Finding Diversity in Remote Code Injection Exploits

Justin Ma*
Stefan Savage”

ABSTRACT

Remote code injection exploits inflict a significant sodietast,

and an active underground economy has grown up around thes

continually evolving attacks. We present a methodologyiffier
ferring the phylogeny, or evolutionary tree, of such exgsloiWe
have applied this methodology to traffic captured at sewenalage
points, and we demonstrate that our methodology is robuttteto
observed polymorphism. Our techniques revealed noratrbade
sharing among different exploit families, and the resglphyloge-
nies accurately captured the subtle variations among igp¥hin
each family. Thus, we believe our methodology and resutisaar
helpful step to better understanding the evolution of rentaide
injection exploits on the Internet.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection D.4.6 [Operating System$. Security and Pro-
tection—nvasive software

General Terms
Algorithms, Measurement, Security

Keywords

worms, bots, malware classification, binary emulation,|q@geny

1. INTRODUCTION

Internet users are increasingly victimized by an onlinengral
enterprise that spans denial-of-service extortion, itietiteft, wire
fraud, piracy and unsolicited bulk email. At the core of thestiv-
ities is network-borne malware—software used to remoteiyn-c
promise and harness the resources of millions of hosts.a/xbih-
siderable effort has focused on methods for defending agsirch
attacks, there is comparatively little research desagilthe mal-

John Dunagan
Geoffrey M. Voelker”

*University of California, San Diego

" Helen J. WangT

TMicrosoft Research

the state of our defenses? This paper does not conclusively a
swer these questions, but we develop a measurement medggdol

etha’[is a first step in this direction. In particular, we foarshow

to identify and measure the diversity amamegnote code injection
exploits used to compromise Internet hosts.

Typically, a host is compromised via a software vulnerapili
(e.g., buffer overflow, format string, integer overflow) tladlows
network-based input to be “injected” into a running progrand
executed. Subsequently, the exploit payload may downlahd a
ditional software, join a centralized “botnet,” or reconfig the
operating system to evade detection (i.e., a rootkit). @/ttiere
is significant variation among these “applications,” here facus
specifically on the exploit and its initial payload—the saled
shellcode—that first executes on a newly compromised machin
Because shellcodes operate in a constrained environrhegtate
typically small, simple, hand-coded machine programs huosd are
particularly well-suited to automated analysis.

Given a corpus of such shellcodes there are a number of abviou
questions that arise. An immediate motivation for undeditzy
how much variation exists among the shellcodes for an ebiglto
inform the state of our defenses. In particular, polymargstiell-
codes are considered to be an Achilles heel for exploitadige-
based approaches [9, 10, 22]. This consideration has rediva
research in vulnerability-signature-based approaches [8, 29].
However, to date there is little empirical evidence aboet hes-
ence of such threats in the wild, let alone an attempt to cheniae
its impact on existing defenses.

At the same time, measuring shellcode diversity may also al-
low us to better understand how malware is created, potnitia
ferring the paternity of different samples or, more gengrabn-
structing a shellcodphylogeny Such a malware family-tree would
simplify the categorization, naming and analysis of makvaer-
formed by security vendors and could also provide insigtat the
dynamics influencing malware development, evolution amdisb.
Moreover, as malware “potency” becomes a powerful market ad
vantage for organized cyber-criminals, a phylogenic asialynay

ware ecosystem itself. That is, how does one piece of malware Prove useful for estimating the market-share and vigor fiéxéint

relate to another, what pressures drive its structural andtional
evolution, and what may this teach us about malware authuts a

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

IMC’06, October 25-27, 2006, Rio de Janeiro, Brazil.

Copyright 2006 ACM 1-59593-561-4/06/001055.00.

organizations. However, there is a pointed lack of such eogbi
analysis in the literature today.

In summary, the purpose of this work is to enhance the under-
standing of today’s malware, their diversity and relatlipgo one
another. From our study, we have gained some evidence that to
day's malware diversity is simple and does not employ sdiphis
cated evasive techniques.

This paper develops and demonstrates a methodology for auto
matically identifying and quantifying shellcode similgriand for
using this data to create a shellcode phylogeny for a givémeru
ability. The remainder of this paper is organized as folloviis

Section 2, we provide a brief background on remote codetinjec
exploits and a discussion of related work in the areas ofraated
malware analysis. Then, we provide an overview of our method

ogy in Section 3. In Section 4, we analyze the amount and sause

of diversity for exploits both within individual vulnerdiiies and
across multiple vulnerabilities. Section 5 discussesiicagibns of
our findings for current network IDS systems, and we concinde
Section 6.

2. BACKGROUND AND RELATED WORK

Remote code injection attacks are a combination of vulrlerab
ity, exploit and shellcode. The vulnerability is the pautar soft-
ware structure that allows data provided over the netwoskibwvert
and redirect execution control flow. For example, if netwionbut
overruns beyond the end of an unchecked buffer, it can oterwr
the return address of the calling stack frame and divertrobimtto
the buffer itself. An exploit is a particular formulation ah attack
against a vulnerability. Typically an attacker can use maiffer-
ent instruction sequences to exploit a particular vulniétgband
as a result there may be multiple exploits for that vulnéitgb\We
refer to the variation in the exploits for a particular vuiaeility as
the “diversity” of those exploits. Finally, the shellcodethe pay-
load carried by the exploit—it is the first code to execute eesalt
of control flow being subverted. Figure 1 shows a simple repre
sentation of a stack-based buffer overflow, an instance efrte
code injection attack. In this case the shellcode is ingeto the
vulnerable buffer that is being overrun.

Low
Mem

Host
T Memory

—D

Exploit Packets

o 1]

High
Mem

Figure 1: Simple example of a remote stack-based buffer over
flow. The shaded regions represent the shellcode of the exfilo
as sent over network packets, then as injected into the vulme-
ble buffer of the target host. The return address has been ove
written with injected data, thereby redirecting the executon
flow to the shellcode residing in the vulnerable buffer.

Using the terminology from Crandall et al. [4], our study exa
ines polymorphism and diversity in theportion of the an exploit.
The 7 region of an exploit refers to the injected shellcode that is
executed after diverting the flow of execution on a victim Hine.
We study the shellcode because there are considerableedegfre
freedom in their construction. However, they are frequelith-
ited by the size of the buffer being processed and the neetthdor
buffer to contain “NOP sleds,” or long regions of conseaatido
nothing” instructions prepended to shellcode that allowsfome
imprecision in guessing the address of the shellcode .itself

Shellcodes can be quite sophisticated in their constmictiv
cluding the creation of pseudo-random NOP sleds and “patymo
phic” payloads that are encrypted (and potentially congeésin

transit and only decrypted just before execution [23]. Omiva-
tion for these techniques is that they can greatly frustitedeabil-
ity to find a textual signature for a given shellcode. Indessine
polymorphic shellcode generators also create random piecsy
further challenging signature-based defenses. Finalipesshell-
codes include anti-debugging code (including self-madgycode
and breakpoint detection) to complicate disassembly aatysis.

