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ABSTRACT
Remote code injection exploits inflict a significant societal cost,
and an active underground economy has grown up around these
continually evolving attacks. We present a methodology forin-
ferring the phylogeny, or evolutionary tree, of such exploits. We
have applied this methodology to traffic captured at severalvantage
points, and we demonstrate that our methodology is robust tothe
observed polymorphism. Our techniques revealed non-trivial code
sharing among different exploit families, and the resulting phyloge-
nies accurately captured the subtle variations among exploits within
each family. Thus, we believe our methodology and results are a
helpful step to better understanding the evolution of remote code
injection exploits on the Internet.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection; D.4.6 [Operating Systems]: Security and Pro-
tection—Invasive software

General Terms
Algorithms, Measurement, Security

Keywords
worms, bots, malware classification, binary emulation, phylogeny

1. INTRODUCTION
Internet users are increasingly victimized by an online criminal

enterprise that spans denial-of-service extortion, identity theft, wire
fraud, piracy and unsolicited bulk email. At the core of these activ-
ities is network-borne malware—software used to remotely com-
promise and harness the resources of millions of hosts. While con-
siderable effort has focused on methods for defending against such
attacks, there is comparatively little research describing the mal-
ware ecosystem itself. That is, how does one piece of malware
relate to another, what pressures drive its structural and functional
evolution, and what may this teach us about malware authors and
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the state of our defenses? This paper does not conclusively an-
swer these questions, but we develop a measurement methodology
that is a first step in this direction. In particular, we focuson how
to identify and measure the diversity amongremote code injection
exploits used to compromise Internet hosts.

Typically, a host is compromised via a software vulnerability
(e.g., buffer overflow, format string, integer overflow) that allows
network-based input to be “injected” into a running programand
executed. Subsequently, the exploit payload may download ad-
ditional software, join a centralized “botnet,” or reconfigure the
operating system to evade detection (i.e., a rootkit). While there
is significant variation among these “applications,” here we focus
specifically on the exploit and its initial payload—the so-called
shellcode—that first executes on a newly compromised machine.
Because shellcodes operate in a constrained environment, they are
typically small, simple, hand-coded machine programs and thus are
particularly well-suited to automated analysis.

Given a corpus of such shellcodes there are a number of obvious
questions that arise. An immediate motivation for understanding
how much variation exists among the shellcodes for an exploit is to
inform the state of our defenses. In particular, polymorphic shell-
codes are considered to be an Achilles heel for exploit-signature-
based approaches [9, 10, 22]. This consideration has motivated
research in vulnerability-signature-based approaches [2, 3, 18, 29].
However, to date there is little empirical evidence about the pres-
ence of such threats in the wild, let alone an attempt to characterize
its impact on existing defenses.

At the same time, measuring shellcode diversity may also al-
low us to better understand how malware is created, potentially in-
ferring the paternity of different samples or, more generally, con-
structing a shellcodephylogeny. Such a malware family-tree would
simplify the categorization, naming and analysis of malware per-
formed by security vendors and could also provide insight into the
dynamics influencing malware development, evolution and sharing.
Moreover, as malware “potency” becomes a powerful market ad-
vantage for organized cyber-criminals, a phylogenic analysis may
prove useful for estimating the market-share and vigor of different
organizations. However, there is a pointed lack of such empirical
analysis in the literature today.

In summary, the purpose of this work is to enhance the under-
standing of today’s malware, their diversity and relationship to one
another. From our study, we have gained some evidence that to-
day’s malware diversity is simple and does not employ sophisti-
cated evasive techniques.

This paper develops and demonstrates a methodology for auto-
matically identifying and quantifying shellcode similarity, and for
using this data to create a shellcode phylogeny for a given vulner-
ability. The remainder of this paper is organized as follows. In



Section 2, we provide a brief background on remote code injection
exploits and a discussion of related work in the areas of automated
malware analysis. Then, we provide an overview of our methodol-
ogy in Section 3. In Section 4, we analyze the amount and causes
of diversity for exploits both within individual vulnerabilities and
across multiple vulnerabilities. Section 5 discusses implications of
our findings for current network IDS systems, and we concludein
Section 6.

2. BACKGROUND AND RELATED WORK
Remote code injection attacks are a combination of vulnerabil-

ity, exploit and shellcode. The vulnerability is the particular soft-
ware structure that allows data provided over the network tosubvert
and redirect execution control flow. For example, if networkinput
overruns beyond the end of an unchecked buffer, it can overwrite
the return address of the calling stack frame and divert control into
the buffer itself. An exploit is a particular formulation ofan attack
against a vulnerability. Typically an attacker can use manydiffer-
ent instruction sequences to exploit a particular vulnerability, and
as a result there may be multiple exploits for that vulnerability. We
refer to the variation in the exploits for a particular vulnerability as
the “diversity” of those exploits. Finally, the shellcode is the pay-
load carried by the exploit—it is the first code to execute as aresult
of control flow being subverted. Figure 1 shows a simple repre-
sentation of a stack-based buffer overflow, an instance of a remote
code injection attack. In this case the shellcode is injected into the
vulnerable buffer that is being overrun.

Figure 1: Simple example of a remote stack-based buffer over-
flow. The shaded regions represent the shellcode of the exploit
as sent over network packets, then as injected into the vulnera-
ble buffer of the target host. The return address has been over-
written with injected data, thereby redirecting the execution
flow to the shellcode residing in the vulnerable buffer.

Using the terminology from Crandall et al. [4], our study exam-
ines polymorphism and diversity in theπ portion of the an exploit.
The π region of an exploit refers to the injected shellcode that is
executed after diverting the flow of execution on a victim machine.
We study the shellcode because there are considerable degrees of
freedom in their construction. However, they are frequently lim-
ited by the size of the buffer being processed and the need forthe
buffer to contain “NOP sleds,” or long regions of consecutive “do
nothing” instructions prepended to shellcode that allow for some
imprecision in guessing the address of the shellcode itself.

Shellcodes can be quite sophisticated in their construction, in-
cluding the creation of pseudo-random NOP sleds and “polymor-
phic” payloads that are encrypted (and potentially compressed) in

transit and only decrypted just before execution [23]. One motiva-
tion for these techniques is that they can greatly frustratethe abil-
ity to find a textual signature for a given shellcode. Indeed,some
polymorphic shellcode generators also create random decryptors,
further challenging signature-based defenses. Finally, some shell-
codes include anti-debugging code (including self-modifying code
and breakpoint detection) to complicate disassembly and analysis.

