
XL: An Efficient Network Routing Algorithm

Kirill Levchenko
klevchen@cs.ucsd.edu

Geoffrey M. Voelker
voelker@cs.ucsd.edu

Ramamohan Paturi
paturi@cs.ucsd.edu

Stefan Savage
savage@cs.ucsd.edu

Department of Computer Science and Engineering
University of California, San Diego

ABSTRACT
In this paper, we present a new link-state routing algorithm called
Approximate Link state (XL) aimed at increasing routing efficiency
by suppressing updates from parts of the network. We prove that
three simple criteria for update propagation are sufficient to guaran-
tee soundness, completeness and bounded optimality for any such
algorithm. We show, via simulation, that XL significantly outper-
forms standard link-state and distance vector algorithms—in some
cases reducing overhead by more than an order of magnitude—
while having negligible impact on path length. Finally, we argue
that existing link-state protocols, such as OSPF, can incorporate
XL routing in a backwards compatible and incrementally deploy-
able fashion.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols

General Terms
Algorithms, Design, Theory, Performance, Experimentation

1. INTRODUCTION
“How do I best get from here to there?” This simple question

is the essence of the routing problem, but it belies the consider-
able complexity embedded in modern intra-domain routing pro-
tocols. At the heart of this complexity is the issue of topology
change. Routing in a static network is trivial, a simple table of
directions calculated once for each destination. However, most real
networks are dynamic—network links go up and down—and thus
some nodes may need to be notified to recalculate their routes in
response. This problem in turn can be boiled down to the ques-
tion, “Who needs to know?” The traditional approach, enshrined
in the family of link-state protocols, is to tell everyone; flood the
topology change throughout the network and have each node then
recompute its table of best routes. However as a network grows,
this requirement to universally communicate and act on each topol-
ogy change can become problematic. This is because a larger net-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

work also generates routing updates more often, necessitating more
frequent route updates and route re-computation. Worse yet, these
costs are incurred by every router in the network, meaning that the
most resource-constrained router effectively determines the maxi-
mum network size that can be served by a routing algorithm. Thus,
link-state protocols are frequently said to “not scale well.”

However, it is manifestly unnecessary to communicate every link
change to every router. Intuitively, only a small subset of router
nodes are critically impacted by most link-state changes (particu-
larly those whose shortest path trees include the changed link) and
most other routing-related communication and computation is re-
dundant. The traditional solution to this problem is to divide the
network into separate routing domains and use this hierarchy to
isolate topology updates. In the inter-domain context, the network
is naturally divided into Autonomous Systems to reflect adminis-
trative and policy boundaries. However, the hierarchy imposed in
the intra-domain context, for example with OSPF areas, is com-
pletely artificial: these areas do not delineate policy regions but
rather serve as a routing algorithm optimization. As Cisco’s OSPF
Design Guide [6] states, “Areas are introduced to put a boundary
on the explosion of link-state updates.”

Unfortunately the process of properly configuring and maintain-
ing areas is a complex art form; one with ad-hoc rules of thumb
(“no more than 50 routers per area”) and complex design trade-
offs.1 Indeed, the structure imposed by areas inherently limits the
kinds of topologies that can be mapped onto routes and, if not care-
fully managed, can produce arbitrarily sub-optimal routes and un-
necessary points of failure [31]. Our work is focused on minimiz-
ing or removing the need for such artificial hierarchy by improving
the efficiency of the underlying routing protocols.

Another approach to this problem is exemplified in the fish-eye
routing optimization used by the 802.11s Mesh Networking stan-
dard. This technique simply limits the range over which topology
updates are communicated, thus limiting updates to their immedi-
ate region [16, 14]. While this optimization imposes no operational
burden, it is fundamentally unsound. Such protocols can neither
guarantee that their routes will lead to their destinations (since they
may contain loops) nor that all reachable destinations will have a
valid route. While our work is motivated by the same desire to
winnow update traffic, we seek to do so within the traditional con-
straints of correctness.

This state of affairs is fundamentally unsatisfying, and with link-
state protocols being introduced into a wide range of new domains
1In Moy’s classic OSPF: Anatomy of an Internet Routing Proto-
col, he addresses the issue of how to place area boundaries as fol-
lows: “This is a complicated question, one without a single an-
swer.” and further clarifies that it depends on a combination of
addressing structure, area size, topology considerations and policy
considerations.

including overlay networks [2], ad-hoc and mesh networks [7], and
to support traffic engineering for both MPLS [15] and Packet Based
Backbone [9] technologies, we feel the issue is ripe for revisiting.
To this end, our paper seeks to answer the following simple ques-
tion: “Can one significantly increase routing protocol efficiency by
selectively propagating topology updates, while still providing tra-
ditional guarantees of soundness, completeness and optimality?”

In addressing this question, this paper offers three contributions.
First, we introduce the Approximate Link state (XL) routing algo-
rithm, which can reduce routing overhead by an order of magnitude
over existing protocols while still maintaining our correctness prop-
erties. Second, we show that three simple criteria for propagating
updates are sufficient to ensure these properties for any link-state
routing protocol:

S1 When the update is a cost increase (bad news),
S2 When the link is used in the node’s shortest-path tree

(propagated only to the next hop along the path to the
link), and

C1 When it improves the cost to any destination by more
than a 1 + ε cost factor, where ε is a design parameter
of the algorithm.

We show that all other updates may be safely suppressed. We show
that these conditions are sufficient to guarantee that all forwarding
paths are loop-free and within a 1 + ε cost factor of optimal.

Finally, since our approach is primarily a restriction of the tradi-
tional link-state approach, it is possible to mix it within an existing
link-state framework; allowing incremental deployment. We sketch
how such interoperability could be achieved between native OSPF
and a modified OSPF/XL protocol.

The remainder of the this paper is structured as follows: we
briefly outline the relevant background and related work in Sec-
tion 2, followed by a description of the network model and notation
used throughout the paper in Section 3 and the XL routing algo-
rithm itself in Section 4. Section 5 describes the simulation sys-
tem we developed for evaluating the performance of routing algo-
rithms. Then, in Section 6 we present our experimental evaluation
the XL routing algorithm compared with link-state and distance-
vector based approaches. In Section 7 we explain how OSPF may
be modified to include the update suppression mechanism used in
XL and Section 8 summarizes our results and concludes the paper.

2. BACKGROUND AND RELATED WORK
Beginning with the development of the ARPANET routing al-

gorithms in the late seventies and early eighties [21, 22], network
routing became a major area of research. The long-term loops suf-
fered by the ARPANET distance-vector algorithm led to the de-
velopment of link-state routing algorithms. In turn, a number of
competitive distance vector algorithms were later developed that
avoided long-term loops [4, 12, 17, 23, 28], including Garcia-Luna-
Aceves’ DUAL [10], which became the basis for Cisco’s EIGRP [5].
To scale to larger networks, the link-state protocols OSPF and IS-
IS introduced area routing. In this regime the network is manually
divided into areas and while routing within an area takes place as
before. Forwarding to destinations outside the local area is handled
by special border routers—largely isolating most areas from the
knowledge of any external topology change. As the OSPF specifi-
cation states:

[The] isolation of knowledge enables the protocol to
effect a marked reduction in routing traffic as com-
pared to treating the entire Autonomous System as a
single OSPF domain. [24]

We are not the first to identify that areas can introduce problems
in link-state networks. These problems have long been understood
experimentally and are well summarized by AT&T’s Mikkel Tho-
rup in his “OSPF Areas Considered Harmful” [31]. Nor are we the
first to look at reducing flooding overhead in link-state protocols.
A number of such proposals have been made—typically for partic-
ular narrow regimes—including optimizations for flooding across
interfaces [32], for reducing refresh overhead [27] and to damp the
effects of route flapping [25]. We believe that our work is consid-
erably more general than these efforts and with greater impact on
efficiency.

Another approach to improving the scalability of link-state al-
gorithms is the Link Vector (LV) algorithm introduced by Behrens
and Garcia-Luna-Aceves [3]. The LV algorithm only propagates
link updates about links in the node’s shortest-path tree, an idea
borrowed from distance vector algorithms, which we use in our
work as well. However unlike our algorithm, the LV algorithm ex-
plicitly notifies neighbors when a link is added or removed from
the shortest-path tree, whereas in our algorithm, the shortest-path
tree is never explicitly communicated to neighbors; links not in
the shortest-path tree are removed lazily only if their cost actually
changes. This allows us to support approximation which, in turn,
permits significant reductions in overhead for small increases in
stretch, as our simulations show.

Finally, our notion of a view as a representation of network state
is similar to that of Fayet et al. [8]. In their work, they give several
sufficient conditions for routing in a network where nodes may have
different views. However they do not give a routing algorithm or
propose a mechanism for achieving these conditions.

3. DEFINITIONS AND NOTATION
In this section we formally describe our network representation

and define what we mean by “forwarding.” We then define the
routing problem in terms of network configurations (e.g., “loop-
free”). The reader may choose to skip directly to the ext section,
where we describe the XL routing algorithm itself, turning back to
this section for reference.

