniquely minimizing p or mini-
mizing the variance in RTT. We intend to
classify traffic extensively in Detour and select
a routing policy best suited to the needs of
each traffic class.

Opportunities in informed transport
Improving latency and packet drop rates

automatically improves transport perfor-
mance. However, our examination of TCP
behavior suggests that additional inefficiencies
stem from inadequate information. An indi-
vidual host is limited by its vantage point
because it has a relatively small number of sam-
ples from which it must derive the network’s
state. Inevitably, the host will be either overly
conservative or overly aggressive. Short flows
exacerbate this behavior because they offer lit-
tle time for the host to discover anything about
the network before they complete.

Ultimately, we would like to provide a
transport protocol limited only by network
resources and not by the ignorance of the end
host. For example, if there is sufficient capac-
ity, we would like to transfer a Web page in a
single round-trip time. Approaching this goal
will require relaxing the view that the network
is a black box.

One approach is to use the network’s
expanded vantage point to inform the trans-
port protocol. A Detour router at the edge of
the network can observe many different flows,

57JANUARY–FEBRUARY 1999

H H R

H

H
H

R

R

H R H

H

H

R

Tunnels
between

Detour nodes

Detour routers
at network edges

Packets
routed along

tunnels

Routers aggregate
traffic from hosts

R

H

Figure 6. Architecture of the Detour virtual Internet. Nodes labeled R repre-
sent Detour routers; those labeled H represent hosts.

.

and thus it can improve the fairness and accu-
racy of the underlying transport mechanism
by sharing aggregate flow information. To
illustrate this point, we use two examples from
TCP: connection establishment and slow start.

When a host opens a TCP connection, it
has no information about round-trip time and
so defaults to a very conservative number, three
seconds in many implementations. As we
explained earlier, a 5% drop rate in each direc-
tion implies that 10% of these connections will
wait for three seconds or more. If the request
is for a Web page with five or six inline images,
then the odds of fetching the complete Web
document within three seconds is only about
one in two. This delay stems entirely from the
uninformed choice of three seconds for the ini-
tial time-out. By observing other traffic des-
tined for the same network, a Detour router
can provide an informed round-trip time esti-
mate for subsequent hosts using that path. Or,
without modifying the end-host protocol
implementation, the router may choose to
retransmit the connection establishment
request on the host’s behalf.

Similarly, hosts use the slow-start algorithm
because when a host starts a connection it has
no good way to know what its fair share of the
bottleneck capacity is along that path. As a
consequence, TCP necessarily sends a burst
that is up to twice the bottleneck capacity as
it overestimates and then scales back, causing
unnecessary packet drops. We could reduce
or avoid these packet drops and consequent
retransmits if the host knew its fair share of
the bottleneck.

A Detour router is in an ideal position to
make this determination. Minimally, the
router may preemptively drop packets that
exceed the bottleneck bandwidth estimate, as
these packets would otherwise uselessly con-
sume network resources on their way to being
dropped by downstream routers. More aggres-
sively, the network may communicate a fair-
share estimate and variance to the host and
allow it to initiate slow start with an appro-
priate window size.

The meteoric rise in popularity of the Web
has caused the Internet to experience

more than a few growing pains. Society is
increasingly coming to depend on the Inter-
net for its everyday operation: Users go online

to purchase books and automobiles, make
travel arrangements, disseminate news and
entertainment, teleconference, and control
embedded devices. As this happens, the Inter-
net must adapt to provide high-performance
and highly reliable service.

As the diversity of link performance and
drop rates increase, we will need to consider
routing based on performance and reliability
information. As the number of short flows
sharing high-bandwidth links increases, we
will need to develop proactive congestion con-
trol strategies. The University of Washington
Detour project is attacking these issues by
deploying a virtual network testbed to explore
the costs and benefits of such informed rout-
ing and transport mechanisms. MICRO

References
1. D. Clark, “The Design Philosophy of the

DARPA Internet Protocols,” Proc. ACM
SIGCOMM 88, ACM, New York, 1988, pp.
106-114.

2. T. Anderson et al., “A Case for Now
(Networks of Workstations),” IEEE Micro,
Vol. 15, No. 1, Feb. 1995, pp. 54-64.

3. D. Patterson, G. Gibson, and R. Katz, “A
Case for Redundant Arrays of Inexpensive
Disks (RAID),” Proc. Int’l Conf. Management
of Data, ACM, 1989, pp. 109-116.

4. V. Paxson and S. Floyd, “Why We Don’t
Know How to Simulate the Internet,” Proc.
1997 Winter Simulation Conf., IEEE,
Piscataway, N.J., 1997.