Thus even decoding shellcodes can be a challenging problem i
itself. Early attempts to defeat polymorphism used scedafk-
ray analysis” to heuristically decode polymorphic codeseoion
the assumption of an XOR-based cipher [27]. In x-ray ang)ysi
a portion of a known, decoded instance of the shellcode is XOR
ed against an encoded shellcode to recover the encryptionfke
more general approach, called generic decryption, hastoesm-
ulate execution while the shellcode decrypts itself (tgfjcusing
a heuristic to guess when this process terminates). Howther
overhead of this technique can be substantial and there\as-a
ety of counter-measures that undermine its efficacy [27UsT he-
searchers have developed techniques that combine enmyldgio
namic translation, and static analysis [21, 24]. We use dlaim
approach in our work.

Having decoded a malware shellcode, comparing it to ottedl-sh
codes is another key problem. One approach is to model eatdh sh
code as a binary string and use traditional lexical distameasures
to approximate shellcode variation. An alternative apphoia to
use structural distance measures that capture variatidreioon-
trol flow and values at the instruction, basic block, or fimetcall
levels [5, 6, 11]. We experiment with both techniques in gaper,
and then propose another metric that we find better suitedito o
problem domain.

3. METHODOLOGY

In this section we describe our analysis techniques, iiegud
their motivation, potentials, and limitations. Overallrcanaly-
sis proceeded with the following major steps. First, we aoted
shellcodes directly from a network trace using Shield [29Ye
then decoded the shellcodes through restricted binary ation!
Finally, we examined the similarity among exploits by pemitng
clustering on the shellcodes.

3.1 Exploit Collection with Active Responders

Our definition of “remote code injection exploits” refersesifi-
cally to exploits that require the attackeractivelycompromise a
victim’s machine over the network—no initiating action finche
victim is required. Hence, our primary means of collectirgleits
is by examining network traces of traffic sent to and frantive
respondershosts that respond to unsolicited probes (e.g., exploit
attempts) for measurement purposes. As Pang et al. observed
their study of exploits destined for unused address spawelag¢-
ing end-host behavior allows us to collect more session frata
an attacking host [20]. In particular, completing the infeic hand-
shake will suffice to cause the attacker to transmit the cbed.

To further illustrate the utility of using active responsiéor mea-
surement, consider the 1ISystemActivator and RemoteAtativax-
ploits. These exploits target different vulnerabilitiesng the same
network port. If we only listen for exploit traffic passive(g.g.,
the network telescope approach [16]), the exploits wouhdpsy
appear as TCP SYNs destined for port 135 in the trace. Thus, we
require active responders to capture the RPC Bind and Reppies
tions of the exploit handshake to differentiate the explaind we
use network traces of live honeypots and stateless respo[R(
to obtain these exploits.

3.2 Extracting Shellcodes

Analyzing theshellcodeportion of an exploit is promising be-
cause it is the first place the malware author is executingaoele
on the system. In this new code, malware authors can useetyvari
of different techniques to accomplish a number of goals, &érgl-
ing needed host subroutines, or downloading a larger exbleut
By comparison, we did not focus on protocol framing (e.gpliap-
tion layer headers) because such framing is a compulsonyegie
Although the message sequence for exploiting the vulnksaban
also vary, malware authors likely benefit less from altersingh
handshake messages.

We used Shield [29] to extract the shellcode for each exphmt
sion from the traces. Shield was originally designed foneuability-
driven filtering for known vulnerabilities. To apply Shieid our
setting, we modified it to collect the data that is beyond thiéeln
boundary. However, not all of the collected data correspaaex-
ecutable code. For example, execution will start at an oifsshin
the buffer that depends on the exact vulnerability beindcétqa.
Indeed, there are cases where the first several bytes of herat
ble buffer contain the beginning of a URL that is prependeth&
executable shellcode proper. As a second example, ther ipodfy
contain random padding that is not part of the exploit code {®
its data read by the exploit code). We addressed these ard oth
issues using the following exploit emulation technique.

3.3 Exploit Emulation

B C
A | 0.50| 0.75
B — | 1.00

(a) Distances

0.8 1
0.6 1
0.4 1
0.2 1

Merge Distance

A B C
(b) Dendrogram

Figure 2: An example of (a) a distance matrix and (b) its corre
sponding dendrogram.

dresses and memory accesses that would cause segfauligeare i
cepted, and the flow of execution restarts at the fall-thihaogtruc-

In many of the exploits we encountered during our study, the Fion. The emulgtion stqps when the control flow makes an abesol
main executable payload had been encoded. One encoding tech/UMPp to @ location outside the buffer.

nigue we commonly observed was a byte-for-byte XOR of the pay
load with a decoding key, though we also encountered vansti
such as encoding NULL-bytes with an escape character artit mul
byte XOR. A variety of reasons might explain this observed us
of encoding: eliminating NULL bytes to allowt r cpy() buffer
overruns to complete, hiding tell-tale strings (Web sitmea, API
names such as “Kernel32”, etc.), and finally obfuscatingetable
code, thereby making network-based intrusion detectiorerdi-
ficult. Regardless, we found that decoding the exploits o
necessary to reveal most of the actual executable code.

Emulating these short shellcodes has the advantage of -a rela
tively low overhead compared to emulating an entire binag-e
cutable. Although we did not pursue this direction, we cadd-
ceivably also use this methodology to emulate and look fatim-
ships among larger code bases such as rootkits, spywaréhear o
executable malware files. However, it is unclear whetheotiez-
head of this approach would be prohibitive for larger exablgs.

3.4 Clustering

To understand the relationship of the shellcodes to eadtr,oth

To enable our analysis to scale to many shellcode samples, wewe introduced a distance metric on the shellcode instmdiides

needed to automate the process of decoding the exploit qds/lo
all of which had clear pre-images and post-images. We fohat t
the easiest way to deal with the variety of decoding routinas to
use binary emulation, allowing the different exploit deicagdrou-
tines to execute, and thus reveal the underlying code. Emgla
the exploit was also necessary to reveal the actual ingtrubytes
executed by the exploit. In contrast, we found that evencstid-
assembly over the decoded payload had trouble with the iesgar
of x86 instruction alignment and the occasional instanaafiom
filler text decoding to valid x86 instructions.

We implement the emulator using Intel’s Pin [13] on Linuxvén
an encoded shellcode, we first declare it as a staticallgatial
buffer in C source code that treats the buffer as a functidrenT
we compile the source into a binary that marks the shellcoéferb
with read, write and execute permissions to allow the salélifiying
shellcode to run properly. We addressed the issue of bufiers
ginning with non-executable prefixes (mentioned in Sec8®)
by iteratively retrying failed emulations at subsequeifisets. We
found this simple retry policy was enough to overcome anyess
with non-executable prefixes.

As Pin successfully emulates the binary, we mark the exdcute
instruction bytes for later analysis. Because we are eingla&x-
ploits for Windows on a Linux platform, we use heuristics top
long shellcode execution. During emulation, function £&ti ad-

generated by binary emulation. We then performed clugesim
the shellcode instruction bytes using this metric. In & tiases in
our study, we evaluated this clustering manually to confinat t

was intuitively sensible, and that the tree constructeddmyamer-

ative clustering had an intuitive interpretation as thelpggny of

the exploit families.