Thus even decoding shellcodes can be a challenging problem in
itself. Early attempts to defeat polymorphism used so-called “x-
ray analysis” to heuristically decode polymorphic codes based on
the assumption of an XOR-based cipher [27]. In x-ray analysis,
a portion of a known, decoded instance of the shellcode is XOR-
ed against an encoded shellcode to recover the encryption key. A
more general approach, called generic decryption, has beento em-
ulate execution while the shellcode decrypts itself (typically using
a heuristic to guess when this process terminates). However, the
overhead of this technique can be substantial and there are avari-
ety of counter-measures that undermine its efficacy [27]. Thus, re-
searchers have developed techniques that combine emulation, dy-
namic translation, and static analysis [21, 24]. We use a similar
approach in our work.

Having decoded a malware shellcode, comparing it to other shell-
codes is another key problem. One approach is to model each shell-
code as a binary string and use traditional lexical distancemeasures
to approximate shellcode variation. An alternative approach is to
use structural distance measures that capture variation inthe con-
trol flow and values at the instruction, basic block, or function call
levels [5, 6, 11]. We experiment with both techniques in thispaper,
and then propose another metric that we find better suited to our
problem domain.

3. METHODOLOGY
In this section we describe our analysis techniques, including

their motivation, potentials, and limitations. Overall, our analy-
sis proceeded with the following major steps. First, we extracted
shellcodes directly from a network trace using Shield [29].We
then decoded the shellcodes through restricted binary emulation.
Finally, we examined the similarity among exploits by performing
clustering on the shellcodes.

3.1 Exploit Collection with Active Responders
Our definition of “remote code injection exploits” refers specifi-

cally to exploits that require the attacker toactivelycompromise a
victim’s machine over the network—no initiating action from the
victim is required. Hence, our primary means of collecting exploits
is by examining network traces of traffic sent to and fromactive
responders, hosts that respond to unsolicited probes (e.g., exploit
attempts) for measurement purposes. As Pang et al. observedin
their study of exploits destined for unused address space, emulat-
ing end-host behavior allows us to collect more session datafrom
an attacking host [20]. In particular, completing the infection hand-
shake will suffice to cause the attacker to transmit the shellcode.

To further illustrate the utility of using active responders for mea-
surement, consider the ISystemActivator and RemoteActivation ex-
ploits. These exploits target different vulnerabilities using the same
network port. If we only listen for exploit traffic passively(e.g.,
the network telescope approach [16]), the exploits would simply
appear as TCP SYNs destined for port 135 in the trace. Thus, we
require active responders to capture the RPC Bind and Request por-
tions of the exploit handshake to differentiate the exploits, and we
use network traces of live honeypots and stateless responders [20]
to obtain these exploits.



3.2 Extracting Shellcodes
Analyzing theshellcodeportion of an exploit is promising be-

cause it is the first place the malware author is executing newcode
on the system. In this new code, malware authors can use a variety
of different techniques to accomplish a number of goals, e.g., find-
ing needed host subroutines, or downloading a larger executable.
By comparison, we did not focus on protocol framing (e.g., applica-
tion layer headers) because such framing is a compulsory element.
Although the message sequence for exploiting the vulnerability can
also vary, malware authors likely benefit less from alteringsuch
handshake messages.

We used Shield [29] to extract the shellcode for each exploitses-
sion from the traces. Shield was originally designed for vulnerability-
driven filtering for known vulnerabilities. To apply Shieldin our
setting, we modified it to collect the data that is beyond the buffer
boundary. However, not all of the collected data corresponds to ex-
ecutable code. For example, execution will start at an offset within
the buffer that depends on the exact vulnerability being exploited.
Indeed, there are cases where the first several bytes of the vulnera-
ble buffer contain the beginning of a URL that is prepended tothe
executable shellcode proper. As a second example, the buffer may
contain random padding that is not part of the exploit code (nor is
its data read by the exploit code). We addressed these and other
issues using the following exploit emulation technique.

3.3 Exploit Emulation
In many of the exploits we encountered during our study, the

main executable payload had been encoded. One encoding tech-
nique we commonly observed was a byte-for-byte XOR of the pay-
load with a decoding key, though we also encountered variations
such as encoding NULL-bytes with an escape character and multi-
byte XOR. A variety of reasons might explain this observed use
of encoding: eliminating NULL bytes to allowstrcpy() buffer
overruns to complete, hiding tell-tale strings (Web site names, API
names such as “Kernel32”, etc.), and finally obfuscating executable
code, thereby making network-based intrusion detection more dif-
ficult. Regardless, we found that decoding the exploits was often
necessary to reveal most of the actual executable code.

To enable our analysis to scale to many shellcode samples, we
needed to automate the process of decoding the exploit payloads,
all of which had clear pre-images and post-images. We found that
the easiest way to deal with the variety of decoding routineswas to
use binary emulation, allowing the different exploit decoding rou-
tines to execute, and thus reveal the underlying code. Emulating
the exploit was also necessary to reveal the actual instruction bytes
executed by the exploit. In contrast, we found that even static dis-
assembly over the decoded payload had trouble with the vagaries
of x86 instruction alignment and the occasional instance ofrandom
filler text decoding to valid x86 instructions.

We implement the emulator using Intel’s Pin [13] on Linux. Given
an encoded shellcode, we first declare it as a statically allocated
buffer in C source code that treats the buffer as a function. Then,
we compile the source into a binary that marks the shellcode buffer
with read, write and execute permissions to allow the self-modifying
shellcode to run properly. We addressed the issue of buffersbe-
ginning with non-executable prefixes (mentioned in Section3.2)
by iteratively retrying failed emulations at subsequent offsets. We
found this simple retry policy was enough to overcome any issues
with non-executable prefixes.

As Pin successfully emulates the binary, we mark the executed
instruction bytes for later analysis. Because we are emulating ex-
ploits for Windows on a Linux platform, we use heuristics to pro-
long shellcode execution. During emulation, function calls to ad-
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Figure 2: An example of (a) a distance matrix and (b) its corre-
sponding dendrogram.

dresses and memory accesses that would cause segfaults are inter-
cepted, and the flow of execution restarts at the fall-through instruc-
tion. The emulation stops when the control flow makes an absolute
jump to a location outside the buffer.

