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Abstract pathogens can be created and launched, further Internet
catastrophes are inevitable in the near future.

In this paper, we propose a new approach for de- . .
signing distributed systems to survive Internet catastro- Defending hosts and the systems that run on them is

phes called informed replication, and demonstrate thié(:r:)?\rsei?ezfaglgrzlat;f(:earlltli[z)rr?brlggh ;’;Imd Xnerégfhzzg‘stéeg;\éﬁg
approach with the design and evaluation of a coopera* Y- APP

tive backup system called the Phoenix Recovery Service"’.IgainSt Internet pathogens generally fall into three cate-

Informed replication uses a model of correlated failures3°"1€S- Preventionreduces the size of the vulnerable host
to exploit software diversity. The key observation that pop_ulanon [38, 41.’ 42]. Treatment reduces t.he rate of in-

makes our approach both feasible and practical is that Inte]f:t'c;.n [9, 33]. F|r1_all¥, contgmr‘gent t;Chn'th’esth?Ckf
ternet catastrophes result from shared vulnerabilitigs. B infectious communication and reduce the contact rate o

replicating a system service on hosts that do not have th spreading pathogen [28’_44’ 45]. .

same vulnerabilities, an Internet pathogen that exploits a_SUCh approaches can mitigate the impact of an Internet
vulnerability is unlikely to cause all replicas to fail. To catastrophe, reducing the number of vulnerable and com-
characterize software diversity in an Internet setting, weP"omised hosts. However, they are unlikely to protect all

measure the software diversity of host operating system¥ulnerable hosts or entirely prevent future epidemics and
and network services in a large organization. We ther|!Sk Of catastrophes. For example, fast-scanning worms

use insights from our measurement study to develop ant€ Sapphire can quickly probe most hosts on the Inter-
evaluate heuristics for computing replica sets that hav&®t: making it challenging for worm defenses to detect
a number of attractive features. Our heuristics providg?"d react to them at Internet scale [28]. The recent Witty
excellent reliability guarantees, result in low degree of WOrm embodies a so-callezero-day worm exploiting

replication, limit the storage burden on each host in the? Vulnerability very soon after patches were announced.
system, and lend themselves to a fully distributed im-Such pathogens make it increasingly difficult for organi-

plementation. We then present the design and prototypéations to patch vulnerabilities before a catastrophe oc-
curs. As a result, we argue that defenses are necessary,

implementation of Phoenix, and evaluate it on the Plan- o _ . >
etLab testbed. but not sufficient, for entirely protecting distributed sys

tems and data on Internet hosts from catastrophes.

In this paper, we propose a new approach for design-

1 Introduction ing distributed systems to survive Internet catastrophes

called informed replication. The key observation that
The Internet today is highly vulnerable to Internet epi- makes informed replication both feasible and practical
demics: events in which a particularly virulent Inter- is that Internet epidemics exploit shared vulnerabilities
net pathogen, such as a worm or email virus, comproBY replicating a system service on hosts that do not have
mises a large number of hosts. Starting with the Coddhe same vulnerabilities, a pathogen that exploits one or
Red worm in 2001, which infected over 360,000 hostsmore vulnerabilities cannot cause all replicas to fail. For
in 14 hours [27], such pathogens have become increagxample, to prevent a distributed system from failing due
ingly virulent in terms of speed, extent, and sophis-to a pathogen that exploits vulnerabilities in Web servers,
tication. Sapphire scanned most IP addresses in leghe system can place replicas on hosts running different
than 10 minutes [25], Nimda reportedly infected mil- Web server software.
lions of hosts, and Witty exploited vulnerabilities in fire-  The software of every system inherently is a shared
wall software explicitly designed to defend hosts from vulnerability that represents a risk to using the system,
such pathogens [26]. We call such epidemioter-  and systems designed to use informed replication are no
net catastrophebecause they result in extensive wide- different. Substantial effort has gone into making sys-
spread damage costing billions of dollars [27]. Suchtems themselves more secure, and our design approach
damage ranges from overwhelming networks with epi-can certainly benefit from this effort. However, with the
demic traffic [25, 27], to providing zombies for spam re- dramatic rise of worm epidemics, such systems are now
lays [30] and denial of service attacks [35], to deletingincreasingly at risk to large-scale failures due to vulner-
disk blocks [26]. Given the current ease with which suchabilities in unrelatedsoftware running on the host. In-