Agglomerative clustering is a form of hierarchical clugtgrin
which the algorithnbuilds upa hierarchy of similarity among ex-
ploit samples by iteratively merging the closest pair ofstéus at
each step. The algorithm begins with eagfique shellcode be-
longing to its own cluster, and performs merging on the cbse
pair of clusters. We define thdistance between clustees the
distance between the furthest samples in the two respeddtige
ters (also known as complete linkage distance). In additioba
algorithm records the distance between two clusters befaney-
ing them, and this information allows us to construct a deghm
to visualize the clustering results.

Figure 2b illustrates a simple dendrogram constructed im th
way using the distances from the matrix shown in Figure 2a& Th
dendrogram’s x-axis shows each individual sample, and-ésiy
shows merge distance. Initially, agglomerative clustgritarts
with three clusters: A, B and C. Because A and B are the clos-
est clusters with a distance 0f0, they constitute the first merge,
and there is a horizontal bar between A and B at the y-axisevalu

0.50. At this point, the remaining clusters are AB and C. Sithe
distance between AB and C is 1.00, the dendrogram has a herizo
tal bar between the AB cluster and the C cluster at a mergandist

of 1.00.

We chose agglomerative clustering as our clustering tecieni
for two reasons. First, the results of agglomerative chirsgeare
typically easy for a human to connect back to features of ke i
put data. (By way of contrast, many researchers do not find tha
eigenvalue-based clustering [19] techniques have sipitamman-
explainable results.) Second, when the data possessekaefiebd
clustering, agglomerative clustering usually finds it auatically.

As we show in Section 4, the data we found during our study did
possess such a well-defined clustering.

In this study, our primary metric was exedit distance, whigh
now define. We also experimented with two other metrics, edit
distance over decoded shellcodes, and a metric based omlcont
flow graph coloring.

3.4.1 Exedit Distance

Our methodology focuses on using relative edit distance tnee
executed bytes of the shellcode, abbreviateexaslit distanceto
compare two shellcodes. Specifically, for each exploit damg
mark the executed instruction bytes, and concatenate thketha
bytesin the order they appear in the paylodide., memory order)
to construct a canonical string representation. As a firegd, stve
compress each consecutive run of the NOP instru€id®0 into a
single0x90 byte. Then we compute the relative edit distance over
all exploits using these canonical strings. Relative editatice
is the number of edit operations (insertion, deletion, stuisn)
used to transform one string to another, normalized oveletigth
of the longer string.

Using executed instruction bytes is different than usirgjrirc-
tion streams, where the instructions in a stream repretsemiap-
pear in execution order (and not memory order) potentiallitiple
times.

3.4.2 Edit Distance

We also experimented with relative edit distance over thizeen
decoded shellcode without trying to distinguish betweetecand
data, but encountered limitations. First, because thigsicnébes
not distinguish code from data, it is sensitive to changesnm
bedded string constants. Second, edit distance could hptuse
infer similarities between exploits across vulneratabtbecause of
differing vulnerable buffer sizes. Third, random paddihgttwas
neither code nor data in some cases generated further noise.

3.4.3 Structural Distance

During our investigation, we implemented a version of the-co
trol flow graph (CFG) coloring approach by Kruegel et al. [IWe
used it to calculate structural distance as the percenthyais-
matched” basic blocks between two samples. A block was densi
ered mismatched if it was not part of a subgraph shared batwee
the two samples.

The primary limitation of this technique was that it did naipe
ture subtle variation between related exploits becauseedrdsic
blocks were summarized by the presence or absence of ceatain
egories of opcodes. This lost information rendered thisimigiap-
propriate for our purpose — it often grouped together distiami-
lies of exploits.

4. EXPLOIT DIVERSITY

In this section we analyze the diversity of exploit shellesdn
a trace capturing live exploit attempts from hosts on therhwet to

four well-known vulnerabilities: SQL Name Resolution, LS8,
MS RPC ISystemActivator, and MS RPC RemoteActivation. We
chose the vulnerabilities because various infamous latemrms
used exploits for these vulnerabilities over the past fearydo
infect hundreds of thousands to millions of hosts, and expkdffic

to these vulnerabilities is still prevalent today.

The trace we use captures exploit attempts on a residerfiial D
network for two days starting on September 6, 2005 at 5pm. We
captured traffic using a DSL-connected machine that ran @visd
XP SP2 (fully-patched), listened on 29 IP addresses, apdneed
to incoming requests. We then used the Shield framework de-
scribed in Section 3.2 to identify and capture exploits foown
vulnerabilities.

We discuss the vulnerabilities in the order of the extentief d
versity of their exploits, from negligible (SQL Name Redain)
to most extensive (RemoteActivation). For each vulneitghivith
substantial diversity, we first examine the number and f&equ
of shellcodes for that vulnerability. We then use our metiod
ogy from Section 3 to (1) cluster the shellcodes accordintpedr
variability and thus identify shellcode families, (2) pide a de-
tailed characterization of each family to both convey thacitire
of shellcode families as well as the subtle functional varies
among them, and (3) show the prevalence of each shellcodly fam
in the trace. By manually examining the shellcode familgeni
tified using our clustering methodology, we show that thedixe
distance metric is capable of correctly identifying expsbiellcode
families, as well as capturing subtle functional variasiaamong
closely related families.

We then end the section by characterizing exploit shellaide
versity in a second trace of traffic from a honeyfarm at thellesge
Berkeley National Laboratory. With this trace, we examihells
code diversity from a different vantage point in the Intérrand
we use our clustering methodology across all vulnerabdith the
trace at the same time. As a result, we show that our methgyolo
is also able to identify the most prevalent shellcode expfothis
trace as a multi-vector exploit targeting three differeminerabili-
ties at once.

4.1 SQL Name Resolution

The Slammer worm exploited the SQL Name Resolution vulner-
ability (Microsoft Security Bulletin MS02-039) when laumed in
January 2003. Slammer was particularly virulent, infegt@9%
of vulnerable hosts within 10 minutes, and the resultinggestion
from probes by infected machines caused disruption on teeriet
on a global scale [15]. Despite the small population of vidhée
hosts (roughly 75,000 infected hosts during the initiaboeék in
2003), Slammer continues to propagate in the wild to this day

Shellcode Instance¢ # Occurrenced
0 766
1 1

Table 1: Exploit frequency per shellcode for the Slammer vui
nerability (MS02-039).

Table 1 shows the exploit frequency per shellcode for the SQL
resolution vulnerability. We observed two apparent variat of
Slammer: 766 exploits with the exact same payload, and ofie ou
lier.

Examining the outlier in more detail, we suspect that itd ey
was likely corrupted on the network before being capturedun
trace. The outlier was identical to all the other payloadsepk for
the last 91 out of 376 bytes. Whereas the trailing bytes aftakr

exploits contained valid executable code, the tail for thigier con-
tained (1) an unidentified 22 bytes (possibly a link-layestpcol
header), followed by (2) a 20-byte IP header containing #mes
source address as the sending host but a destination adu@ss
ISP from a different geographic region, (3) a UDP headerimedt
for port 1434 (the SQL resolution port), and (4) the first 41elsy
of the Slammer exploit. Given these trailing bytes, it appess if
the tail of one Slammer packet was overwritten with the hdaheo
other Slammer packet. Because of portion (2) of the tralbiytgs,
we believe the outlier was not the result of incorrect rearbde at
the local capture machine.

Other than the corrupted outlier, we conclude that thereonfs
one Slammer exploit in the residential DSL trace and, tloeegfno
exploit diversity.