XL is a routing algorithm for a destination-based forwarding net-
work such as the Internet. Formally, a routing algorithm is a mech-
anism by which network nodes can coordinate packet forwarding
to ensure any two nodes in the network can communicate. In a
destination-based forwarding network, forwarding is based on the
packet destination address only. A node makes its forwarding de-
cision using a forwarding table which either gives the next hop to
each destination or indicates that the destination is not reachable
by forwarding. The objective of a routing algorithm is to maintain
a network configuration in which nodes are globally reachable by
forwarding.

3.1 Network Model
We model the network as a graph G = (V,E, e) with vertex set

V , edge set E, and edge weight function e. The vertices represent
network nodes, edges represent links, and edge weight represent
link costs. Throughout the paper, we will use the pairs of terms
node and vertex, link and edge, interchangeably.

To simplify exposition, the set of nodes and edges is fixed and
globally known; only the edge weight function varies with time.
It is straightforward to extend an algorithm in this model to allow
vertices and edges to be inserted or deleted. The range of the weight
function is the set of non-negative real numbers together with the
special value∞ having the usual semantics.

Let n = |V |, m = |E| and let N(u) denote the set of neighbors
of u ∈ V . The set of edges E is undirected, however the weight

function e is directed, which meaning that costs may be different
along each direction of the link.

A path is a sequence of nodes of which any consecutive pair is
adjacent in the graph. The weight of a path α in G, denoted ‖α‖
is sum of the weights (given by the weight function e) of its edges.
Let δ(u,w) be the minimum weight of a path from u to w, or∞ if
no such path exists. If δ(u,w) is finite, we say that w is reachable
(in the network) from u.

We use a superscript to denote the time at which the value of a
function or variable is considered. For example, δt(u,w) denotes
the weight of a minimum-weight path in G at time t. The domain
of t is the set of non-negative real numbers. We say that a set of
edges is quiet during a time interval if its weights do not change
during the time interval. A set of edges becomes quiet at some time
t if its edge weights do not change after time t.

3.2 Forwarding
To each node u in the graph we associate a forwarding table fu

which maps a destination node w to a neighbor of u, with the se-
mantics that a packet arriving at u destined for w will be sent to
the neighbor of u given by the forwarding table. If the packet has
reached the destination or the destination is not reachable by for-
warding, the forwarding table contains special value NONE. Thus,

fu(w) ∈ N(u) ∪ {NONE}, (1)

where N(u) are the neighbors of u.
We define the configuration of a forwarding network at some in-

stant in time to be the set of all forwarding tables at that time. To
capture the iterative nature of packet forwarding, we consider the
path taken by a packet in the network. The (instantaneous) for-
warding path from u to w, denoted φ(u,w), is the successive ap-
plication of f to w, starting at u, up until NONE. Formally, φ(u,w)
is the unique maximum-length sequence satisfying

φ0(u,w) = u (2)
φi+1(u,w) = fφi(u,w)(w) (3)
φi+1(u,w) 6= NONE. (4)

Note that φ(u,w) may be an infinite sequence, (if for example
fu(w) = v and fv(w) = u) resulting in a forwarding loop. If
φ(u,w) is a finite path from u to w, we say that w is reachable by
forwarding from u.

3.3 Soundness and Completeness
To each node we associate a routing process responsible for com-

puting the forwarding table of the node. The routing process knows
(or measures directly) the costs of incident links and communicates
with its neighbors via these links. A routing algorithm is the mech-
anism that defines what information is exchanged with neighbors
and how the forwarding tables are computed. The central purpose
of a routing algorithm is to maintain a forwarding configuration in
which nodes are mutually reachable by forwarding. It is often also
desirable for the paths taken by forwarded packets to be optimal or
near-optimal. We formalize these objectives using the notions of
soundness, completeness and stretch.

Definition. A configuration is sound if for all nodes u and w,
fu(w) 6= NONE implies φ(u,w) is a path from u to w. A rout-
ing algorithm is sound if it produces a sound configuration after the
network becomes quiet.

In a nutshell, soundness says that a node should only attempt to
forward to destinations it can reach by forwarding. We will show
that the XL routing algorithm we describe in this paper has this

property. There is also a weaker property that is sufficient for many
applications, and it is simply that there be no forwarding loops:

Definition. A configuration is loop-free if for all u and w, φ(u,w)
is finite. A routing algorithm is loop-free if it produces a loop-free
configuration after the network becomes quiet.

The difference between a sound and a loop-free configuration is
that in the latter, a node only needs to know that forwarding to its
next hop will not cause a loop (but the packet could be dropped
somewhere down the path), while in a sound configuration, for-
warding to the next hop must actually reach the destination.

The easiest way to achieve soundness is for every node to “pre-
tend” everyone is unreachable by setting fu(w) = NONE for all
destinations w. Clearly this is a degenerate configuration, so what
we also want is for fu(w) to be NONE only if w really is unreach-
able from u in the network. We call this property completeness.

Definition. A configuration is complete if for all distinct u and w,
δ(u,w) 6= ∞ implies fu(w) 6= NONE. A routing algorithm is
complete if it produces a complete configuration after the network
becomes quiet.

Together the soundness and completeness properties say that all
nodes are reachable by forwarding, but they say nothing about the
optimality of the forwarding paths. This is the subject of our next
definition.

Definition. The stretch of a configuration is the maximum taken
over all distinct nodes u and w of the ratio ‖φ(u,w)‖/δ(u,w),
with the convention that 1/∞ is 0, and∞/∞ is undefined and not
included in the maximum. A routing algorithm has stretch 1 + ε
if it produces a configuration with stretch at most 1 + ε after the
network becomes quiet.

4. THE XL ROUTING ALGORITHM
XL is fundamentally a link-state routing algorithm. It differs

from the standard link-state algorithm in propagating only some
link state updates. At the heart of the algorithm are three rules
describing when an update should be propagated, and our main
technical contribution is showing that these are sufficient for cor-
rectness as defined above. These conditions, which are at the heart
of the algorithm, are:

S1 When the update is a cost increase (bad news),
S2 When the link is used in the node’s shortest-path tree

(propagated only to the next hop to the link), and
C1 When it improves the cost to any destination by more

than a 1 + ε cost factor, where ε is a design parameter
of the algorithm.

Any updates not covered by the three rules above may be sup-
pressed. The intuition behind these rules is that S1 and S2 ensure
that each node’s estimate of the distance to a destination decreases
along the forwarding path, which ensures that no loops are formed.
(More generally, S1 and S2 ensure soundness as described above.)
Rule C1 ensures that all nodes know about some good (not but
necessarily optimal) paths; this ensures completeness and bounded
stretch. In the rest of this section, we formally describe our algo-
rithm and describe how it implements these rules.

Because some updates are propagated while others are suppressed,
nodes will not all have the same information about the network. To
reason about this formally, we encapsulate a node’s knowledge of
the network in a view. A view is an edge weight function giving the
weight of each edge at a particular point in time. Each node has an

Tuv TvuTu Tvfvfu

u v

Figure 1: The routing process state for a pair of adjacent nodes. The routing process
of each node maintains the forwarding table (fu and fv), internal view (Tu and Tv),
and, for each neighbor, an external view (Tuv and Tvu). The forwarding table and
internal view are private, while the external view Tuv can be atomically updated by u
and atomically read by v. Similarly, the external view Tvu can be atomically updated
by v and atomically read by u.

internal view containing the most recent edge weight information
available to it. For each neighbor, a node also has an external view,
which contains the edge cost information it wants to share with that
neighbor. We denote the internal view of a node u by Tu and the
external view of u for neighbor v by Tuv . For a pair of nodes u and
v, their external views Tuv and Tvu will normally be the same, as
the algorithm attempts to maintain “consensus” of external views.
In describing the algorithm, we assume that the external view Tuv
can be atomically written by u and atomically read by v. The for-
warding table, internal view, and external views together constitute
the state of the routing process (Figure 1).

Updating an external view incurs a communication cost, since
the update must to be sent to corresponding neighbor. Our goal is
to minimize the frequency of external view updates. To simplify
analysis, we assume that external views can be updated even when
the corresponding link has infinite cost. In practice, such updates
would be queued until the link comes back up.

Formally, a view is a function mapping each edge to an edge da-
tum, which is simply a pair of values p and t, written p@ t, meaning
that the edge had weight p at time t. Furthermore, views must only
have correct information, meaning that the edge in question should
have really had cost p at time t. We call this the view invariant. To
avoid writing each definition twice, once for the internal views and
once for external views, we will use the placeholder subscript 3 to
mean both u and uv. With this convention, the view invariant is:

T3(x, y) = p@ t ⇒ et(x, y) = p. (V1)

For convenience, let e3(x, y) = p denote the weight of (x, y) ac-
cording to T3, that is, if T3(x, y) = p@ t. But note that e3 is
distinct from the true weight function e written with no subscript.