Emulating these short shellcodes has the advantage of a rela-
tively low overhead compared to emulating an entire binary exe-
cutable. Although we did not pursue this direction, we couldcon-
ceivably also use this methodology to emulate and look for relation-
ships among larger code bases such as rootkits, spyware, or other
executable malware files. However, it is unclear whether theover-
head of this approach would be prohibitive for larger executables.

3.4 Clustering
To understand the relationship of the shellcodes to each other,

we introduced a distance metric on the shellcode instruction bytes
generated by binary emulation. We then performed clustering on
the shellcode instruction bytes using this metric. In all the cases in
our study, we evaluated this clustering manually to confirm that it
was intuitively sensible, and that the tree constructed by agglomer-
ative clustering had an intuitive interpretation as the phylogeny of
the exploit families.

Agglomerative clustering is a form of hierarchical clustering in
which the algorithmbuilds upa hierarchy of similarity among ex-
ploit samples by iteratively merging the closest pair of clusters at
each step. The algorithm begins with eachuniqueshellcode be-
longing to its own cluster, and performs merging on the closest
pair of clusters. We define thedistance between clustersas the
distance between the furthest samples in the two respectiveclus-
ters (also known as complete linkage distance). In addition, the
algorithm records the distance between two clusters beforemerg-
ing them, and this information allows us to construct a dendrogram
to visualize the clustering results.

Figure 2b illustrates a simple dendrogram constructed in this
way using the distances from the matrix shown in Figure 2a. The
dendrogram’s x-axis shows each individual sample, and its y-axis
shows merge distance. Initially, agglomerative clustering starts
with three clusters: A, B and C. Because A and B are the clos-
est clusters with a distance of0.50, they constitute the first merge,
and there is a horizontal bar between A and B at the y-axis value



0.50. At this point, the remaining clusters are AB and C. Since the
distance between AB and C is 1.00, the dendrogram has a horizon-
tal bar between the AB cluster and the C cluster at a merge distance
of 1.00.

We chose agglomerative clustering as our clustering technique
for two reasons. First, the results of agglomerative clustering are
typically easy for a human to connect back to features of the in-
put data. (By way of contrast, many researchers do not find that
eigenvalue-based clustering [19] techniques have similarly human-
explainable results.) Second, when the data possesses a well-defined
clustering, agglomerative clustering usually finds it automatically.
As we show in Section 4, the data we found during our study did
possess such a well-defined clustering.

In this study, our primary metric was exedit distance, whichwe
now define. We also experimented with two other metrics, edit
distance over decoded shellcodes, and a metric based on control
flow graph coloring.

3.4.1 Exedit Distance
Our methodology focuses on using relative edit distance over the

executed bytes of the shellcode, abbreviated asexedit distance, to
compare two shellcodes. Specifically, for each exploit sample we
mark the executed instruction bytes, and concatenate the marked
bytesin the order they appear in the payload(i.e., memory order)
to construct a canonical string representation. As a final step, we
compress each consecutive run of the NOP instruction0x90 into a
single0x90 byte. Then we compute the relative edit distance over
all exploits using these canonical strings. Relative edit distance
is the number of edit operations (insertion, deletion, substitution)
used to transform one string to another, normalized over thelength
of the longer string.

Using executed instruction bytes is different than using instruc-
tion streams, where the instructions in a stream representation ap-
pear in execution order (and not memory order) potentially multiple
times.

3.4.2 Edit Distance
We also experimented with relative edit distance over the entire

decoded shellcode without trying to distinguish between code and
data, but encountered limitations. First, because this metric does
not distinguish code from data, it is sensitive to changes inem-
bedded string constants. Second, edit distance could not help us
infer similarities between exploits across vulnerabilities because of
differing vulnerable buffer sizes. Third, random padding that was
neither code nor data in some cases generated further noise.

3.4.3 Structural Distance
During our investigation, we implemented a version of the con-

trol flow graph (CFG) coloring approach by Kruegel et al. [11]. We
used it to calculate structural distance as the percentage of “mis-
matched” basic blocks between two samples. A block was consid-
ered mismatched if it was not part of a subgraph shared between
the two samples.

The primary limitation of this technique was that it did not cap-
ture subtle variation between related exploits because entire basic
blocks were summarized by the presence or absence of certaincat-
egories of opcodes. This lost information rendered this metric inap-
propriate for our purpose – it often grouped together distinct fami-
lies of exploits.

4. EXPLOIT DIVERSITY
In this section we analyze the diversity of exploit shellcodes in

a trace capturing live exploit attempts from hosts on the Internet to

four well-known vulnerabilities: SQL Name Resolution, LSASS,
MS RPC ISystemActivator, and MS RPC RemoteActivation. We
chose the vulnerabilities because various infamous Internet worms
used exploits for these vulnerabilities over the past few years to
infect hundreds of thousands to millions of hosts, and exploit traffic
to these vulnerabilities is still prevalent today.

The trace we use captures exploit attempts on a residential DSL
network for two days starting on September 6, 2005 at 5pm. We
captured traffic using a DSL-connected machine that ran Windows
XP SP2 (fully-patched), listened on 29 IP addresses, and responded
to incoming requests. We then used the Shield framework de-
scribed in Section 3.2 to identify and capture exploits for known
vulnerabilities.

We discuss the vulnerabilities in the order of the extent of di-
versity of their exploits, from negligible (SQL Name Resolution)
to most extensive (RemoteActivation). For each vulnerability with
substantial diversity, we first examine the number and frequency
of shellcodes for that vulnerability. We then use our methodol-
ogy from Section 3 to (1) cluster the shellcodes according totheir
variability and thus identify shellcode families, (2) provide a de-
tailed characterization of each family to both convey the structure
of shellcode families as well as the subtle functional variations
among them, and (3) show the prevalence of each shellcode family
in the trace. By manually examining the shellcode families iden-
tified using our clustering methodology, we show that the exedit
distance metric is capable of correctly identifying exploit shellcode
families, as well as capturing subtle functional variations among
closely related families.