4.2 LSASS

The Local Security Authority Subsystem Service (LSASS) val
idates user logins on Microsoft Windows systems. The oaigin
Sasser worm released in April 2004 exploited a buffer vidhidr
ity in LSASS (MS04-011), and as it spread it disrupted openat
for airlines, banks, hospitals, news agencies, militang govern-
ment offices globally [8]. Indeed, Sasser’s significant dgemaade
the trial and conviction of its author a media spectacle [HASS
exploits persist to this day as a regular element of a malyere
gram'’s repertoire: hundreds of malware variants (mosthg)oio-
corporate an LSASS exploit according to Trend Micro [28].

350 - L L L L L

300 - r

250 r

200 1 r

150 1 r

Occurrences

100 1

50

o ““hl"ll||||||||l||||||||Il|||||um......
0 10 30

20 40
Vulnerable Buffer

!
T

T

50 60

Figure 3: Exploit frequency per shellcode for the LSASS vul-
nerability (MS04-011) in the residential trace. There are B
distinct payloads out of 1769 exploits total.

Number of distinct shellcodes: We captured 56 distinct pay-
loads from 1,769 LSASS exploit attempts in the residentidLD
trace. As shown in Figure 3, the exploit attempts were skewed
across the payloads: a handful of variants were resporfible
large number of occurrences, with a long tail to the distityu

With 56 different payloads, LSASS exploits clearly haverabu
dant diversity. To what extent do they vary, and what is the na
ture of the variation? To answer these questions, we ardtyme
shellcodes in the exploit payloads according to the metloggo
described in Section 3 and clustered the exploits first iatoilies
and then into phylogenies.

Evaluation of distance metrics and resulting clusters: Fig-
ure 4a shows a dendrogram visualizing clustering with theliéx
metric (from Section 3.4.1). Each x-axis position représeame
of the unique shellcode payloads from Figure 3 (although #re

not ordered by prevalence here), and the y-axis showsweladiit
distance. A horizontal line segment in the graph at y-axlseva
y indicates that two sub-clusters had cluster distaneghen they
were merged into one cluster; when merging clusters, wearse ¢
plete linkage distance as discussed in Section 3. The aklitie
segments extending downward from the endpoints of a haakon
segment are the roots of the two subtrees representing theut
clusters.

For example, the 9th and 10th x-axis entries in Figure 4a are
joined together by a horizontal segment at a y-axis valué%f
While constructing the hierarchy, a cluster containing &ABS
exploit and another containing an LSASS exploit were meiated
a cluster distance di%, indicating that the executed instruction
bytes for the samples within each cluster were identical.thét
other extreme, the dendrogram shows that the maximum ediselit
tance between any two exploit samples Wa% because all sam-
ples were contained in sub-clusters rooted at the segmeéa¥at

For comparison, Figures 4b and 4c show results using twa othe
metrics: (1) edit distance over decoded payloasishput distin-
guishing code vs. data), and (2) the metric based on Kruegel e
al.’s control flow graph fingerprinting technique descrilbe®ec-
tion 3.4.3. Our experience with decoded-payload edit destgover
LSASS and other vulnerabilities) was that instance-spedidita
strings and random padding embedded within the payloadettea
substantial noise. As a result, the metric could not captiumédar-
ities among exploits due to variations that were not fundaai¢o
the code. On the other hand, we found the CFG metric based-on ba
sic blocks to be too general because summarizing basic blogk
simply the presence of certain opcodes ignores subtleréliftes
between shellcodes. Consequently, this metric clustenectibn-
ally distinct exploits as identical, as shown with familleSASS-2,

3 and 4 grouped together in Figure 4c.

We found that exedit distance provided a useful balancedsiw
these two approaches: it is general enough that it ignostarine-
specific variations due to constants and other non-exdeubates,
but detailed enough that it can capture the subtle fundticerd
ations. Thus, we used exedit distance as our primary means of
comparing exploits during clustering throughout this gtud

Constructing phylogenies:Because most of the cluster merges
occurred at a small exedit distance of 10%, we used 10% as the
threshold for defining families among the exploits. Wittstthiresh-
old, we find five families of shellcodes exploiting the LSAS8-v
nerability. To visualize this process, every vertical lisegment
intersected by a horizontal line in Figure 4a at the y-axise/af
10% defines an exploit family according to the cluster regmesd
by the tree rooted at the vertical line. We number each dluste
the dendrogram from left to right, and henceforth refer toheaf
the five families as LSASS-0, LSASS-1, and so on.

Manual analysis of phylogenies:To validate our clustering re-
sults, we manually examined the decoded payloads of evetis sh
code for every family. From this examination, we concludat th
the suggested families indeed were five separate code béses.
ever, LSASS-2, 3 and 4 had sufficient similarity among thes, a
suggested by the clustering in the dendrogram in Figure &, th
we conclude that they were branches of the same code base. We
summarize our inter-family analysis with the evolutiongtam in
Figure 5.

Each family exhibits a small amount of variation among shell
codeswithin the family. The differences in variations are 2—20
bytes, and correspond to phone-home/connect-back 1P saidre
hostnames, and ports encoded in the payload.gdhaame-homer
connect-baclattempt, a newly-infected victim connects to a speci-
fied host from which the victim downloads additional code x&-e

100% 40%

30% o

25%

20%

Distance
Distance

15% -

10% -

—1-LSASS-4

S 1-LSASS-2

LSASS:
J}-LsASS-2

Distance

+SASS1
LSASS-0

(a) Exedit

(b) Edit

20 40

(c) Structural

Figure 4: Dendrograms for LSASS (MS04-011) exploits usinga) edit distance over executed code, (b) edit distance oveecoded

shellcodes and (c) structural distance over executed code.

Common
Ancestor

Figure 5: Evolution diagram for the LSASS families.

cutable files. The typical distinction between the two teishat
connect-back refers to connecting to the victim’s immesijzrent
in the infection chain, and phone-home refers to connedting
central location.

Next we give a detailed characterization of each LSASS famil
to provide intuition on the structure of the shellcodes,vegrnthe
substance of shellcode variation within and among LSASS-fam
lies, and provide examples of how the exedit distance metnic
differentiate subtle functional variations among shelkes

LSASS-1's shellcode was straightforward. Function nanieb s
as GetProcAddress, ExitThread, and so on formed a minidatee
section at the end of the payload, and the main body of theixpl
followed immediately after the decoding loop. The main badg
the data section were XOR-ed one byte at a time @KB9.

LSASS-0's payload consisted of an unencoded main body fol-
lowed by an encoded data section. The encoding scheme was als
a byte-wise XOR, but with the ke§xf f. We found embedded
strings like “http://atlantcommerce.com/stuff.exe” dmndxter.exe”
in the decoded data section. A search for these strings stgghe
that they belonged to malware previously classified by Syetan
as Trojan.Netdepix [25].

LSASS-2, LSASS-3 and LSASS-4 shared the same encoding
scheme and roughly the same flow of execution. Whene0z©08
byte was read from the encoding payload, the decoding locag re
the next byteB and wrote((B - 0x30) XOR 0x99) as the
decoded byte. Otherwise, it XOR-ed the byte vi#99. All three
families had dedicated function blocks at the end of theytqmeds
for library loading and function finding. The portion of theam
body after the decoding loop was a series of calls to thesgim
blocks, and there were only minor differences among these fa
lies.