We say an edge datum p@ t is more recent than datum p′@ t′ if
t > t′. We will also use the terms less recent and as recent having
the obvious meanings. Finally, we define a “most recent” operator
“rec.“ Applied to a set of edge data S, recS is the most recent
datum in S. Formally, if there exists an edge datum p@ t ∈ S
that is more recent than all other p′@ t′ ∈ S, then recS = p@ t;
otherwise, recS is undefined.

Let π3(z, w) be a minimum-cost path2 from z to w in T3. Since
the underlying graph is connected, such a path always exists, al-
though the cost may not always have finite cost. Define d3(w) =
‖π3(u,w)‖3; as before, 3 stands for both u and uv.

The routing algorithm is structured as an iterated state update
algorithm. The process starts in the initial state defined by the initial
views and then repeatedly executes the update algorithm, which
updates the views and forwarding table. We start by defining the
initial view.

2Ties may be broken arbitrarily, as long as the following consis-
tency property is preserved: if aγb is a subsequence of π3(z, w),
then π3(a, b) = aγb.

e(u, v1), . . . , e(u, vk) fuUpdate
AlgorithmTv1u, . . . , Tvku Tu, Tuv1 , . . . , Tuvk

current time τ

Figure 2: The update algorithm computes the new forwarding table, internal view,
and external views. The inputs to the algorithm are current incident edge weights,
neighbors’ external views, its previous internal view and external views. The algorithm
also has access to the current time.

4.1 Initial View
The initial view defines the initial state of the routing process,

before it has determined the incident link costs or communicated
with its neighbors. In other words, it serves as the “base case”
for the algorithm. The initial view, both internal and external, is
defined as

T3(x, y) =∞@ 0. (5)

To satisfy the view invariant (Equation V1), we also define e0(x, y)
to be∞ for all (x, y) ∈ E.

4.2 Update Algorithm
The update algorithm computes a new forwarding table as well

as new internal and external views. The input to the algorithm
consists of the incident link costs, the current external views of its
neighbors, and its own previous internal and external views, as well
as the current time, denoted τ (Figure 2).

For the remainder of this section, fix a node u executing the up-
date algorithm. The XL update algorithm has three phases. In the
first phase, the algorithm computes a new internal view of u and the
preliminary external views for its neighbors; in the second phase,
it updates the forwarding table using the new internal view; and in
the last phase, it computes new external views for each neighbor.
We now describe these phases. Table 1 summarizes the notation
used in the description and analysis of the routing algorithm.

4.2.1 Phase I: Internal and Prelim. External Views

τ Time at the start of the iteration (INPUT).
εu(w) Maximum allowed relative error for destination w with re-

spect to u (ALGORITHM PARAMETER).
T ′u, T

′
uv The internal view and external view for v ∈ N(u), re-

spectively, computed in the last iteration of the update al-
gorithm, or, during the first iteration, the initial internal and
external views (INPUT).

Tvu The external view of v ∈ N(u) (INPUT).
Tu, Tuv The internal view and external view for v ∈ N(u), respec-

tively, currently being computed (OUTPUT).
T ∗vu The preliminary external view of v ∈ N(u) (Sec-

tion 4.2.1).
fu The forwarding table of u, currently being computed

(OUTPUT).
e(x, y) Weight of edge (x, y) in G.

e3(x, y) Weight of edge (x, y) in T3.
‖α‖, ‖α‖3 Cost of path α in G and T3, respectively.
π3(z, w) Shortest path from z to w in T3, with ties broken as con-

sistently (Sections 4.2.2 and 4.2.3).
d3(w) Cost of the shortest path from u to w in T3; by definition,

d3(w) = ‖π3(u,w)‖3 (Section 4.2.3).
Du(w) Minimum distance proxy from u to w (Section 4.4).

Table 1: Notation used in the description and analysis of the update algorithm. The
symbol 3 represents the possible subscripts u or uv in the definitions.

The first phase is concerned with view bookkeeping. Conceptu-
ally, we would like to have a single shared view for each pair of
neighbors. However since the neighbors operate asynchronously,
this would require a synchronization to ensure that the common
view is updated correctly. Instead, we allow each neighbor to have
its own version of this shared view. Neighbors keep their respec-
tive external views in agreement by only updating them with more
recent information and by maintaining the invariant that a node’s
external view is no older than its neighbors. This ensures that the
pair of views converge to the same single view. Thus first step in
Phase I is to make sure the local external view is up to date with
respect to the neighbor’s external view for u. We call this updated
view the preliminary external view. For each edge (x, y), the pre-
liminary external view takes the more recent datum of the previous
external view T ′uv and the neighbor’s external view Tvu:

T ∗uv(x, y) = rec
˘
T ′uv(x, y), Tvu(x, y)

¯
(6)

The preliminary external view is what the node and it’s neighbor
already agree on, or will agree on after the neighbor performs an
update. It is the starting point for any updates the algorithm decided
to communicate to its neighbor.

Next, we make the internal view the most recent information
about each edge available to u. For edges incident on u, the most
recent information is available locally and is only updated if the
edge weight changes. Formally, for v ∈ N(u),

Tu(u, v) =

(
eτ (u, v) @ τ if eτ (u, v) 6= e′u(u, v),
T ′u(u, v) otherwise,

(7)

where “rec” is the “most recent” operator.
For all other edges, the source of the most recent information are

the external views. We collect the most recent datum for each edge.
For all x and y where x 6= u,

Tu(x, y) = rec
v
T ∗uv(x, y). (8)

The following lemma follows by construction.

Lemma 1. The internal view and preliminary external view are
well-defined and satisfy the view invariant.

4.2.2 Phase II: SPT and Forwarding Table
Having computed the internal view, which is the most recent in-

formation available to u about the state of the network, the update
algorithm now computes a shortest-path tree using the internal view
Tu and sets the forwarding table accordingly. This step is identical
to the standard link-state algorithm.

Recall that πu(u,w) is a minimum-cost path from u to w in
Tu, such that the set of all such paths from u forms a shortest-path
tree. The distance from u to w in this tree is du(w), which may
be infinite if no finite-cost path exists. The forwarding table is now
set according to the computed shortest-path tree: If du(w) < ∞
then set fu(w) = v where v is the next node in the path to w in the
shortest-path tree; that is, where πu(u,w) = uv · · ·w. Otherwise,
if du(w) =∞, set fu(w) = NONE.

4.2.3 Phase III: External Views
In this last phase, the algorithm decides whether to propagate the

latest datum to each of the neighbors. That is, for each neighbor v
and each edge (x, y) ∈ E, the algorithm chooses whether to set
Tuv(x, y) = Tu(x, y), thereby propagating the new datum to v, or
to set Tuv(x, y) to T ∗uv(x, y) suppressing the update. Recall that
our goal is to bring the forwarding network into a sound and com-
plete configuration with low stretch, as described in Section 3.3.

We achieve these global objectives by enforcing the following three
local constraints on external views.

The first two constraints, as we will soon show, guarantee sound-
ness:

∀(x, y) ∈ E euv(x, y) ≥ eu(x, y) (S1)

∀w
`
fu(w) = v

´
⇒ (S2)

∀(x, y) ∈ πu(u,w) euv(x, y) = eu(x, y)

Constraint S1 states that we must never under-report an edge weight.
This constraint ensures that in steady state all views reflect edge
costs that are greater than or equal to the actual costs. Constraint S2
states that a node must advertise the latest edge cost to the neighbor
v used to reach that edge. Intuitively, this constraint ensures that if
v is our next hop to some destination w, then its own estimate of
the distance to w will be no worse than ours, and, therefore, v will
not attempt to reach w through us.

The third constraint guarantees completeness as well as bounded
stretch. Before stating it, we need one more definition. Let Du(w)
be a lower bound on the minimum distance from u to w in G. We
show how Du(w) may be computed in Section 4.4. With these
definitions in mind, the third constraint is:

∀w duv(w) ≤
`
1 + εu(w)

´
Du(w) or (C1)

duv(u,w) = du(w).

It states that distances in the external view should not be much
worse than actual. The lower bound Du(w) is used as a proxy
for the actual distance δ(u,w).

It is possible to satisfy all three constraints by setting Tuv = Tu,
that is, by propagating all edge datum updates. The resulting algo-
rithm would behave exactly like the standard link-state algorithm.
However by updating only the edges in the external view Tuv nec-
essary to satisfy the constraints above, we can can reduce routing
communication. The following algorithm does this.

Satisfying Constraints S1 and S2 is straightforward: an edge
must be updated if it causes S1 or S2 to fail. Constraint C1 is more
complicated.3 Call an edge hot, denoted HOT(x, y), if it lies on a
path to a destination that causes Constraint C1 to fail.

HOT(x, y) = ∃w
`
(x, y) ∈ πu(u,w)

´
∧`

duv(w) > (1 + εu(w))Du(w)
´
.

Our approach is to greedily update hot edges until Constraint C1 is
satisfied. The complete update procedure in given in Algorithm 1.

It remains to show that Algorithm 1 produces an external view
satisfying the Soundness and Completeness constraints above.

Lemma 2. After executing Algorithm 1 (above) the external view
Tuv satisfies the View Invariant V1 and Constraints S1, S2, and C1.