5. V. Jacobson, “Congestion Avoidance and
Control,” Proc. ACM SIGCOMM, ACM,
1988, pp. 314-329.

6. W.R. Stevens, TCP/IP Illustrated, Vol. 1,
Addison-Wesley, Reading, Mass., 1994.

7. M. Mathis et al., “The Macroscopic Behavior
of the TCP Congestion Avoidance
Algorithm,” ACM Computer Comm. Rev.,
Vol. 27, No. 3, July 1997, pp. 67-82.

8. J. Padhye et al., “Modeling TCP Throughput:
A Simple Model and its Empirical
Validation,” Proc. ACM SIGCOMM, ACM,
1998, pp. 303-314.

9. H. Nielsen et al., “Network Performance
Effects of HTTP/1.1, CSS1, and PNG,” Proc.
ACM SIGCOMM, ACM, 1997, pp. 155-166.

10. L.M. Breslau, Adaptive Source Routing of
Real-Time Traffic in Integrated Services
Networks, doctoral dissertation, Computer

58

DETOUR

IEEE MICRO

.

Science Department, University of Southern
California, Los Angeles, 1995.

Stefan Savage is pursuing a PhD in computer
science at the University of Washington. His
research interests include resource management
in wide-area networks, high-performance
operating-system design, and automated soft-
ware-testing tools. He received a BS in applied
history from Carnegie Mellon University. Ste-
fan is a member of the IEEE Computer Soci-
ety and the ACM.

Thomas Anderson is an associate professor at
the University of Washington. His projects of
the last few years have included the design of
Digital’s SRC AN2 gigabit ATM switch, lan-
guage-independent software fault isolation,
Berkeley NOW and IRAM, WebOS, and
now Detour. He is a member of the Com-
puter Society.

Amit Aggarwal is a graduate student in com-
puter science at the University of Washing-
ton. He received a BTech in computer science
and engineering from the Indian Institute of
Technology, Delhi. His current interests
include operating systems, networks, and
wide-area distributed systems.

David Becker is a research staff member at the
University of Washington. He received a BS
from Bethel College and an MS from the Uni-
versity of North Carolina, Chapel Hill. His
research interests include kernel design, high-
speed networks, and wide-area services.

Neal Cardwell is pursuing a PhD in comput-
er science at the University of Washington. His
general research interests include networks,
distributed systems, and operating systems,
but he is currently involved in tracing, analyz-
ing, and modeling the performance of TCP in
today’s networks. Cardwell received a BS in
computer science from the College of William
and Mary. He is a member of the ACM.

Andy Collins is a graduate student in com-
puter science at the University of Washing-
ton. He received his BS in electrical
engineering and computer science from the
University of California, Berkeley. His
research interests include wide-area network-

ing, virtual network configuration and man-
agement, and systems support for flexible
routing and forwarding algorithms.

Eric Hoffman is a research staff member at
the University of Washington. His research
interests include Internet-scale information
flooding, language support for systems pro-
gramming, and information visualization. He
has also worked at Ipsilon Networks, Caida,
the Information Sciences Institute of USC,
and the US Naval Research Laboratory.

John Snell is finishing a BS in computer sci-
ence at the University of Washington. His
research interests include distributed applica-
tion design, wide-area networks, and Java pro-
gramming. Snell is a member of the ACM.

Amin Vahdat is an assistant professor in the
Computer Science Department at Duke Uni-
versity. His research focuses on system support
for wide-area network services, including secu-
rity, naming, resource allocation, and cluster
support for high-performance scalable services.
Vahdat received his PhD in computer science
from the University of California, Berkeley.

Geoff Voelker is pursuing a PhD in comput-
er science at the University of Washington.
His research interests include distributed sys-
tems, binary rewriting systems, and mobile
computing. He received a BS in electrical
engineering and computer science from the
University of California, Berkeley, and a mas-
ter’s degree in computer science and engi-
neering from the University of Washington.
Voelker is a member of the IEEE Computer
Society and the ACM.

John Zahorjan is a professor at the Universi-
ty of Washington. His current research is in
the area of resource management in parallel
and distributed systems, with a focus on dis-
tributed, real-time rendering. Zahorjan
received a PhD in computer science from the
University of Toronto.

Direct questions concerning this article to
Stefan Savage, Department of Computer Sci-
ence and Engineering, Box 352350, Univer-
sity of Washington, Seattle, WA 98195;
savage@cs.washington.edu.

59JANUARY–FEBRUARY 1999

.