Both LSASS-2 and LSASS-3 contained the string$tpupd.exe”
and some variation of “u8,” “ul13,” etc. in the middle of theypa
load. A search for these strings suggests that they belontato

ware classified by various commercial security firms as K{2gh
Only LSASS-3 and LSASS-4, however, contained an identifier
string that precedes the decoding routine. Although botth da
URL containing the attacking machine’s IP and port numbee, t
padding after the URL differed. In particular, LSASS-0 itéers
had taken the following form “http:#addr>: <port>/x.exe\xdf\xdf
... \xdfMozilla/4.0” and theOxdf characters padded the identi-
fier's length to a fixed value over all exploits (37 bytes). Byne
trast,lLSASS-4 exploits appended a string containing “ksdthe
URL.

45 L L L L L

40 A

Hosts

0 m
2
Family

Figure 6: The distribution of hosts for each family exploit-
ing the LSASS vulnerability. We clustered using a similariy
threshold of 10%. Most hosts belonged to families LSASS-1
and LSASS-3, which are represented by labels 1 and 3 in the
graph.

Prevalence of exploit families:Finally, we complete the analy-
sis of LSASS with a discussion of exploit prevalence at tmeilfia
granularity (as opposed to the shellcode granularity irufagg).
Figure 6 shows the relative prevalence of each exploit farai-
pressed as the distribution of hosts contributing explatgach
family. For each exploit family, we tallied the number of tethat
attempted to exploit the LSASS vulnerability; each host enad

The string “Isd” could be a reference to the group Last Stdge o
Delirium, famous for discovering the RemoteActivation nefa-
bility (MS03-026).

400

350 1 r
300
250

200 A1

150 - L
100 - ‘
50 |
o ||"I| : : : : : : : |
0 10

20 30 60 80 90

Occurrences

T

T

40 50
Vulnerable Buffer

70

Figure 7: Exploit frequency per shellcode for the 1ISystemAt-
vator vulnerability (MS03-039). There are 90 distinct paybads
out of 1,561 exploits total. There is a long tail of nearly 80
ploit payloads that appear only once.

exploit attempt using only one distinct payload, so the setosts
contributing to each family were disjoint. Most of the hogtd)
used the LSASS-3 exploit, followed by LSASS-1 (18 hosts).

Summary: The LSASS exploits we captured had a well-defined
phylogeny. Within this phylogeny, we attributed sourcevarfia-
tion to differing instance-specific constants such as URig I®
addresses. Moreover, our technique of using exedit disté®ec-
tion 3.4.1) made further manual analysis much easier bectas
clustering resulted in appropriate families. Moreovee tlistance
metric was a strong predictor of the type of similarity we \ebu
find among exploits.

4.3 ISystemActivator
The MS Remote Procedure Call (MS RPC) service is a funda-

100%

20% { ! 3 L

80% - RS
70% o
60% - +

50% - r

Distance

40% -

30% - r

o

20% - 4 s
Q@ 95‘ o~ ™ < ”;

on [R 7] n > |
ool -l &5 52

0% M rhrreern e ————— N i [T F

-10% T T T T T T T T T
0 10

Figure 8: Dendrogram for I1SystemActivator (MS03-039) ex-
ploits using exedit distance.

45

40 - -

35 1 r

30 1 r

25 r

Hosts

20 r

15 -

10 4 r

0 1 2 3 4 5
Family

mental Windows service and was exploited by one of the widest Figure 9: Distribution of hosts for each ISystemActivator fam-

spreading worms. In August 2003, the Blaster worm infectatt h
dreds of thousands of computers within the first 24 hours f it
propagation, and its variants were responsible for infigctiny-
where between half a million to 8 million hosts several menth
thereafter [12]. Blaster originally exploited the Remot¢isation
vulnerability in MS RPC, which we cover in Section 4.4, angta
variants exploited a vulnerability in MS RPC's ISystemAator
interface (MS03-039). Since then, exploits of the ISystema-
tor vulnerability have also become a mainstay of the botryelioit
arsenal.

Number of distinct shellcodes: We captured 90 distinct pay-
loads from 1,561 exploit attempts in the residential DSkeraAs
shown in Figure 7, the exploit attempts were also skewedsacro
payloads: 10 variations were responsible for most of thevesl
exploits. However, the long tail of almost 80 distinct sbetles ap-
pearing only once raised the question of whether this wasethdt
of polymorphism or other trivial differences. As with the ASS
vulnerability, we performed clustering of the exploit pagtls to
determine the extent and nature of this variation.

Constructing phylogenies:Figure 8 shows the dendrogram for
clustering decoded ISystemActivator payloads using tleeliexlis-

tance metric. Again, most of the cluster merges happened be-

ily. We clustered using an intra-cluster exedit distance thesh-
old of 10%. Most hosts belonged to families ISys-2 and 1Sys-3
(represented by labels 2 and 3 in the graph), which were bind
and connect-back versions of the same exploit.

tial threshold and large gap between cluster merges andissaof
10% and 85% indicate that exploits within a family are simitat
that ISys families differ more substantially from each otien the
LSASS exploit families.

Manual analysis of phylogeniesThrough manual analysis, we
confirmed that the clusters shown in the dendrogram refledifi
ferent code bases among the ISystemActivator shellcodem(s-
rized in Figure 10). Within each family, though, there wascode
polymorphism in the exploit shellcodes. The several-bytied
ences among exploits were due to variations in data cosstaunth
as encodings of phone-home addresses and hostnames, as well
names of executables. We now discuss the structure of tte ISy
temActivator shellcode families, and the nature of theeddhces
within and among them.

ISys-0 used a 4-byte, non-overlapping XOR to encode its pay-
load, whereas all other exploits we examined used somentaria

low a distance of 10%. We use this distance value as the thresh of a byte-by-byte XOR. Also, the decoding loop used subimact

old to define families among the exploits, resulting in similées
for exploits for the ISystemActivator vulnerability. Thew ini-

instructions to set register values. In other respectsotgani-
zation of its code was straightforward—the main body cdedis

Common
Ancestor

Bind \Connect-back

Figure 10: Relationship of the ISystemActivator families.

of a series of calls to a kernel-base loading function blactt a
function-finding block, both present at the end of the pagloa

ISys-4 had a relatively simple decoding loop, but it had #gést
payload length and its flow of execution was the most comgdita
among the ISystemActivator exploits. The data sectionaiont
ing function names was in the middle of the payload, and séver
function blocks were appended after that. The flow of exeouti
started after the decoding loop, invoking many calls to thefion
blocks. When the execution approached the data sectiorevgow
it jumped past the data section and the function blocks tohamno
set of instructions that performed other function calls.