4.3 Analysis
We now show that Constraints S1 and S2 produce a sound for-

warding network configuration and Constraint C1 produces a com-
plete configuration with bounded stretch. For the analysis, we as-
sume that each execution of the update algorithm takes a bounded
amount of time; let ∆ be this duration. We will also need the fol-
lowing definition.

An edge (or set of edges) is coherent at a point in time if its
associated external views are the same at that point in time. That
is, an edge (u, v) is coherent at time t if T tuv = T tvu. Also, recall

3In fact, minimizing the number of edges that need to be updated to
satisfy Constraint C1 is a hard problem (reduction from Set Cover).

Algorithm 1 PHASE III.
1. for all (x, y) ∈ E do
2. Tuv(x, y)← T ∗uv(x, y)
3. if euv(x, y) < eu(x, y) then
4. Tuv(x, y)← Tu(x, y)
5. end if
6. if

`
(x, y) ∈ πu(u, y)

´
∧
`
fu(y) = v

´
then

7. Tuv(x, y)← Tu(x, y)
8. end if
9. end for

10. for all (x, y) ∈ E do
11. if HOT(x, y) then
12. Tuv(x, y)← Tu(x, y)
13. end if
14. end for

that a set of edges is quiet during a time interval if their weights do
not change during the time interval.

Together the following two lemmas bound the cost of the for-
warding path from u to w by 1 + ε times the cost of the optimal
path. Omitted proofs appear in the Appendix.

Lemma 3. Fix a time t > ∆. If φt(u,w) is a non-empty path that
is both quiet during time interval [t − ∆, t] and coherent at time
t, then φt(u,w) is a finite path from u to w and ‖φt(u,w)‖t ≤
dtu(w).

Lemma 4. Fix a time t > ∆. Let β be a path from u to w. If β is
(i) quiet during [t−∆, t], and (ii) coherent at time t, then

dtu(w) ≤ (1 + ε)‖β‖t,

where ε = maxx∈β εx(w).

Both Lemmas above are still conditioned on coherence. Here we
show that a quiet network eventually becomes coherent, which will
imply that our routing algorithm converges in finite time.

Lemma 5. If a network is becomes quiet at some time t, then after
a finite period of time it also becomes coherent.

We can now state our main theorem.

Theorem 1. If a network is quiet at and after some time t, then
after a finite period of time the forwarding configuration becomes
sound, complete, and has bounded distortion ε, where

ε = max
u,w

eu(w).

Proof. By combining Lemmas 3, 4, and 5.

4.4 Minimum Distance Proxy Function
Recall that the minimum distance proxy function Du was used

instead of the actual minimum distance function δ to define the
Completeness constraint (C1) in Section 4.2.3 and was also used in
Algorithm 1 to compute an external view. The correctness of the
XL routing algorithm requires only that 0 ≤ Du(w) ≤ δ(u,w) for
all u and w. However to give the algorithm leeway in suppressing
updates,Du(w) should be as close to δ(u,w) as possible. Comput-
ing the exact distance δ(u,w) is exactly what we’re trying to avoid
by using approximation, so we choose Du(w) to be the distance
computed by taking the weight of each edge to be the lowest cost
of the edge ever observed. Because this value only changes when
an edge cost drops below its all-time minimum cost, or an edge is

added to the network, updates are infrequent and therefore intro-
duce very little overhead to the algorithm. Furthermore, because
all-time minimum link costs can only decrease, it can be computed
using a distance vector-style algorithm without fear of loop forma-
tion, as shown by Jaffe and Moss [17].

A simpler alternative which does not guarantee globally bounded
stretch is to setDu = du. In other words, instead of computing and
maintaining the cost lower bound as described above, we simply
use out best estimate of the current cost from the internal view. In
some cases, this will cause the stretch to exceed 1 + ε, although in
practice the excess is likely to be quite small.

4.5 Cut Vertex Partitioning
Recall that in a sound configuration a node must only forward

to a destination if the destination is reachable. This is hardly the
case in the Internet today where ASes advertises prefixes, not in-
dividual destinations, even if part of the prefix is unreachable. For
this reason, we introduced a weaker notion, that of a loop-free con-
figuration, in which every forwarding path φ(u,w) must only be
finite (loop-free) and not necessarily a path to the destination w. It
means, essentially, that a node does not need to “know” that a des-
tination is reachable before forwarding, only that forwarding to the
next hop will not cause a loop. Practically, this means that sending
a packet to an unreachable destination will generate an ICMP Un-
reachable message from a router further in the network rather than
the local router.

As we have shown above, the basic XL algorithm is sound. If
we relax the requirement of soundness, however, and settle for a
loop-free algorithm, we can realize significant savings in routing
communication using an extension to XL routing algorithm we call
Cut Vertex Partitioning (CVP).

The idea behind CVP is based on the observation that a cut ver-
tex, which is a vertex whose removal disconnects the graph, par-
titions the network graph into two or more separate subnetworks
that can only communicate with each other through the cut vertex.
This means that to communicate with a destination “across” a cut
vertex, a node can simply forward to the cut vertex and it does not
need to know about the network beyond the cut vertex. Thus with
respect to routing, each subnetwork can be considered separately.

The CVP extension to the XL routing algorithm consists of the
cut vertex forwarding policy described above, a mechanism for
nodes to discover that they are cut vertices, and a cut vertex ad-
vertisement for nodes to learn which cut vertex to use to reach each
destination. In our fixed, globally network model where only the
edge weight function changes with time, all the necessary com-
putation can be carried out by each node separately. In practice,
however, where the topology is unknown and can change, cut ver-
tex discovery and advertisement is slightly more involved; we do
not describe it here.

In general, real networks do not have cut vertices that partition
the network into large subnetworks where CVP could be used as
a “divide and conquer” technique. However, what many real net-
works do have is a large number of leave. Since the neighbor of
a leaf is necessarily a a cut vertex, CVP eliminates leaves from
the routing computation, effectively reducing the size of the net-
work. In fact, our implementation of CVP only considers such leaf
cuts. Our experiments (Section 6) show that this “reduction by a
thousand cuts” significantly decreases the communication load or
routing.

5. THE SIMULATION SYSTEM
In this section we describe the simulation system we used to eval-

uate the performance of the XL routing algorithm. We designed

our simulation system specifically for the purpose of evaluating the
performance of routing algorithms on a forwarding network. At
its heart is a discrete event simulator that simulates a number of
routing algorithms including the XL algorithm. The simulation in-
cludes of the forwarding tables and all routing algorithm commu-
nication, but not other network traffic. It is expressly not a packet-
level network simulator like ns-2 and does not model or network
characteristics such as packet loss, latency, or bandwidth.

The the core of the simulation system is the the generator pro-
gram then generates an event script (a sequence of edge weight
changes) for the simulation, and the simulator program that sim-
ulates a routing algorithm on the network using the generated event
script. The output of the simulator program is a sequence of for-
warding table updates. This sequence of processed by the analysis
tools to compute convergence times, stretch, and related statistics.

5.1 Event Generator
The generator program produces a sequence of link cost changes

according to a stochastic model of link failures. In the generated
event sequence, a link is either up, in which case its cost is the
nominal cost given defined by the weights file, or down, in which
case its cost is∞. The two directions are coordinated, that is, links
(u, v) and (v, u) are either both up or both down.

p0

p1
DF

λ0

λ1

(µ0, σ2
0)

(µ1, σ2
1)

DS

US UF

Figure 3: The link failure model used by the generator program. The up/stable,
down/stable, up/flapping, and down/flapping states are denoted US, DS, UF, and DF,
respectively.

Link failure and recovery is controlled by a stochastic process
(Fig. 3). Each link is treated independently. In addition to being up
or down, a link is also either stable or flapping. The four link-states
are thus up/stable, down/stable, up/flapping, and down/flapping. In
the stable state, the link time-to-failure is distributed exponentially
with mean λ0. Once down, a link may remain in the down/stable
state, in which case the time-to-recovery is distributed exponen-
tially with mean λ1, or, with probability p1 a link may become
unstable and transition to the flapping/down state. Thus, parameter
p1 controls the propensity of links to flap. In the flapping state, the
time-to-recovery has a normal distribution truncated to [0,∞) with
parameters µ1 and σ2

1 , and time-to-failure has a similarly truncated
normal distribution with parameters µ0 and σ2

0 . After recovering
from failure in the flapping state a link leaves the flapping state
with probability p0. Parameter p0 thus controls how long a link
remains flapping.

Our link event model is a generalization the two-state model of
Park and Corson [26]; we added the flapping failure mode, which
we expected the XL algorithm handle particularly well. When p1 =
0, link failures are independent with exponentially-distributed fail-
ure and recovery times. On the other hand, when p1 = 1, all links
have an exponentially distributed time-to-first-failure followed by
repeated up-down cycles controlled by the p0 parameter.

5.2 Protocol Simulator
The simulator program is a discrete event simulator that sim-

ulates a single routing algorithm under a given topology and link
event sequence. In other words, it simulates n instances of the rout-
ing algorithm running in parallel, one on each node. The simulator

Name n m D1 D2 D3 Description

CROWN X 3X 4X 0 1/3 2/3 Two cycles of sizeX and 2X with
nodes in the smaller connected to
alternate nodes in the larger.