We then end the section by characterizing exploit shellcodedi-
versity in a second trace of traffic from a honeyfarm at the Lawrence
Berkeley National Laboratory. With this trace, we examine shell-
code diversity from a different vantage point in the Internet, and
we use our clustering methodology across all vulnerabilities in the
trace at the same time. As a result, we show that our methodology
is also able to identify the most prevalent shellcode exploit in this
trace as a multi-vector exploit targeting three different vulnerabili-
ties at once.

4.1 SQL Name Resolution
The Slammer worm exploited the SQL Name Resolution vulner-

ability (Microsoft Security Bulletin MS02-039) when launched in
January 2003. Slammer was particularly virulent, infecting 90%
of vulnerable hosts within 10 minutes, and the resulting congestion
from probes by infected machines caused disruption on the Internet
on a global scale [15]. Despite the small population of vulnerable
hosts (roughly 75,000 infected hosts during the initial outbreak in
2003), Slammer continues to propagate in the wild to this day.

Shellcode Instance # Occurrences
0 766
1 1

Table 1: Exploit frequency per shellcode for the Slammer vul-
nerability (MS02-039).

Table 1 shows the exploit frequency per shellcode for the SQL
resolution vulnerability. We observed two apparent variations of
Slammer: 766 exploits with the exact same payload, and one out-
lier.

Examining the outlier in more detail, we suspect that its payload
was likely corrupted on the network before being captured inour
trace. The outlier was identical to all the other payloads except for
the last 91 out of 376 bytes. Whereas the trailing bytes of allother



exploits contained valid executable code, the tail for the outlier con-
tained (1) an unidentified 22 bytes (possibly a link-layer protocol
header), followed by (2) a 20-byte IP header containing the same
source address as the sending host but a destination addressin an
ISP from a different geographic region, (3) a UDP header destined
for port 1434 (the SQL resolution port), and (4) the first 41 bytes
of the Slammer exploit. Given these trailing bytes, it appears as if
the tail of one Slammer packet was overwritten with the head of an-
other Slammer packet. Because of portion (2) of the trailingbytes,
we believe the outlier was not the result of incorrect reassembly at
the local capture machine.

Other than the corrupted outlier, we conclude that there wasonly
one Slammer exploit in the residential DSL trace and, therefore, no
exploit diversity.

4.2 LSASS
The Local Security Authority Subsystem Service (LSASS) val-

idates user logins on Microsoft Windows systems. The original
Sasser worm released in April 2004 exploited a buffer vulnerabil-
ity in LSASS (MS04-011), and as it spread it disrupted operations
for airlines, banks, hospitals, news agencies, military, and govern-
ment offices globally [8]. Indeed, Sasser’s significant damage made
the trial and conviction of its author a media spectacle [1].LSASS
exploits persist to this day as a regular element of a malwarepro-
gram’s repertoire: hundreds of malware variants (mostly bots) in-
corporate an LSASS exploit according to Trend Micro [28].
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Figure 3: Exploit frequency per shellcode for the LSASS vul-
nerability (MS04-011) in the residential trace. There are 56
distinct payloads out of 1769 exploits total.

Number of distinct shellcodes: We captured 56 distinct pay-
loads from 1,769 LSASS exploit attempts in the residential DSL
trace. As shown in Figure 3, the exploit attempts were skewed
across the payloads: a handful of variants were responsiblefor a
large number of occurrences, with a long tail to the distribution.

With 56 different payloads, LSASS exploits clearly have abun-
dant diversity. To what extent do they vary, and what is the na-
ture of the variation? To answer these questions, we analyzed the
shellcodes in the exploit payloads according to the methodology
described in Section 3 and clustered the exploits first into families
and then into phylogenies.

Evaluation of distance metrics and resulting clusters:Fig-
ure 4a shows a dendrogram visualizing clustering with the exedit
metric (from Section 3.4.1). Each x-axis position represents one
of the unique shellcode payloads from Figure 3 (although they are

not ordered by prevalence here), and the y-axis shows relative edit
distance. A horizontal line segment in the graph at y-axis value
y indicates that two sub-clusters had cluster distancey when they
were merged into one cluster; when merging clusters, we use com-
plete linkage distance as discussed in Section 3. The vertical line
segments extending downward from the endpoints of a horizontal
segment are the roots of the two subtrees representing the two sub-
clusters.

For example, the 9th and 10th x-axis entries in Figure 4a are
joined together by a horizontal segment at a y-axis value of0%.
While constructing the hierarchy, a cluster containing an LSASS
exploit and another containing an LSASS exploit were mergedat
a cluster distance of0%, indicating that the executed instruction
bytes for the samples within each cluster were identical. Atthe
other extreme, the dendrogram shows that the maximum exeditdis-
tance between any two exploit samples was98% because all sam-
ples were contained in sub-clusters rooted at the segment at98%.

For comparison, Figures 4b and 4c show results using two other
metrics: (1) edit distance over decoded payloads (without distin-
guishing code vs. data), and (2) the metric based on Kruegel et
al.’s control flow graph fingerprinting technique describedin Sec-
tion 3.4.3. Our experience with decoded-payload edit distance (over
LSASS and other vulnerabilities) was that instance-specific data
strings and random padding embedded within the payload created
substantial noise. As a result, the metric could not capturesimilar-
ities among exploits due to variations that were not fundamental to
the code. On the other hand, we found the CFG metric based on ba-
sic blocks to be too general because summarizing basic blocks by
simply the presence of certain opcodes ignores subtle differences
between shellcodes. Consequently, this metric clustered function-
ally distinct exploits as identical, as shown with familiesLSASS-2,
3 and 4 grouped together in Figure 4c.

We found that exedit distance provided a useful balance between
these two approaches: it is general enough that it ignores instance-
specific variations due to constants and other non-executable bytes,
but detailed enough that it can capture the subtle functional vari-
ations. Thus, we used exedit distance as our primary means of
comparing exploits during clustering throughout this study.

Constructing phylogenies:Because most of the cluster merges
occurred at a small exedit distance of 10%, we used 10% as the
threshold for defining families among the exploits. With this thresh-
old, we find five families of shellcodes exploiting the LSASS vul-
nerability. To visualize this process, every vertical linesegment
intersected by a horizontal line in Figure 4a at the y-axis value of
10% defines an exploit family according to the cluster represented
by the tree rooted at the vertical line. We number each cluster in
the dendrogram from left to right, and henceforth refer to each of
the five families as LSASS-0, LSASS-1, and so on.