The moderate exedit distance within the ISys-1 family (9%$w
due to the differing decoding routine offsets and constirits ex-
ploits, but the shellcodes were otherwise identical. Tiferdnce
in decoding routines gives us confidence in the robustnesiseof
clustering algorithm to particular choices of the clustgrthresh-
old. A different threshold that split this family in two walihave
also been reasonable. We could have chosen a lower clggterin
threshold (e.g., 5%) to split ISys-1 into two small familieBhis
new smaller threshold would not have had a large impact on the
results, though, because the differences between shefiaeithin
ISys-1 were minor compared to the differences between isnil

ISys-5 exploits had a characteristic execution flow thatamby
performed the standard loading of memory addresses and func
tion finding, but also performed consecutive jumps over texd t
sections to obtain data offsets in the exploit, and exectitede-
maining code thereafter. The first data section containedtiting
“tftp.exe -i <address get <executable name’, and the second
data section simply contained the same&kecutable name”. Vari-
ation in the address (e.qg., taking values such as 0.0.0.6@rrgect-
back IP) and executable name (such as “updr32.exe” and “sys-
tem32.exe”) accounted for the 6.5% average distance anamg s
ples in this family.

The relatively low 10% exedit distance between ISys-2 ayd{S
3 suggested that they would be similar in many respects.h&urt
manual analysis revealed that both shared the same dedoding
using 0x99 as the key (this is the same as LSASS-3's loop, al-
though we were not aware of any multi-vector malware respons
ble for this), and both used a miniature data section coimigitne
same function names near the end of the payload. Howevex;2Sy
used a shorter exploit payload length and a shorter NOPtséed
ISys-3, but had a longer main body. The basic blocks withen th
main body were similar except for some block reorderingisteg
renaming, and instruction substitution. Interestingig humber of
iterations in ISys-3's loop overshoots the exploit paylgaast the
end of the data section). Thus, it seems reasonable to rgginth
that either I1Sys-2 was a refinement of 1ISys-3, or that ISysa8 &
poor imitation of ISys-2.

A closer look reveals further similarities between ISysrA2l 8.
Both exploits contained the following strings in the sandeonear
the end of the shellcod€et Pr ocAddr ess, Cr eat ePr ocessA,
Exi t Thr ead, LoadLi braryA ws2_32, WEASocket A, with
cl osesocket atthe end of the payload. The only strings that dif-

fered were the last few—ISys-3 contained @annect , but ISys-

2 contained &i nd, | i sten, andaccept. As a result, we
believe that these two families were derived from the santke co
base except that ISys-3 required the newly-infected hastnoect
backto the infecting host, while ISys-2 required the newly-ifsl
host tobind on a socket and wait for a connection attempt from
the infecting host. Malware typically executes conneatkbshell-
codes when the newly infected host resides within a NAT/f&dew
and executes a hind shellcode if the infector is residingpiwit
NAT/firewall. Indeed, more investigation revealed that h&%
average intra-cluster edit distance (which is 4 bytes ouSgs-
3's 776-byte shellcode) exactly corresponded to the imtémen

of the connect-back address—further support that 1ISys8tha
connect-back version of ISys-2’'s bind shellcode.

Prevalence of exploit families: Figures 9 shows the distribu-
tion of hosts over the families. Most of the exploits belahge
families ISys-2 and ISys-3. Because ISys-2 and ISys-3 oifty d
fered in their connect-back functionality and have simpagva-
lence, we hypothesize that they could have belonged to a&botn
that was able to traverse NAT/firewalls by using a combimatd
bind and connect-back shellcodes.

Summary: The ISystemActivator exploits formed another well-
defined phylogeny, and our methodology allowed us to capture
the subtle distinction between bind and connect-back eessof
a shellcode. Specifically, the moderate distance betweailida
ISys-2 (bind) and ISys-3 (connect-back) provided a strangthat
the two families were related, a hypothesis we confirmed minu

4.4 RemoteActivation

As discussed at the beginning of Section 4.3, RemoteAdativat
was the original MS RPC vulnerability (MS03-026) that Beast
and its variants exploited before also targeting 1SystetivAtor.

n n n n n n n

35 1

30 4

25

20 +

15 4

Distinct Payloads

T

10 4

T

0

|‘“““““Il"lllllllu..
5 10 15 20 25 30

Host

35

Figure 11: Exploit diversity per sending host for the Remote
Activation vulnerability (MS03-026). Each of the 338 explit
payloads was unique.

Exploit frequency: We captured 338 distinct exploit payloads
for the RemoteActivation vulnerability. The RemoteActiea ex-
ploits represent the opposite end of the spectrum to the SOL v
nerability: each RemoteActivation exploit attempt usedhajue
payload. Figure 11 shows the distribution of exploit attésr{and,
therefore, distinct payloads) among the 31 remote hosiisgtity
exploit the RemoteActivation vulnerability. Moreover, like the
other exploits we analyzed, RemoteActivation exploitsileitbd a
high amount of exploit diversity per host.

Constructing phylogenies: Figure 12 shows the dendrogram
resulting from clustering the payloads using the exeditadise
metric. Compared to the LSASS and ISystemActivator shesp
the exedit distance among RemoteActivation shellcodeswens
small. Judging from the dendrogram, most cluster mergesrocc
below a distance of 1%. Using this threshold results in twoifa
lies for the RemoteActivation shellcodes, although thé&dliBter-
family exedit distance indicates that the families arealpselated.

Manual analysis of phylogenies:Manually inspecting the ex-
ploits reveals that the last third (roughly 300 bytes) of pagload
contained randomly generated characters selected froer{oase
letters, except for several fixed characters embeddedniltteiran-
dom text. There were also small 2- and 4-byte differencesén t

The hex strings were return addresses for redirecting aiddw
for exploiting Windows NT, 2000 and XP. In addition, the Meta
ploit Perl module invoked a function Pex::Text::Engliski{860)
for filling the last portion of the exploit with random chatars
from ASCII 33-126, a superset of the lower-case letters we ob
served in the RemoteActivation exploits. More importankigw-
ever, the fixed characters placed within the random texteroti
served exploits exactly matched those from the Perl modthey-
were jump commands and return addresses for Windows XP and
2003. Furthermore, both were terminated with the four ahara
ters ‘\’, NULL, ‘A and NULL. However, we could not directly
attribute the exploits we observed to Metasploit becauseNBP-
sled in the Perl module was smaller, the distribution of camd

main body as well. These random characters accounted for thecharacters was different, and we could not find an instant¢beof

variation within each family.

5% n n n n n n

4% L

3% - r

Distance

2% + r

t-1

Remact

1% +

R

<
E
5
«
,

0%

1 1 1 1 1

0 50 100 150 200 250 300

Figure 12: Dendrogram for the RemoteActivation (MS03-026)
exploits using exedit distance. Setting a maximum intra-fanily
distance of 1% yielded two closely-related families.

A more thorough inspection led us to conclude that there were

two very similar types of RemoteActivation exploits in ouade.
Figure 13 shows an evolution diagram that reflects our firgling

Metasploit

Figure 13: Relationship of the RemoteActivation families.

One peculiar feature of the RemoteActivation payloads Wwas t
they shared the same prefix—a large NOP sled sprinkled wéth th
hex strings {xeb\x04\xff\xff” and “\xeb\x04". A search for
those strings led us to a Perl module that was part of the Metas
ploit Framework [14]. Metasploit is a toolkit for generajirex-
ploits, and includes options for generating encoded shedls and
random filler characters. Although we do not directly atitédoour
exploits to a Metasploit generation, the similarities leelgprovide
insight into the construction used by their authors.

decoded shellcode within the Metasploit framework.