HONEY — — 0 ∼ 0 ∼ 1 A hexagonal grid.
QUAD — — 0 ∼ 0 ∼ 0 A rectangular grid.

ABILENE 11 14 0 45% 55% Abilene with routing metrics [1].
ARPANET 59 72 7% 48% 41% ARPANET (March 1977) [11].
FUEL1221 104 151 49% 19% 6% AS 1221 from RocketFuel [19].
FUEL1239 315 972 10% 19% 16% AS 1239 from RocketFuel [19].
F. 1221C 50 97 0 50% 6% The 2-core of FUEL1221.
F. 1239C 284 941 0 22% 18% The 2-core of FUEL1239.

ORB145 145 227 29% 28% 17% FUEL1239 rescaled (-n 200).
ORB257 257 433 31% 20% 21% FUEL1239 rescaled (-n 300).
ORB342 342 606 33% 24% 14% FUEL1239 rescaled (-n 400).
ORB406 406 791 27% 28% 14% FUEL1239 rescaled (-n 500).
ORB497 497 961 29% 26% 17% FUEL1239 rescaled (-n 600).
ORB575 575 1081 31% 25% 16% FUEL1239 rescaled (-n 700).
ORB664 664 1300 26% 27% 17% FUEL1239 rescaled (-n 800).
ORB729 729 1427 32% 24% 16% FUEL1239 rescaled (-n 900).
ORB813 813 1584 29% 25% 16% FUEL1239 rescaled (-n 1000).
ORB892 892 1694 34% 26% 15% FUEL1239 rescaled (-n 1100).

Table 2: Network topologies used in the experiments. Column legend: n – number of
nodes; m – number of links; D1, D2, and D3 fraction of nodes of degree 1, 2, and
3, respectively. All but the FUEL networks have unit link costs.

repeatedly executes the update algorithm of each node, providing
as input the (simulation) time at the start and end of the current
iteration of the algorithm, the costs of incident links, and its mes-
sage queue, consisting of messages sent by its neighbors since the
last invocation of the update algorithm on this node. The update
algorithm performs any processing dictated by the algorithm, and
if necessary, updates its forwarding table and then posts messages
to its neighbors. The (simulated) duration of the iteration is chosen
randomly according to a normal distribution truncated to [0,∞)
with parameters µ∆ and σ2

∆; we chose the normal distribution be-
cause it was familiar and because the model did not seem unrea-
sonable to us.

The simulator program contains implementations of the fol-
lowing routing algorithms.

ls The standard link-state algorithm [22] which is the ba-
sis for OSPF and IS-IS.

dv A distance vector algorithm very similar to RIP [20]
with split horizon. The maximum distance bound is a
global parameter of the algorithm.

dv+p A modern distance vector algorithm which uses a par-
ent pointer to detect loops [4, 12, 28].

lv The Link Vector algorithm proposed by Behrens and
Garcia-Luna-Aceves [3].

xl The XL algorithm described in this paper, parametrized
by error ε. When ε = 0, all forwarding paths are opti-
mal just as with the above algorithms.

All of the above algorithms send updates only when a topology
change occurs (sometimes called “triggered update”), and there are
no periodic updates.

The output of the simulation is a sequence of forwarding table
updates written to the update file for later processing. At the end
of the simulation, the simulator program reports the total number
of messages and bytes sent by the routing processes as well as the
maximum messages and bytes sent by a single node.

6. EVALUATION
In this section we experimentally evaluate the performance of

CROWN 8 HONEY 5× 5 QUAD 5× 5

Figure 4: Small examples of synthetic networks.

the XL routing algorithm relative to existing routing algorithms.
Our objective is to evaluate the claims that the XL routing algo-
rithm:

v Sends fewer routing updates,
v Does not significantly sacrifice correctness, convergence

time, or stretch, and
v Continues to perform well as the network grows.

Our evaluation is based on simulations of the four protocols im-
plemented by the simulator program (ls, dv, dv+p, and xl) on
a number of networks and under two different link event models.
The main result of simulation is that the XL routing protocol does
indeed reduce the number of updates: compared to the link-state al-
gorithm, XL generates between 2 and 20 times fewer updates (Ta-
ble 4). This experiment is discussed in Section 6.2; first, however,
we describe our experimental setup.

6.1 Experimental Setup
Each experiment consists of a number of simulation runs. Each

run simulates a single routing algorithm for 86,400 seconds (one
day) at a rate of 10 iterations of the update algorithm per second.
Networks. We used the following networks in our simulations:
three synthetic networks, the Abilene backbone [1], the ARPANET
topology from March 1977 [11], two Rocketfuel networks with
inferred link costs [19], and a series of networks created by re-
scaling the Sprint network (AS 1239) from the Rocketfuel data-
set using Orbis [18]. The Orbis command-line arguments to the
dkRescale program were “-k 1 -n nnom”, where the nominal
size nnom ranged from 200 to 1100. Table 2 describes the net-
works used in the experiments and Figure 4 shows small instances
of synthetic networks. The synthetic networks allowed us to test
the routing algorithms on topologies based design decisions differ-
ent from the AS router-level topologies. In particular, the large-
diameter HONEY and GRID networks shed some light on how the
algorithms might perform in wireless ad-hoc networks.

We also created the 2-cores of the two Rocketfuel networks. The
2-core of a graph is the graph resulting from repeatedly removing
all degree-1 nodes [29]. With no degree-1 nodes, CVP (which was
implemented only for leaf nodes) would have no effect, allowing
us to also evaluate the value of this optimization.
Link Events. All link events for the simulation were generated
using the generator program (Section 5.1). Recall that in the
generator link event model, a link is either up (nominal weight)
or down (infinite weight); the time between failures and failure du-
ration are controlled by the four-state stochastic model shown in
Figure 3. In our simulation, we used two different sets of model
parameters: a Standard set in which a link fails about once a day,
and comes back up in about an hour, and the Flapping set in which
links are less likely to fail, but more likely to fail repeatedly (flap);
Table 3 gives the precise model parameters.

Both the Standard model and Flapping model are more aggres-
sive that what might be expected of a real network [13, 30]. We
wanted to stress the routing algorithms under the kinds of condi-

tions where routing algorithm efficiency matters greatly, namely
where many links are unstable (Standard model) or only some are
unstable but tend to oscillate (Flapping model).
Algorithm Parameters. The distance vector algorithm (dv) re-
quires a maximum distance bound (the so-called “infinity metric”)
to detect routing loops. For the simulations, this value was com-
puted by using a linear program to approximate the cost of the
longest path. The XL routing algorithm (xl) has an error parame-
ter ε that determines the stretch. In the experiments, we simulated
xl with ε = 0.0 and ε = 0.5, corresponding to no stretch and a
maximum stretch of 1.5. Increasing ε beyond 0.5 did not appear to
significantly reduce the number of updates generated by the algo-
rithm beyond the ε = 0.5 level.

6.2 Performance
In this section we evaluate our first two claims: that compared to

existing routing algorithms, the XL algorithm uses fewer updates to
achieve comparable performance. We simulated each routing algo-
rithm on the synthetic and measured topologies. Each combination
of algorithm, network and link event model (Standard or Flapping)
was simulated 10 times and averaged in reporting results. For each
combination, the 10 simulations differed only in the link events.
Total Communication. Table 4 shows the average number of mes-
sages sent during the simulation relative to ls, the link state algo-
rithm, which provides a convenient baseline for comparison.

Referring to the table, the most erratic performer was dv, which
was highly sensitive to topology: it did extremely well on networks
such as QUAD 16 × 16 with many equal-cost paths and poorly
on networks with long cycles that trigger its “counting-to-infinity”
behavior. As expected, both dv+p and lv performed similarly: they
routinely did better than ls but could not take advantage of the
multiple equal-cost paths in QUAD networks as well as dv did.

The XL algorithm performed consistently well on all networks.
Like dv, it was able to take advantage of path redundancy in the
QUAD synthetic network. It also did well on “leafy” networks like
FUEL1221, where CVP played a major role in reducing communi-
cation.

We note that XL algorithm performed particularly well in the
flapping model. Why is this? The reason is that the XL algorithm

p0 p1 λ−1
0 λ−1

1 µ0 σ0 µ1 σ1

Standard 0.25 0.10 1 d 1 h 1 m 10 s 1 m 10 s
Flapping 0.25 1.00 2 d 10 s 10 s 1 s 10 s 1 s

Table 3: Parameters used to generate link events according to the generator link
event model described in Section 5.1. Mean time-to-failure is controlled by the λ−1

0
parameter and the probability of a repeat failure by the p1 parameter. Units: d – days,
h – hours, m – minutes, s – seconds.