Manual analysis of phylogenies:To validate our clustering re-
sults, we manually examined the decoded payloads of every shell-
code for every family. From this examination, we conclude that
the suggested families indeed were five separate code bases.How-
ever, LSASS-2, 3 and 4 had sufficient similarity among them, as
suggested by the clustering in the dendrogram in Figure 4, that
we conclude that they were branches of the same code base. We
summarize our inter-family analysis with the evolution diagram in
Figure 5.

Each family exhibits a small amount of variation among shell-
codeswithin the family. The differences in variations are 2–20
bytes, and correspond to phone-home/connect-back IP addresses,
hostnames, and ports encoded in the payload. In aphone-homeor
connect-backattempt, a newly-infected victim connects to a speci-
fied host from which the victim downloads additional code or exe-
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Figure 4: Dendrograms for LSASS (MS04-011) exploits using (a) edit distance over executed code, (b) edit distance over decoded
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Figure 5: Evolution diagram for the LSASS families.

cutable files. The typical distinction between the two termsis that
connect-back refers to connecting to the victim’s immediate parent
in the infection chain, and phone-home refers to connectingto a
central location.

Next we give a detailed characterization of each LSASS family
to provide intuition on the structure of the shellcodes, convey the
substance of shellcode variation within and among LSASS fami-
lies, and provide examples of how the exedit distance metriccan
differentiate subtle functional variations among shellcodes.

LSASS-1’s shellcode was straightforward. Function names such
as GetProcAddress, ExitThread, and so on formed a miniaturedata
section at the end of the payload, and the main body of the exploit
followed immediately after the decoding loop. The main bodyand
the data section were XOR-ed one byte at a time with0x99.

LSASS-0’s payload consisted of an unencoded main body fol-
lowed by an encoded data section. The encoding scheme was also
a byte-wise XOR, but with the key0xff. We found embedded
strings like “http://atlantcommerce.com/stuff.exe” and“zoxter.exe”
in the decoded data section. A search for these strings suggested
that they belonged to malware previously classified by Symantec
as Trojan.Netdepix [25].

LSASS-2, LSASS-3 and LSASS-4 shared the same encoding
scheme and roughly the same flow of execution. Whenever a0x99
byte was read from the encoding payload, the decoding loop read
the next byteB and wrote((B - 0x30) XOR 0x99) as the
decoded byte. Otherwise, it XOR-ed the byte with0x99. All three
families had dedicated function blocks at the end of their payloads
for library loading and function finding. The portion of the main
body after the decoding loop was a series of calls to these function
blocks, and there were only minor differences among these fami-
lies.

Both LSASS-2 and LSASS-3 contained the strings “.\ftpupd.exe”
and some variation of “u8,” “u13,” etc. in the middle of the pay-
load. A search for these strings suggests that they belong tomal-

ware classified by various commercial security firms as Korgo[26].
Only LSASS-3 and LSASS-4, however, contained an identifier

string that precedes the decoding routine. Although both had a
URL containing the attacking machine’s IP and port number, the
padding after the URL differed. In particular, LSASS-0 identifiers
had taken the following form “http://<addr>:<port>/x.exe\xdf\xdf
... \xdfMozilla/4.0” and the0xdf characters padded the identi-
fier’s length to a fixed value over all exploits (37 bytes). By con-
trast, LSASS-4 exploits appended a string containing “lsd”to the
URL.1
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Figure 6: The distribution of hosts for each family exploit-
ing the LSASS vulnerability. We clustered using a similarity
threshold of 10%. Most hosts belonged to families LSASS-1
and LSASS-3, which are represented by labels 1 and 3 in the
graph.

Prevalence of exploit families:Finally, we complete the analy-
sis of LSASS with a discussion of exploit prevalence at the family
granularity (as opposed to the shellcode granularity in Figure 3).
Figure 6 shows the relative prevalence of each exploit family, ex-
pressed as the distribution of hosts contributing exploitsto each
family. For each exploit family, we tallied the number of hosts that
attempted to exploit the LSASS vulnerability; each host made an
1The string “lsd” could be a reference to the group Last Stage of
Delirium, famous for discovering the RemoteActivation vulnera-
bility (MS03-026).



 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60  70  80  90

# 
O

cc
ur

re
nc

es

Vulnerable Buffer

Figure 7: Exploit frequency per shellcode for the ISystemActi-
vator vulnerability (MS03-039). There are 90 distinct payloads
out of 1,561 exploits total. There is a long tail of nearly 80 ex-
ploit payloads that appear only once.

exploit attempt using only one distinct payload, so the setsof hosts
contributing to each family were disjoint. Most of the hosts(44)
used the LSASS-3 exploit, followed by LSASS-1 (18 hosts).

Summary: The LSASS exploits we captured had a well-defined
phylogeny. Within this phylogeny, we attributed sources ofvaria-
tion to differing instance-specific constants such as URLs and IP
addresses. Moreover, our technique of using exedit distance (Sec-
tion 3.4.1) made further manual analysis much easier because the
clustering resulted in appropriate families. Moreover, the distance
metric was a strong predictor of the type of similarity we would
find among exploits.

4.3 ISystemActivator
The MS Remote Procedure Call (MS RPC) service is a funda-

mental Windows service and was exploited by one of the widest
spreading worms. In August 2003, the Blaster worm infected hun-
dreds of thousands of computers within the first 24 hours of its
propagation, and its variants were responsible for infecting any-
where between half a million to 8 million hosts several months
thereafter [12]. Blaster originally exploited the RemoteActivation
vulnerability in MS RPC, which we cover in Section 4.4, and later
variants exploited a vulnerability in MS RPC’s ISystemActivator
interface (MS03-039). Since then, exploits of the ISystemActiva-
tor vulnerability have also become a mainstay of the botnet exploit
arsenal.

Number of distinct shellcodes: We captured 90 distinct pay-
loads from 1,561 exploit attempts in the residential DSL trace. As
shown in Figure 7, the exploit attempts were also skewed across
payloads: 10 variations were responsible for most of the observed
exploits. However, the long tail of almost 80 distinct shellcodes ap-
pearing only once raised the question of whether this was theresult
of polymorphism or other trivial differences. As with the LSASS
vulnerability, we performed clustering of the exploit payloads to
determine the extent and nature of this variation.