The byte-wise encoding scheme only covered the main bodies
of the exploits, but different exploits used different keyadeed,
within each family the average edit distance between naodked
shellcodes was 28.5% to 29.8%, whereas the average edihcist
between decoded shellcodes was 19.6% to 19.9%, as shown in Ta
ble 2. And with manual inspection we confirmed that varialvle e
coding of the exploit's main body contributed to the jump Ve
age intra-family distance. Changing keys along with randitier
characters are commonly described techniques for polyiisp
and the RemoteActivation exploits had both of these feature

Family | # Hosts| Non-decoded Edit Decoded Edit
0 3 28.5% 19.6%
1 29 29.8% 19.9%
Ovs1l 32.5% 23.2%

Table 2: Effect of random filler: intra-family and inter-fam ily
results for the RemoteActivation vulnerability include number
of hosts, average edit distance over non-decoded payloa@sd
average edit distance over decoded payloads.

The decoded main bodies for RemoteActivation fell into two
groups—90% belonged to family Remact-1 and were 206 bytes
long, while the other 10% belonged to Remact-O and were 226
bytes long. The Remact-0 and Remact-1 exploits were similar
because they shared the same function-finding block, whia$ w
placed after the same decoding routine. However, the cade af
the function block performed a connect-back attempt in Re#ma
1, and performed a bind in Remact-0 (hence the longer shigl)co
Nonetheless, both exploit forms ended with a call to reav{had
of a 4-byte authentication token, and a jump to the second ex-
ploit payload downloaded by the recv() call (we thank the Ne-
penthes [17] honeypot for contributing this analysis ofemact-

1 shellcode).

Summary: The exedit distance metric is able to reconstruct
the phylogeny for RemoteActivation exploits even in thesprece
of non-trivial polymorphism such as variable encoding keysd
random padding characters embedded within the payload.e-Mor
over, functional differences in the shellcodes primariyiibuted
to the distinction between Remact-0 (bind version) and Rérba
(connect-back version). Otherwise, the shellcodes for ®ReAc-
tivation exploits did not share the same degree of diversityhe
LSASS and ISystemActivator shellcodes.

4.5 Diversity Across Vulnerabilities

As our final experiment, we analyze exploit diversity in ac&ra
from a very different network vantage point. Using this seto
trace, we examine the relative prevalence of vulnerabditgloits

Family || # Hosts| # Exploits Sent Vulnerabilities Avg Intra-Family Edit
LBL-3 463 728 | ISystemActivator (54.4% ISystemActivator (0.4%

LSASS (44.6%) PNP (1%) LSASS (0.1%) PNP (0.1%
LBL-2 273 296 ISystemActivator 0.4%
LBL-6 152 164 ISystemActivator 2.6%
LBL-5 100 384 PNP 0.1%
LBL-4 11 11 ISystemActivator 0.5%
LBL-1 3 4 ISystemActivator 0.0%
LBL-0 1 9 RemoteActivation 19.3%

Table 3: Per-family results for the LBL trace including the number of hosts, number of exploit payloads sent, the constient
vulnerabilities (with breakdowns expressed as a percentagof the number of exploits sent), and the average intra-fany edit distance

over decoded shellcodes. All families were disjoint.

at a different point in the Internet, and apply our exploitstering
methodology across multiple vulnerabilities at a time tenitify
multi-vector exploits. The trace is a full-payload 4.5-deace from

a Windows honeyfarm running at the Lawrence Berkeley Nation
Laboratory starting on April 19, 2006. Hosts in this honegfa
served as active responders to incoming requests to a fargge of

IP addresses, five /24 subnets. The trace was a tcpdump afnketw
traffic, and we identified and captured exploits by runnirgttace
through Shield.

100% L L L L L L L L

80% o r

EBE-5

60% -

BE=0
LBL-0

40%

T

Distance

20% - L

LBL-6

o ;

- 0 q

o] ; =
L]

LBLA
EBL-1-

‘ Sl
0000000000000 0 00

-20% w T T T T T T T T
0 50 100 150 200 250 300 350 400

0%

Figure 14: Dendrogram for the LBL trace exploits using exedi
distance. The 1st set of hash marks just below 0% represent
ISystemActivator, the 2nd represent LSASS, the 3rd represat
PNP, and the 4th represent RemoteActivation.

Constructing phylogenies: In previous experiments we clus-
tered exploits among shellcodes targeted at individuatenalbil-
ities. In this experiment, we cluster the exploit shellode all
vulnerabilities found in the LBL trace that are known to $thie
at once. Figure 14 shows the results of clustering over pialti
vulnerabilities in the LBL trace as a dendrogram. As withvpre
ous experiments, since most cluster merges occur belowetitex
distance threshold of 10%, we use this value as the thredbold
clustering exploits into families. Seven families form asult.

Prevalence of exploit families: Manually inspecting the shell-
codes confirmed that the seven families were distinct. Foh ea
shellcode family, Table 3 shows the host prevalence, theoeuwf
shellcodes sent, the vulnerabilities exploited, and tiifamily
distance. The entries are sorted in decreasing order ofpnega-
lence.

The LBL-2 and LBL-3 families were, respectively, the conrec
back and bind versions of the same shellcode (as suggesthdiby

relatively low inter-family distance of 15%). LBL-3 was tineost
prevalent family with 463 hosts sending its shellcodes. st
striking aspect of LBL-3 was that it was a multi-vector faynix-
ploiting three different vulnerabilities. However, it eékfied very
little intra-family variation, with an edit distance of atast 0.4%
for shellcodes within each of the vulnerabilities expldite

In contrast, LBL-0 was the least prevalent family. It tasgkthe
RemoteActivation vulnerability with the same shellcodegrfd in
the residential DSL trace in Section 4.4. As with the shelé&o
from the residential trace, LBL-0 had the most variatiorhivitthe
family (a relative edit distance of 19.3%) due to the randog@n-
erated characters at the end of the shellcodes.

Summary: Our clustering methodology with the exedit distance
metric was able to cluster exploits into families acrosdlsbees
targeting multiple vulnerabilities. As a result, it wasesffive in
identifying multi-vector exploits. Finally, comparingeh.BL and
residential DSL traces, we found that the exploit shellsogiener-
ally targeted the same set of vulnerabilities (with even same
RemoteActivation shellcodes used in both traces), and thst m
prevalent shellcode in the LBL trace was a multi-vector eitpl

5. DISCUSSION

The research community has been engaged in a vigorous de-
bate over the likely future role of network intrusion detentsys-
tems (NIDS), and to what extent exploit polymorphism withit
their effectiveness. The previous section documented bt
morphism within shellcodes is already in use on the Interfiet
investigate whether this polymorphism made NIDS signatore
struction difficult, we generated a small set of signatuhed ex-
haustively covered all exploits we observed for each valbiity
in the DSL residential trace. Each signature was a contigjsed
quence of 100 bytes. We constructed the signature set using t
well-studied greedy algorithm for the set cover problem [Fbr
each individual vulnerability except LSASS, one signatutficed
to cover the set of exploits. LSASS required two: one covered
1645/1769 exploits, and the other covered the rest. Mamuveak
tigation of these signatures showed that they primarilyiéec on
the portions of the shellcode that were mostly (but not elyjr
NOPs. We then tested the signatures against a 5-GB traceron ou
internal network for false positives. None of the signasuielded
false positives in the internal trace.