Standard model Flapping model

dv dv+p lv xl dv dv+p lv xl

CROWN 64 3.13 1.11 1.10 0.64 0.41 0.85 0.82 0.82 0.45 0.11
H. 16× 16 0.95 0.69 0.65 0.31 0.18 0.28 0.65 0.60 0.20 0.06
Q. 16× 16 0.12 0.40 0.39 0.14 0.10 0.06 0.38 0.37 0.07 0.04
ABILENE 0.82 0.71 0.71 0.50 0.43 0.88 0.79 0.79 0.47 0.33
ARPANET 2.33 1.02 1.02 0.47 0.40 1.80 1.00 0.99 0.36 0.24
FUEL1221 7.90 0.63 0.62 0.14 0.10 7.05 0.61 0.60 0.12 0.05
FUEL1239 5.01 0.25 0.26 0.17 0.09 1.21 0.25 0.25 0.14 0.04
F. 1221C 0.79 0.45 0.46 0.34 0.22 0.39 0.42 0.42 0.27 0.11
F. 1239C 0.99 0.25 0.25 0.19 0.09 0.21 0.24 0.24 0.14 0.04

Table 4: Average number of messages after initialization, relative to ls (average of
10 simulation runs). The xl columns shows values for algorithm parameters ε = 0.0
(first value) and ε = 0.5 (second value).

Standard model Flapping model

dv dv+p lv xl dv dv+p lv xl

CROWN 64 3.41 1.07 1.06 0.68 0.46 1.09 0.79 0.78 0.49 0.17
H. 16× 16 1.09 0.73 0.68 0.35 0.23 0.42 0.71 0.64 0.24 0.09
Q. 16× 16 0.16 0.45 0.43 0.18 0.14 0.12 0.44 0.42 0.10 0.07
ABILENE 0.97 0.77 0.77 0.64 0.55 0.98 0.83 0.83 0.55 0.46
ARPANET 2.28 0.91 0.89 0.51 0.45 1.86 0.89 0.87 0.39 0.28
FUEL1221 7.32 0.46 0.46 0.12 0.09 6.56 0.44 0.43 0.10 0.05
FUEL1239 4.85 0.23 0.23 0.20 0.11 1.16 0.21 0.21 0.16 0.05
F. 1221C 0.74 0.38 0.38 0.37 0.26 0.34 0.35 0.36 0.30 0.16
F. 1239C 0.95 0.22 0.22 0.22 0.11 0.20 0.22 0.21 0.17 0.05

Table 5: Average (over 10 simulations) of the maximum number of messages gen-
erated by any one node, relative to ls. The xl columns shows values for algorithm
parameters ε = 0.0 (first value) and ε = 0.5 (second value).

tends to move away from flapping links: The the first time a link
fails, an update is sent to all nodes in whose shortest-path tree it
appears, that is, nodes that used the link to reach some destination.
When the same link comes back up, many of the nodes which used
it keep their current path because it is only slightly worse than the
previous path which used the link. As a result, fewer nodes now
have the link in the shortest-path tree, so that when it fails again,
they are not affected. Thus, after the first failure, the effects of the
link are generally limited to a small neighborhood around the link
where the link is a significant fraction of path costs.
Per-Node Communication. Table 5 shows the maximum number
of messages generated by any single node during the simulation,
relative to ls. In contrast to the total communication, this number
shows the maximum load placed on an individual node rather than
the network as a whole. Although it is does not show short-term
load on a node, it does show whether a routing algorithm spreads
the communication costs evenly across the network or whether it
creates bottleneck routers.

These results do not differ markedly from the total communica-
tion results shown in Table 4, indicating that none of the algorithms
loaded any one node significantly more heavily than the link-state
algorithm, in which the number of messages sent by a node is pro-
portional to its degree.
Stretch. In addition to counting the number of messages, we per-
formed additional analysis as described in in Section 5. The first
quantity we consider is stretch; recall that stretch is the ratio of the
forwarding cost to optimal cost between a pair of nodes. Because
stretch is an instantaneous measure for each pair, it is not an easy
value to summarize for an entire simulation. We use the top stretch
centile for each pair. By the top centile, we mean the lowest up-
per bound for 99% of the simulation duration. In other words, a
pair’s stretch is at most the top centile value 99% of the time. In
Table 6 we report the median, average and maximum top centile
stretch over all pairs for xl with parameter ε = 0.5, corresponding
to maximum allowed stretch of 1.5. For all other algorithms, in-
cluding xl with ε = 0.0, the maximum top centile stretch was zero
as expected, and is not shown.

Clearly, while the stretch approaches the maximum 1.5 for some
source-destination pairs, the average stretch is quite good, in all
cases at most 5% optimal. In fact, since the median is 1.00, for the
majority of nodes the forwarding path is optimal. By just allowing
the XL algorithm to choose sub-optimal paths we were able to get
the reduction in communication complexity while paying only a
fraction of the allowed 50% penalty.
Convergence. Finally, we consider the convergence time of the
XL routing algorithm. By “convergence time” we mean the time it
takes a routing algorithm to establish a desirable (e.g., sound, com-
plete) forwarding configuration. In essence, it combines the time

Standard model Flapping model

Med Avg Max Med Avg Max

CROWN 64 1.00 1.02 1.43 1.00 1.01 1.39
H. 16× 16 1.00 1.05 1.45 1.00 1.02 1.44
Q. 16× 16 1.00 1.02 1.43 1.00 1.01 1.40
ABILENE 1.00 1.01 1.22 1.00 1.01 1.18
ARPANET 1.00 1.02 1.45 1.00 1.01 1.41
FUEL1221 1.00 1.01 1.34 1.00 1.01 1.33
FUEL1239 1.00 1.04 1.41 1.00 1.02 1.41
FUEL1221C 1.00 1.02 1.35 1.00 1.01 1.33
FUEL1239C 1.00 1.04 1.42 1.00 1.02 1.41

Table 6: Top centile stretch for xl with parameter ε = 0.5. The median, average,
and maximum of the top centile were taken over all source-destination pairs; a pair’s
instantaneous stretch is at most its top centile value 99% of the time.

Standard model Flapping model

dv dv+p lv xl dv dv+p lv xl

CROWN 64 4.08 0.00 0.00 1.04 0.88 9.28 0.00 0.00 1.17 0.66
H. 16× 16 17.19 0.00 0.00 0.99 0.88 1.49 0.00 0.00 0.90 0.80
Q. 16× 16 5.96 0.00 0.00 1.00 0.98 1.24 0.00 0.00 1.16 1.03
ABILENE 2.27 0.00 0.00 0.79 0.87 1.83 0.00 0.00 0.93 0.98
ARPANET 3.12 0.00 0.00 0.91 0.82 2.86 0.00 0.00 0.94 0.82
FUEL1221 74.23 0.00 0.00 0.79 0.79 46.01 0.00 0.00 0.79 0.81
FUEL1239 85.64 0.00 0.00 0.92 0.87 24.87 0.00 0.00 0.95 0.85
F. 1221C 10.80 0.00 0.00 0.87 0.85 2.60 0.00 0.00 0.96 0.95
F. 1239C 25.12 0.00 0.00 0.95 0.86 2.24 0.00 0.00 0.99 0.85

Table 7: Forwarding loop duration maximum over all source-destination pairs, relative
to ls. The forwarding loop duration for a pair of nodes u and w is the duration of
time φ(u,w) was infinite.

Standard model Flapping model

dv dv+p lv xl dv dv+p lv xl

CROWN 64 2.58 2.74 2.73 1.54 1.74 5.29 5.44 5.37 1.45 1.41
H. 16× 16 1.19 3.08 2.46 1.10 1.09 1.30 4.85 3.12 1.02 0.93
Q. 16× 16 1.10 2.54 2.00 1.03 1.03 1.02 2.92 2.12 0.99 0.99
ABILENE 1.25 1.41 1.41 1.05 1.14 1.36 1.55 1.56 1.01 1.02
ARPANET 1.29 1.41 1.34 0.95 0.94 1.20 1.48 1.46 0.96 0.89
FUEL1221 1.04 1.15 1.09 0.60 0.63 1.06 1.16 1.14 0.52 0.52
FUEL1239 1.15 1.44 1.36 0.75 0.76 1.04 1.24 1.22 0.74 0.70
F. 1221C 1.16 1.38 1.36 1.03 1.09 1.33 1.62 1.41 1.00 0.98
F. 1239C 1.54 1.76 1.57 1.05 1.03 1.50 1.70 1.63 1.01 0.93

Table 8: Maximum duration of infinite forwarding-to-optimal distance ratio relative to
ls. The maximum is taken over all source-destination pairs. The infinite forwarding
to optimal distance ratio duration for a pair of nodes u and w is the duration of time
when ‖φ(u,w)‖ was infinite but δ(u,w) was not.

it takes a routing algorithm to re-establish a sound (or loop-free)
configuration after a link failure and the time it takes the algorithm
to start using a lower-cost path when it becomes available.

The analyzer program does not measure convergence time di-
rectly; instead, it measures the duration of forwarding loops and
the time to establish a new forwarding path when a node becomes
reachable. The former is reported in Table 7 as the maximum, over
all source-destination pairs, of the combined duration of forward-
ing loops. The time to establish a new forwarding path is reported
in Table 8 as the maximum, over all source-destination pairs, of the
total time the forwarding distance was infinite while the optimal
distance was not. In both tables, results are shown relative to ls.