Constructing phylogenies:Figure 8 shows the dendrogram for
clustering decoded ISystemActivator payloads using the exedit dis-
tance metric. Again, most of the cluster merges happened be-
low a distance of 10%. We use this distance value as the thresh-
old to define families among the exploits, resulting in six families
for exploits for the ISystemActivator vulnerability. The low ini-
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Figure 8: Dendrogram for ISystemActivator (MS03-039) ex-
ploits using exedit distance.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 1 2 3 4 5

# 
H

os
ts

Family

Figure 9: Distribution of hosts for each ISystemActivator fam-
ily. We clustered using an intra-cluster exedit distance thresh-
old of 10%. Most hosts belonged to families ISys-2 and ISys-3
(represented by labels 2 and 3 in the graph), which were bind
and connect-back versions of the same exploit.

tial threshold and large gap between cluster merges at distances of
10% and 85% indicate that exploits within a family are similar, but
that ISys families differ more substantially from each other than the
LSASS exploit families.

Manual analysis of phylogenies:Through manual analysis, we
confirmed that the clusters shown in the dendrogram reflect six dif-
ferent code bases among the ISystemActivator shellcodes (summa-
rized in Figure 10). Within each family, though, there was nocode
polymorphism in the exploit shellcodes. The several-byte differ-
ences among exploits were due to variations in data constants, such
as encodings of phone-home addresses and hostnames, as wellas
names of executables. We now discuss the structure of the ISys-
temActivator shellcode families, and the nature of the differences
within and among them.

ISys-0 used a 4-byte, non-overlapping XOR to encode its pay-
load, whereas all other exploits we examined used some variant
of a byte-by-byte XOR. Also, the decoding loop used subtraction
instructions to set register values. In other respects, theorgani-
zation of its code was straightforward—the main body consisted
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Figure 10: Relationship of the ISystemActivator families.

of a series of calls to a kernel-base loading function block and a
function-finding block, both present at the end of the payload.

ISys-4 had a relatively simple decoding loop, but it had the largest
payload length and its flow of execution was the most complicated
among the ISystemActivator exploits. The data section contain-
ing function names was in the middle of the payload, and several
function blocks were appended after that. The flow of execution
started after the decoding loop, invoking many calls to the function
blocks. When the execution approached the data section, however,
it jumped past the data section and the function blocks to another
set of instructions that performed other function calls.

The moderate exedit distance within the ISys-1 family (9%) was
due to the differing decoding routine offsets and constantsin its ex-
ploits, but the shellcodes were otherwise identical. This difference
in decoding routines gives us confidence in the robustness ofthe
clustering algorithm to particular choices of the clustering thresh-
old. A different threshold that split this family in two would have
also been reasonable. We could have chosen a lower clustering
threshold (e.g., 5%) to split ISys-1 into two small families. This
new smaller threshold would not have had a large impact on the
results, though, because the differences between shellcodes within
ISys-1 were minor compared to the differences between families.

ISys-5 exploits had a characteristic execution flow that notonly
performed the standard loading of memory addresses and func-
tion finding, but also performed consecutive jumps over two text
sections to obtain data offsets in the exploit, and executedthe re-
maining code thereafter. The first data section contained the string
“tftp.exe -i <address> get <executable name>”, and the second
data section simply contained the same “<executable name>”. Vari-
ation in the address (e.g., taking values such as 0.0.0.0 or aconnect-
back IP) and executable name (such as “updr32.exe” and “sys-
tem32.exe”) accounted for the 6.5% average distance among sam-
ples in this family.

The relatively low 10% exedit distance between ISys-2 and ISys-
3 suggested that they would be similar in many respects. Further
manual analysis revealed that both shared the same decodingloop
using0x99 as the key (this is the same as LSASS-3’s loop, al-
though we were not aware of any multi-vector malware responsi-
ble for this), and both used a miniature data section containing the
same function names near the end of the payload. However, ISys-2
used a shorter exploit payload length and a shorter NOP-sledthan
ISys-3, but had a longer main body. The basic blocks within the
main body were similar except for some block reordering, register
renaming, and instruction substitution. Interestingly, the number of
iterations in ISys-3’s loop overshoots the exploit payload(past the
end of the data section). Thus, it seems reasonable to hypothesize
that either ISys-2 was a refinement of ISys-3, or that ISys-3 was a
poor imitation of ISys-2.

A closer look reveals further similarities between ISys-2 and 3.
Both exploits contained the following strings in the same order near
the end of the shellcode:GetProcAddress,CreateProcessA,
ExitThread, LoadLibraryA, ws2 32, WSASocketA, with
closesocket at the end of the payload. The only strings that dif-

fered were the last few—ISys-3 contained aconnect, but ISys-
2 contained abind, listen, and accept. As a result, we
believe that these two families were derived from the same code
base except that ISys-3 required the newly-infected host toconnect
backto the infecting host, while ISys-2 required the newly-infected
host tobind on a socket and wait for a connection attempt from
the infecting host. Malware typically executes connect-back shell-
codes when the newly infected host resides within a NAT/firewall,
and executes a bind shellcode if the infector is residing within a
NAT/firewall. Indeed, more investigation revealed that the0.5%
average intra-cluster edit distance (which is 4 bytes out ofISys-
3’s 776-byte shellcode) exactly corresponded to the integer form
of the connect-back address—further support that ISys-3 was the
connect-back version of ISys-2’s bind shellcode.

Prevalence of exploit families: Figures 9 shows the distribu-
tion of hosts over the families. Most of the exploits belonged to
families ISys-2 and ISys-3. Because ISys-2 and ISys-3 only dif-
fered in their connect-back functionality and have similarpreva-
lence, we hypothesize that they could have belonged to a botnet
that was able to traverse NAT/firewalls by using a combination of
bind and connect-back shellcodes.

Summary: The ISystemActivator exploits formed another well-
defined phylogeny, and our methodology allowed us to capture
the subtle distinction between bind and connect-back versions of
a shellcode. Specifically, the moderate distance between families
ISys-2 (bind) and ISys-3 (connect-back) provided a strong hint that
the two families were related, a hypothesis we confirmed manually.