Our above experiment generating signatures for the shigfco
we traced suggests that the polymorphism was not effedivevi-
sion. Two alternative hypotheses for the motivation of tblymor-
phism we observed are that perhaps the malware authors were u
ing polymorphism to evade signatures other than the onesowe ¢
structed, or perhaps they did not realize that their polyrhizm
was ineffective against signature construction (e.g.abse their

shellcodes were still effective at compromising a suffitimmmber
of hosts).

Yet another hypothesis is that today’s polymorphism is laee
to evading NIDS signatures. Some of the variation in shdkso
was clearly due to functional variation (e.g., the bind aodrect-
back varieties of ISystemActivator and RemoteActivatiorijhe
variation due to decoding routines with variable keys miggsim-
ply motivated by increasing the difficulty of reverse engirieg.

With our traces, we cannot definitively ascribe intent toghby-
morphism we observed in these exploits, but we suspectttigt i
likely some combination of the above reasons. Improvingusur
derstanding of the motivations for the actual polymorph@mthe
Internet, as well as how the uses and motivations for polptmem
change over time, remain interesting open problems.

6. CONCLUSION

We have presented a methodology for constructing the peyipg
of remote code injection exploits. We evaluated this mebhmgly
on network traces taken from several vantage points. Wedfoun
methodology to be robust to the polymorphism observablbése
traces. Using our methodology, we found both non-trivialleeo
sharing and subtle variation within the exploit familieslsas the
use of bind versus connect-back to traverse NATSs.

Polymorphism and exploit diversity have been a topic of iiign
cant discussion within the research literature. We havemieated
the use of polymorphism in exploits currently loose on thermet.
More broadly, analyzing both the emergence of polymorptasich
the phylogeny of remote code injection exploits is part of@alder
effort to better understand the social and technical dyosuariound
malware creation. We believe our methodology and resuétsaar
promising contribution to this broader understanding.

Acknowledgments

We would like to thank Vern Paxson for access to the LBL traces

and for insightful discussions, Igor Volovich for help oioiag
traces from our internal network, and Michael Vrable andhéite
Panik for feedback on this paper. Also, we would like to th#re
anonymous reviewers for their helpful comments. This wodsw

supported by Microsoft, NSF grant CNS-0433668, and the UCSD

Center for Networked Systems.

7. REFERENCES

[1] BBC News. Sasser Creator Avoids Jail Term.
http://news.bbc.co.uk/2/hi/technology/4659329.stuty J
2005.

[2] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-End
Containment of Internet Worms. Proceedings of the 20th
ACM Symposium on Operating System Principles (SOSP)
Brighton, UK, Oct. 2005.

[3] J. R. Crandall. Minos: A Tool for Capturing and Analyzing
Novel Worms for Unknown Vulnerabilities. IRroceedings
of the ACM Workshop on Rapid Malcode (WORMjirfax,
VA, Oct. 2004.

[4] J.R. Crandall, Z. Su, S. F. Wu, and F. T. Chong. On Deriving

Unknown Vulnerabilities from Zero-Day Polymorphic and
Metamorphic Worm Exploits. IProceedings of the ACM
Conference on Computer and Communications Security
Alexandria, VA, Nov. 2005.

[5] T. Dullien and R. Rolles. Graph-Based Comparison of
Executable Objects. IBymposium sur la Sécurité des

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Technologies de I'Information et des Communications
(SSTIC) June 2005.

H. Flake. Structural Comparison of Executable Objelets.
Proceedings of the IEEE Conference on Detection of
Intrusions and Malware & Vulnerability Assessment
(DIMVA), July 2004.

D. Hochbaum Approximation Algorithms for NP-Hard
Problems PWS Publishing Company, Boston, MA, 1997.
G. Keizer. Sasser Worm Impacted Businesses Around the
World.
http://www.techweb.com/wire/story/TWB20040507S0008,
May 2004.

H.-A. Kim and B. Karp. Autograph: Toward Automated,
Distributed Worm Signature Detection. Rroceedings of the
USENIX Security Symposiu®an Diego, CA, Aug. 2004.

C. Kreibich and J. Crowcroft. Honeycomb — Creating
Intrusion Detection Signatures Using Honeypots. In
Proceedings of the 2nd ACM Workshop on Hot Topics in
Networks (HotNets-I[)Cambridge, MA, Nov. 2003.

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna
Polymorphic Worm Detection Using Structural Information
of Executables. IfProceedings of Symposium on Recent
Advances in Intrusion Detection (RAIBeattle, WA, Sept.
2005.

R. Lemos. MSBlast Epidemic Far Larger than Believed.
http://news.com.com/2100-73485184439.html, Apr. 2004.
C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building Customized Program Analysis Tools with Dynamic
Instrumentation. IfProgramming Language Design and
Implementation (PLDI)Chicago, IL, June 2005.

Metasploit Project. The Metasploit Framework.
http://www.metasploit.com/projects/Framework/.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford
and N. Weaver. Inside the Slammer WolBEE Security

and Privacy 1(4):33-39, July 2003.

D. Moore, C. Shannon, G. M. Voelker, and S. Savage.
Network telescopes. Technical Report CS2004-0795, UCSD,
July 2004.

Nepenthes Development Team. ShellcodeHandler Generi
LinkTrans. http://nepenthes.mwcollect.org/.

J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation o
Exploits on Commodity Software. IRroceedings of the 12th
Annual Network and Distributed System Security Symposium
(NDSS '05) San Diego, CA, Feb. 2005.

A. Ng, M. Jordan, and Y. Weiss. On Spectral Clustering:
Analysis and an Algorithm. IProceedings of Advances in
Neural Information Processing Syster@801.

R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and

L. Peterson. Characteristics of Internet Background
Radiation. InProceedings of the USENIX/ACM Internet
Measurement Conferencgaormina, Sicily, Italy, Oct. 2004.
P. Royal, D. Dagon, and W. Lee. PolyUnpack: Automating
the Hidden-Code Extraction of Packed Malware.
http://www-static.cc.gatech.edu/ ranmal/polyunpack/.

S. Singh, C. Estan, G. Varghese, and S. Savage. Autdmate
Worm Fingerprinting. IfProceedings of the 6th
ACM/USENIX Symposium on Operating System Design and
Implementation (OSD/)San Francisco, CA, Dec. 2004.
spoonm. Recent Shellcode DevelopmentfRkEton

Montreal, QC, June 2005.

[24] A. E. Stepan. Defeating Polymorphism: Beyond Emulatio
In Proceedings of the Virus Bulletin International
ConferenceDublin, Ireland, Oct. 2005.

[25] Symantec. Trojan.Netdepix.
http://www.symantec.com/avcenter/venc/data/trojeta@pix.html.

[26] Symantec. W32.Korgo.AB.
http://www.symantec.com/avcenter/venc/data/w32 &g html,
Apr. 2004.

[27] P. SzorThe Art of Computer Virus Research and Defense
Addison Wesley, 2005.

[28] Trend Micro. Virus Encyclopedia.
http://www.trendmicro.com/vinfo/virusencyclo/.

[29] H. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield:
Vulnerability-Driven Network Filters for Preventing Know
Vulnerability Exploits. InProceedings of the ACM
SIGCOMM ConferengdPortland, Oregon, Sept. 2004.