It comes as no surprise that the generic distance vector algorithm
has a problem with long-lasting loops. In contrast, loops in dv+p
and lv are extremely rare and short-lived because, although it is not
guaranteed loop-free at all times, its policy for accepting a next hop
are fairly conservative. The same “reluctance” to accept a new path

200 300 400 500 600 700 800
network size

0.2

0.4

0.6

0.8

1

1.2

1.4
re

la
tiv

e
pe

rf
or

m
an

ce
Standard model

200 300 400 500 600 700 800
network size

0.2

0.4

0.6

0.8

1

1.2

1.4

re
la

tiv
e

pe
rf

or
m

an
ce

Flapping model

lsdv+p xl 0.0 xl 0.5

Figure 5: Number of messages as a function of network size for the ORB family of
networks; values normalized by number of edges in the graph. Both dv+p and lv
performed similarly (within 5%); only dv+p is shown. The distance vector algorithm
was omitted because its communication exceeded the other algorithms by a factor of
5 in the Standard model and nearly an order of magnitude on the Flapping model.

is also responsible for the longer time to establish a new forwarding
path, although lv seemed to have slightly faster convergence.

With the exception of the CROWN network, xl had slightly better
convergence times than ls. This is because xl changes its next hop
to a destination only if it is much better than the current next hop,
thus updating the forwarding table less often and avoiding short-
term loops or unreachable configurations. On the other hand, the
time to accept a new forwarding path is generally longer than ls
because xl has less information about the network, so that when a
link fails, it may be necessary for the link failure update to prop-
agate before a bypass route is advertised. CVP partially remedies
this the situation because when a cut edge comes up, only the cor-
responding cut vertices need to be updated to restore the path.

6.3 Scalability
To evaluate the scalability of the XL routing algorithm relative

to existing algorithms, we simulated each algorithm on families of
networks of increasing size: the HONEY synthetic network family
and the ORB re-scaled network family described earlier. Each com-
bination of algorithm, network, and link event model (Standard and
Flapping) was simulated 5 times and averaged in reporting results.
Figure 5 shows algorithm communication as a function of network
size for the ORB family of networks. Except for dv, results on syn-
thetic networks was similar; dv performance was highly variable
from one family to another.

As the network size increases, xl maintains its good relative per-
formance. As with other algorithms, however, the routing com-
munication load still grows linearly with the size of the network.

This is because a link failure still triggers partial flooding to nodes
whose shortest-path tree included the failed link, and roughly half
of all simulation events are link failures. In a connected network,
a node’s shortest-path tree contains n− 1 nodes, so the probability
of a node being affected by a link failure is (n − 1)/m, and thus
the expected number of nodes affected by a random link failure is
about n2/m. This means that in a network such as the Internet
where m/n is small, a random link failure will be propagated to a
constant fraction of the nodes.

7. OSPF WITH XL
This section is motivated by the observation that the XL rout-

ing algorithm and the standard link-state algorithm are inherently
compatible. This is because flooding satisfies Conditions S1, S2,
and C1, so it is possible to mix instances of XL and the standard
link-state algorithm. In this section, we sketch how the routing
algorithm used with the OSPF Version 2 protocol [24] can be mod-
ified to take advantage XL’s update suppression mechanism, while
still remaining compatible with the original OSPF. In other words,
routers running the modified algorithm, which we call OSPF/XL,
can inter-operate in a mixed-deployment scenario with those run-
ning the standard OSPF algorithm. We emphasize, however, that
we have not implemented these modifications and that all our eval-
uations are based on simulation at this point. We leave implement-
ing OSPF/XL to future work, although we do not believe it should
be too challenging.

Recall that in the XL algorithm the state of the network consists
of the internal and external views. The internal view already ex-
ists in OSPF as the link-state table. External views, however, have
no OSPF analog. To save memory, we suggest that external views
should not be materialized, rather, they can be represented as differ-
ences from the internal view. Since a node’s internal and external
views will typically contain a lot of the same information, we de
no expect the additional memory required for external views to be
significant.

The second modification to OSPF is in the way updates are pro-
cessed. Upon receiving an update, a node records it in the external
view of its incoming interface. If the update has newer informa-
tion than in the internal view, the internal view is updated as well.
Next, the main shortest-path tree is re-computed from the internal
view. Algorithm 1 is then used to update other external views and
determine to which interfaces the update should be propagated. Pe-
riodically, not necessarily after each update, the main shortest-path
tree is used to update the forwarding table.

Finally, the proxy minimum distanceDu(w) used in Algorithm 1
will need to be approximated. The easiest way to do this is for each
node to simply keep a record of the smallest distance to each desti-
nation observed during some period of time, say 1 day, and use this
value instead. We believe that such an approximation is adequate
in all but the worst pathological cases.

Overall, OSPF/XL requires only modest changes to the stan-
dard OSPF in order to take advantage of our update suppression
mechanism. Moreover, the benefits of XL can be realized even in
a mixed environment where only some of the routers implement
OSPF/XL—incentivizing incremental deployment.

8. CONCLUSION
We have presented the XL routing algorithm, a new link-state

routing algorithm specifically designed to minimize network com-
munication. XL works by propagating only some of the link-state
updates it receives, thereby reducing the frequency of routing up-
dates in the network. We also formally proved the correctness of

XL and validated our performance claims in simulation. In partic-
ular, our simulation showed that with a small penalty in stretch, our
algorithm dramatically reduced the number of updates needing to
be communicated and processed.

However, in allowing the routing algorithm to choose slightly
sub-optimal routes, the network operator also cedes some degree
of control. In particular, traffic engineering via link costs is harder
since current traffic forwarding will be determined, in part, by past
link costs. Fortunately, it is easy to augment our algorithm to
“flush” all suppressed updates periodically, causing it to propagate
and use exact routing information. In fact, the approximation pa-
rameter ε can be adjusted dynamically in response to load. By set-
ting ε = 0 locally under normal conditions and and ε = 0.5 under
load or in the presence of flapping, the network can achieve the best
of both worlds: deterministic routing in normal circumstances, ap-
proximate routing under heavy load.

Finally, we also believe that there may be significant opportu-
nities to improve the efficiency of link state routing even further.
In particular, recall that the XL routing algorithm propagates all
link cost increase updates, meaning that, on average, it will prop-
agate half of all updates that affect it. It is natural to ask whether
this is strictly necessary, or whether a superior algorithm—one that
selectively suppresses link failures—can scale sub-linearly for typ-
ical networks. Whether such an algorithm exists and can guarantee
soundness and correctness remains an open problem that we hope
to address in future work.

9. ACKNOWLEDGEMENTS
This research was supported in part by National Science Founda-

tion grants NSF-0433668 (CCIED) and EIA-0303622 (FWGrid).

10. REFERENCES
[1] Abilene interior-routing metrics.

http://noc.net.internet2.edu, March 2006.
[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.

Resilient overlay networks. In Proceedings of the 18th
Symposium on Operating Systems Principles, pages
131–145, 2001.

[3] J. Behrens and J. J. Garcia-Lunes-Aceves. Distributed,
scalable routing based on link-state vectors. In Proceedings
of the ACM SIGCOMM Conference, pages 136–147, 1994.

[4] C. Cheng, R. Riley, S. P. R. Kumar, and J. J.
Garcia-Lunes-Aceves. A loop-free extended Bellman-Ford
routing protocol without bouncing effect. ACM SIGCOMM
Computer Communication Review, 19(4):224–236,
September 1989.

[5] Cisco Systems. Introduction to EIGRP. Document ID 13669.
[6] Cisco Systems. OSPF Design Guide. Document ID 7039.
[7] T. H. Clausen and P. Jacquet. RFC 3626: Optimized Link

State Routing protocol (OLSR), October 2003.
[8] V. Fayet, D. A. Khotimsky, and T. Przygienda. Hop-by-hop

routing with node-dependent topology information. In
Proceedings of The Eighteenth INFOCOM Conference,
pages 79–87, 1999.

[9] D. Fedyk and P. Bottorff. Provider link state bridging
(PLSB). IEEE Draft, 2007.

[10] J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing
computations. Transactions on Networking, 1(1):130–141,
Feb 1993.

[11] F. E. Heart, A. McKenzie, J. M. McQuillan, and D. C.
Walden. ARPANET completion report. Technical Report
4799, Bolt, Baranek and Newman, 1978.

[12] P. A. Humblet. Another adaptive distributed shortest path
algorithm. IEEE Transactions on Communications,
39(6):995–1003, June 1991.

[13] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and
C. Diot. Analysis of link failures in an IP backbone. In
Proceedings of the Second Internet Measurement Workshop,
pages 237–242, 2002.

[14] IEEE 802.11s draft standard, 2007.
[15] K. Ishiguro, V. Manral, A. Davey, and A. Lindem. Traffic

engineering extensions to OSPF version 3. IETF Draft, 2007.
[16] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen.