4.4 RemoteActivation
As discussed at the beginning of Section 4.3, RemoteActivation

was the original MS RPC vulnerability (MS03-026) that Blaster
and its variants exploited before also targeting ISystemActivator.
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Figure 11: Exploit diversity per sending host for the Remote-
Activation vulnerability (MS03-026). Each of the 338 exploit
payloads was unique.

Exploit frequency: We captured 338 distinct exploit payloads
for the RemoteActivation vulnerability. The RemoteActivation ex-
ploits represent the opposite end of the spectrum to the SQL vul-
nerability: each RemoteActivation exploit attempt used a unique
payload. Figure 11 shows the distribution of exploit attempts (and,
therefore, distinct payloads) among the 31 remote hosts trying to
exploit the RemoteActivation vulnerability. Moreover, unlike the
other exploits we analyzed, RemoteActivation exploits exhibited a
high amount of exploit diversity per host.



Constructing phylogenies: Figure 12 shows the dendrogram
resulting from clustering the payloads using the exedit distance
metric. Compared to the LSASS and ISystemActivator shellcodes,
the exedit distance among RemoteActivation shellcodes wasvery
small. Judging from the dendrogram, most cluster merges occur
below a distance of 1%. Using this threshold results in two fami-
lies for the RemoteActivation shellcodes, although the 1.3% inter-
family exedit distance indicates that the families are closely related.

Manual analysis of phylogenies:Manually inspecting the ex-
ploits reveals that the last third (roughly 300 bytes) of thepayload
contained randomly generated characters selected from lower-case
letters, except for several fixed characters embedded within the ran-
dom text. There were also small 2- and 4-byte differences in the
main body as well. These random characters accounted for the
variation within each family.
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Figure 12: Dendrogram for the RemoteActivation (MS03-026)
exploits using exedit distance. Setting a maximum intra-family
distance of 1% yielded two closely-related families.

A more thorough inspection led us to conclude that there were
two very similar types of RemoteActivation exploits in our trace.
Figure 13 shows an evolution diagram that reflects our findings.

Metasploit Common
Ancestor

?

Remact-0

Bind

Remact-1

Connect-back

Figure 13: Relationship of the RemoteActivation families.

One peculiar feature of the RemoteActivation payloads was that
they shared the same prefix—a large NOP sled sprinkled with the
hex strings “\xeb\x04\xff\xff” and “\xeb\x04”. A search for
those strings led us to a Perl module that was part of the Metas-
ploit Framework [14]. Metasploit is a toolkit for generating ex-
ploits, and includes options for generating encoded shellcodes and
random filler characters. Although we do not directly attribute our
exploits to a Metasploit generation, the similarities helped provide
insight into the construction used by their authors.

The hex strings were return addresses for redirecting control flow
for exploiting Windows NT, 2000 and XP. In addition, the Metas-
ploit Perl module invoked a function Pex::Text::EnglishText(360)
for filling the last portion of the exploit with random characters
from ASCII 33–126, a superset of the lower-case letters we ob-
served in the RemoteActivation exploits. More importantly, how-
ever, the fixed characters placed within the random text in the ob-
served exploits exactly matched those from the Perl module—they
were jump commands and return addresses for Windows XP and
2003. Furthermore, both were terminated with the four charac-
ters ‘\’, NULL, ‘A’ and NULL. However, we could not directly
attribute the exploits we observed to Metasploit because the NOP-
sled in the Perl module was smaller, the distribution of random
characters was different, and we could not find an instance ofthe
decoded shellcode within the Metasploit framework.

The byte-wise encoding scheme only covered the main bodies
of the exploits, but different exploits used different keys. Indeed,
within each family the average edit distance between non-decoded
shellcodes was 28.5% to 29.8%, whereas the average edit distance
between decoded shellcodes was 19.6% to 19.9%, as shown in Ta-
ble 2. And with manual inspection we confirmed that variable en-
coding of the exploit’s main body contributed to the jump in aver-
age intra-family distance. Changing keys along with randomfiller
characters are commonly described techniques for polymorphism,
and the RemoteActivation exploits had both of these features.

Family # Hosts Non-decoded Edit Decoded Edit
0 3 28.5% 19.6%
1 29 29.8% 19.9%

0 vs 1 32.5% 23.2%

Table 2: Effect of random filler: intra-family and inter-fam ily
results for the RemoteActivation vulnerability include number
of hosts, average edit distance over non-decoded payloads,and
average edit distance over decoded payloads.

The decoded main bodies for RemoteActivation fell into two
groups—90% belonged to family Remact-1 and were 206 bytes
long, while the other 10% belonged to Remact-0 and were 226
bytes long. The Remact-0 and Remact-1 exploits were similar
because they shared the same function-finding block, which was
placed after the same decoding routine. However, the code after
the function block performed a connect-back attempt in Remact-
1, and performed a bind in Remact-0 (hence the longer shellcode).
Nonetheless, both exploit forms ended with a call to recv(),a load
of a 4-byte authentication token, and a jump to the second ex-
ploit payload downloaded by the recv() call (we thank the Ne-
penthes [17] honeypot for contributing this analysis of theRemact-
1 shellcode).

Summary: The exedit distance metric is able to reconstruct
the phylogeny for RemoteActivation exploits even in the presence
of non-trivial polymorphism such as variable encoding keys, and
random padding characters embedded within the payload. More-
over, functional differences in the shellcodes primarily contributed
to the distinction between Remact-0 (bind version) and Remact-1
(connect-back version). Otherwise, the shellcodes for RemoteAc-
tivation exploits did not share the same degree of diversityas the
LSASS and ISystemActivator shellcodes.

4.5 Diversity Across Vulnerabilities
As our final experiment, we analyze exploit diversity in a trace

from a very different network vantage point. Using this second
trace, we examine the relative prevalence of vulnerabilityexploits



Family # Hosts # Exploits Sent Vulnerabilities Avg Intra-Family Edit
LBL-3 463 728 ISystemActivator (54.4%) ISystemActivator (0.4%)

LSASS (44.6%) PNP (1%) LSASS (0.1%) PNP (0.1%)
LBL-2 273 296 ISystemActivator 0.4%
LBL-6 152 164 ISystemActivator 2.6%
LBL-5 100 384 PNP 0.1%
LBL-4 11 11 ISystemActivator 0.5%
LBL-1 3 4 ISystemActivator 0.0%
LBL-0 1 9 RemoteActivation 19.3%

Table 3: Per-family results for the LBL trace including the number of hosts, number of exploit payloads sent, the constituent
vulnerabilities (with breakdowns expressed as a percentage of the number of exploits sent), and the average intra-family edit distance
over decoded shellcodes. All families were disjoint.

at a different point in the Internet, and apply our exploit clustering
methodology across multiple vulnerabilities at a time to identify
multi-vector exploits. The trace is a full-payload 4.5-daytrace from
a Windows honeyfarm running at the Lawrence Berkeley National
Laboratory starting on April 19, 2006. Hosts in this honeyfarm
served as active responders to incoming requests to a largerrange of
IP addresses, five /24 subnets. The trace was a tcpdump of network
traffic, and we identified and captured exploits by running the trace
through Shield.
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Figure 14: Dendrogram for the LBL trace exploits using exedit
distance. The 1st set of hash marks just below 0% represent
ISystemActivator, the 2nd represent LSASS, the 3rd represent
PNP, and the 4th represent RemoteActivation.

Constructing phylogenies: In previous experiments we clus-
tered exploits among shellcodes targeted at individual vulnerabil-
ities. In this experiment, we cluster the exploit shellcodes to all
vulnerabilities found in the LBL trace that are known to Shield
at once. Figure 14 shows the results of clustering over multiple
vulnerabilities in the LBL trace as a dendrogram. As with previ-
ous experiments, since most cluster merges occur below an exedit
distance threshold of 10%, we use this value as the thresholdfor
clustering exploits into families. Seven families form as aresult.

Prevalence of exploit families:Manually inspecting the shell-
codes confirmed that the seven families were distinct. For each
shellcode family, Table 3 shows the host prevalence, the number of
shellcodes sent, the vulnerabilities exploited, and the intra-family
distance. The entries are sorted in decreasing order of hostpreva-
lence.

The LBL-2 and LBL-3 families were, respectively, the connect-
back and bind versions of the same shellcode (as suggested bytheir

relatively low inter-family distance of 15%). LBL-3 was themost
prevalent family with 463 hosts sending its shellcodes. Themost
striking aspect of LBL-3 was that it was a multi-vector family, ex-
ploiting three different vulnerabilities. However, it exhibited very
little intra-family variation, with an edit distance of at most 0.4%
for shellcodes within each of the vulnerabilities exploited.

In contrast, LBL-0 was the least prevalent family. It targeted the
RemoteActivation vulnerability with the same shellcodes found in
the residential DSL trace in Section 4.4. As with the shellcodes
from the residential trace, LBL-0 had the most variation within the
family (a relative edit distance of 19.3%) due to the randomly gen-
erated characters at the end of the shellcodes.

Summary: Our clustering methodology with the exedit distance
metric was able to cluster exploits into families across shellcodes
targeting multiple vulnerabilities. As a result, it was effective in
identifying multi-vector exploits. Finally, comparing the LBL and
residential DSL traces, we found that the exploit shellcodes gener-
ally targeted the same set of vulnerabilities (with even thesame
RemoteActivation shellcodes used in both traces), and the most
prevalent shellcode in the LBL trace was a multi-vector exploit.

5. DISCUSSION
The research community has been engaged in a vigorous de-

bate over the likely future role of network intrusion detection sys-
tems (NIDS), and to what extent exploit polymorphism will limit
their effectiveness. The previous section documented thatpoly-
morphism within shellcodes is already in use on the Internet. To
investigate whether this polymorphism made NIDS signaturecon-
struction difficult, we generated a small set of signatures that ex-
haustively covered all exploits we observed for each vulnerability
in the DSL residential trace. Each signature was a contiguous se-
quence of 100 bytes. We constructed the signature set using the
well-studied greedy algorithm for the set cover problem [7]. For
each individual vulnerability except LSASS, one signaturesufficed
to cover the set of exploits. LSASS required two: one covered
1645/1769 exploits, and the other covered the rest. Manual inves-
tigation of these signatures showed that they primarily focused on
the portions of the shellcode that were mostly (but not entirely)
NOPs. We then tested the signatures against a 5-GB trace on our
internal network for false positives. None of the signatures yielded
false positives in the internal trace.

Our above experiment generating signatures for the shellcodes
we traced suggests that the polymorphism was not effective for eva-
sion. Two alternative hypotheses for the motivation of the polymor-
phism we observed are that perhaps the malware authors were us-
ing polymorphism to evade signatures other than the ones we con-
structed, or perhaps they did not realize that their polymorphism
was ineffective against signature construction (e.g., because their



shellcodes were still effective at compromising a sufficient number
of hosts).

Yet another hypothesis is that today’s polymorphism is unrelated
to evading NIDS signatures. Some of the variation in shellcodes
was clearly due to functional variation (e.g., the bind and connect-
back varieties of ISystemActivator and RemoteActivation). The
variation due to decoding routines with variable keys mightbe sim-
ply motivated by increasing the difficulty of reverse engineering.

With our traces, we cannot definitively ascribe intent to thepoly-
morphism we observed in these exploits, but we suspect that it is
likely some combination of the above reasons. Improving ourun-
derstanding of the motivations for the actual polymorphismon the
Internet, as well as how the uses and motivations for polymorphism
change over time, remain interesting open problems.

6. CONCLUSION
We have presented a methodology for constructing the phylogeny

of remote code injection exploits. We evaluated this methodology
on network traces taken from several vantage points. We found our
methodology to be robust to the polymorphism observable in these
traces. Using our methodology, we found both non-trivial code
sharing and subtle variation within the exploit families such as the
use of bind versus connect-back to traverse NATs.

Polymorphism and exploit diversity have been a topic of signifi-
cant discussion within the research literature. We have documented
the use of polymorphism in exploits currently loose on the Internet.
More broadly, analyzing both the emergence of polymorphismand
the phylogeny of remote code injection exploits is part of a broader
effort to better understand the social and technical dynamics around
malware creation. We believe our methodology and results are a
promising contribution to this broader understanding.
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