Scalable routing strategies for ad hoc wireless networks.
IEEE Journal on Selected Areas in Communication,
17(8):1369–1379, August 1999.

[17] J. M. Jaffe and F. H. Moss. A responsive distributed routing
algorithm for computer networks. IEEE Transactions on
Communications, COM-30(7):1758–1762, July 1982.

[18] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat.
Systematic topology analysis and generation using degree
correlations. In Proc. of the 2006 ACM SIGCOMM
Conference, pages 135–146, 2006.

[19] R. Mahajan, N. Spring, D. Wetherall, and T. Anderston.
Inferring link weights using end-to-end measurements. In
Proceedings of 2nd Internet Measurement Workshop, pages
231–236, 2002.

[20] G. Malkin. RFC 2453: RIP version 2, 1998.
[21] J. M. McQuillan, G. Falk, and I. Richer. A review of the

development and performance of the ARPANET routing
algorithm. IEEE Transactions on Communications,
COM-26(12):1802–1811, Dec 1978.

[22] J. M. McQuillan, I. Richer, and E. C. Rosen. The new
routing algorithm for the ARPANET. IEEE Transactions on
Communications, 28(5):711–719, May 1980.

[23] P. M. Merlin and A. Segall. A failsafe distributed routing
protocol. IEEE Transactions on Communications,
COM-27(9):1280–1287, September 1979.

[24] J. Moy. RFC 2328: OSPF version 2, 1998.
[25] Y. Ohara, M. Bhatia, N. Osamu, and J. Murai. Route

Flapping Effects on OSPF. In Proceedings of the 2003
Symposium on Applications and the Internet Workshops,
2003.

[26] V. D. Park and M. S. Corson. A performance comparison of
the temporally-ordered routing algorithm and ideal link-state
routing. In Proceedings of the 3rd IEEE Symposium on
Computers and Communications, pages 592–598, 1998.

[27] P. Pillay-Esnault. OSPF Refresh and Flooding Reduction in
Stable Topologies. RFC 4136, 2005.

[28] B. Rajagopalan and M. Faiman. A new responsive
distributed shortest-path routing algorithm. In Proceedings of
the ACM SIGCOMM Conference, pages 237–246, 1989.

[29] S. B. Seidman. Network structure and minimum degree.
Social Networks, 5(3):269–287, September 1983.

[30] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and
J. Gottlieb. A case study of OSPF behavior in a large
enterprise network. In Proceedings of the 2nd Workshop on
Internet Measurement, pages 217–230, 2002.

[31] M. Thorup. OSPF Areas Considered Harmful. Private paper,
Apr 2003.

[32] A. Zinin and M. Shand. Flooding Optimizations in
Link-state Routing Protocols. IETF Draft, 2000.

APPENDIX
The appendix consists of proofs omitted in the body of the paper.

Lemma 2. After executing Algorithm 1 the external view Tuv sat-
isfies the View Invariant V1 and Constraints S1, S2, and C1.

Proof. By inspection, for every edge (x, y), Tuv(x, y) is assigned
either Tuv(x, y) or T ∗uv(x, y). Therefore, the view invariant holds
by Lemma 1.

Now consider the loop in lines 1 through 9; we claim that after it
is executed, Tuv satisfies Constraints S1 and S2. It is easy to verify
that lines 3–5 ensure S1 holds. Also, if fu(w) = v for some w and
(x, y) is an edge in πu(u,w), then fu(y) = v also. This implies
the assignment on line 7 was executed and euv(x, y) = eu(x, y)
as required.

In lines 10 through 14 the algorithm updates edges to satisfy
Constraint C1. We claim that the resulting external view indeed
satisfies Constraint C1. First, note that after lines 1 through 9, the
distance duv(w) cannot increase, because euv(x, y) ≥ eu(x, y)
per Constraint S1. Now consider, toward a contradiction, a node w
such that duv(w) > (1 + εu(w))Du(w) and duv(w) 6= du(w).
The latter implies that there must be an edge (x, y) in πu(u,w)
where eu(x, y) < euv(x, y). But then line 12 would have been
executed for edge (x, y), and euv(x, y) = eu(x, y), a contradic-
tion.

Lemma 3. Fix a time t > ∆. If φt(u,w) is a non-empty path that
is both quiet during time interval [t−∆, t] and coherent at time t,
then φt(u,w) is a finite path from u to w and

‖φt(u,w)‖t ≤ dtu(w).

Proof. Consider the state of the network at the fixed time t. For
notational simplicity, we will omit the temporal superscript t. To
prove the lemma, we first show that φ(u,w) is finite, and then show
that its last element is w. We then use this fact to prove the bound.
We start with two observations.
Observation 1 At time t the path φ(u,w) has been quiet for dura-
tion at least ∆, so the update algorithm has been executed at least
once by each node along the path φ(u,w) during the quiet interval
[t−∆, t]. By Equation 7, ex(x, y) = e(x, y) for each edge (x, y)
in φ(u,w).
Observation 2 The distance estimate du(w) must be finite; other-
wise fu(w) = NONE, implying φ(u,w) is the empty path.

To show that φ(u,w) is finite, it is sufficient to show that the
estimated distance dz(w) decreases by an edge cost at each node
along the path φ(u,w). Without loss of generality, consider the
first edge (u, fu(w)). Let v = fu(w) and let πu(u,w) = uvα,
where α is some sub-path. Then:

du(w) = eu(u, v) + ‖vα‖u
= e(u, v) + ‖vα‖u by Obs. 1
= e(u, v) + ‖vα‖uv by Constr. S2
= e(u, v) + ‖vα‖vu by Coherence
≥ e(u, v) + ‖vα‖v by Constr. S1
≥ e(u, v) + ‖πv(v, w)‖v by opt. of πv(v, w)

= e(u, v) + dv(w). (?)

Thus φ(u,w) is finite. Now let w′ be the last node in φ(u,w). We
claim that dw′(w) = 0 and therefore w′ = w. By Observation 2,
dw′(w) ≤ du(w) < ∞. But if dw′(w) 6= 0 then by definition
fw′(w) 6= NONE, contradicting w′ being the last node.

It remains to show that ‖φ(u,w)‖ ≤ du(w). The proof is by
induction on the length of φ(u,w). The base case is length 1 which
implies

‖φ(u,w)‖ = e(u,w) = eu(u,w) = du(w),

as desired. Now consider φ(u,w) and assume ‖φ(v, w)‖ ≤ dv(w)
where v = fu(w). Continuing from (?),

du(w) ≥ e(u, v) + dv(w)

≥ e(u, v) + ‖φ(v, w)‖
= ‖φ(u,w)‖.

Lemma 4. Fix a time t > ∆. Let β be a path from u to w. If β is
(i) quiet during [t−∆, t], and (ii) coherent at time t, then

dtu(w) ≤ (1 + ε)‖β‖t,

where ε = maxx∈β εx(w).

Proof. As in the proof of Lemma 3, consider the state of the net-
work at the fixed time t. For notational simplicity, we will omit the
temporal superscript t. Also as in that proof, we claim ex(x, y) =
e(x, y) for each edge (x, y) in β.

The proof of this lemma is by induction on the length of β. If β
is the empty path, then u = w and we’re done. Now let β = uvα
for some path alpha, and assume dv(w) ≤ (1 + ε)‖vα‖. Then,
using Coherence in step (?):

du(w) ≤ eu(u, v) + ‖πu(v, w)‖u
= e(u, v) + ‖πu(v, w)‖u
≤ e(u, v) + ‖πu(v, w)‖uv
≤ e(u, v) + ‖πuv(v, w)‖uv
= e(u, v) + ‖πvu(v, w)‖vu (?)

= e(u, v) + dvu(w)

≤ e(u, v) + max
˘

(1 + εv(w))Dv(w), dv(w)
¯

≤ e(u, v) + max
˘

(1 + ε)Dv(w), dv(w)
¯

≤ e(u, v) + max
˘

(1 + ε)‖vα‖, dv(w)
¯

≤ e(u, v) + max
˘

(1 + ε)‖vα‖, (1 + ε)‖vα‖
¯

≤ e(u, v) + (1 + ε)‖vα‖
≤ (1 + ε)‖β‖.

Lemma 5. If a network becomes quiet at some time t, then after a
finite period of time it also becomes coherent.

Proof. Divide the time line after t into epochs of duration ∆. We
claim that if none of the views change during an epoch, then they
will not change in subsequent epochs and the network is coherent.
This is because the Update algorithm is a deterministic function of
the views and edge weights, with the property that if the internal
view and edge weights do not change, then the current time input
is ignored (by Equation 7). Furthermore, from by Equations 6, 7,
and 8 it follows that if the external views don’t change, then they
must be coherent.

Since an edge datum is only injected into the network in Phase I
when an edge cost changes, no new edge data are injected after time
t. Each view update consists of some number of edge datum values
being updated to more recent values from another view. Since there
is a fixed number of internal and external views in the network, each
view can only be updated finitely many times. It follows that the
network can only change a finite number of times after time t. But
since the network must change each epoch as shown above, it will
stop changing and become coherent in a finite period of time.