formed replication reduces this new source of risk. The rest of this paper is organized as follows. Sec-
This paper makes four contributions. First, we develoption 2 discusses related work. Section 3 describes our
a system model using thmre abstraction [15] to repre- system model for representing correlated failures. Sec-
sent failure correlation in distributed systems. A core istion 4 describes our measurement study of the soft-
a reliable minimal subset of components such that thevare diversity of hosts in a large network, and Sec-
probability of having all hosts in a core failing is negli- tion 5 describes and evaluates heuristics for computing
gible. To reason about the correlation of failures amonggores. Section 6 describes the design and implementa-
hosts, we associattributeswith hosts. Attributes rep- tion of Phoenix, and Section 7 describes the evaluation
resent characteristics of the host that can make it pronef Phoenix. Finally, Section 8 concludes.
to failure, such as its operating system and network ser-
vices. Since hosts often have many characteristics that
make it vulnerable to failure, we group host attributes to-2 ~ Related work
gether intaconfigurationgo represent the set of vulnera-
bilities for a host. A system can use the configurations oMost distributed systems are not designed such that fail-
all hosts in the system to determine how many replicasires are independent, and there has been recent inter-
are needed, and on which hosts those replicas should test in protocols for systems where failures are corre-
placed, to survive a worm epidemic. lated. Quorum-based protocols, which implement repli-
Second, the efficiency of informed replication funda- cated update by reading and writing overlapping sub-
mentally depends upon the degree of software diversitgets of replicas, are easily adapted to correlated fail-
among the hosts in the system, as more homogeneowges. A model of dependent failures was introduced for
host populations result in a larger storage burden for parByzantine-tolerant quorum systems [23]. This model,
ticular hosts. To evaluate the degree of software hetcalled afail-prone systemis a dual representation of the
erogeneity found in an Internet setting, we measure anghodel coreg that we use here. Our model was devel-
characterize the diversity of the operating systems an@ped as part of a study of lower bounds and optimal pro-
network services of hosts in the UCSD network. Thetocols for Consensus in environments where failures can
operating system is important because it is the primaryoe correlated [15].
attribute differentiating hosts, and network services rep  The ability of Internet pathogens to spread through a
resent the targets for exploit by worms. The results ofvulnerable host population on the network fundamentally
this study indicate that such networks have sufficient di-depends on three properties of the network: the number
versity to make informed replication feasible. of susceptible hosts that could be infected, the number of
Third, we develop heuristics for computing cores thatinfected hosts actively spreading the pathogen, and the
have a number of attractive features. They provide excontact rate at which the pathogen spreads. Various ap-
cellent reliability guarantees, ensuring that user data su proaches have been developed for defending against such
vives attacks of single- and double-exploit pathogenspidemics that address each of these properties.
with probability greater thafi.99. They have low over- Prevention techniques, such as patching [24, 38, 42]
head, requiring fewer than 3 copies to cope with single-and overflow guarding [7, 41], prevent pathogens from
exploit pathogens, and fewer than 5 copies to cope witrexploiting vulnerabilities, thereby reducing the size of
double-exploit pathogens. They bound the number othe vulnerable host population and limiting the extent of
replica copies stored by any host, limiting the storagea worm outbreak. However, these approaches have the
burden on any single host. Finally, the heuristics lendtraditional limitations of ensuring soundness and com-
themselves to a fully distributed implementation for scal-pleteness, or leave windows of vulnerability due to the
ability. Any host can determine its replica set (its core)time required to develop, test, and deploy.
by contacting a constant number of other hosts in the sys- Treatment techniques, such as disinfection [6, 9] and
tem, independent of system size. vaccination [33], remove software vulnerabilities after
Finally, to demonstrate the feasibility and utility of they have been exploited and reduce the rate of infec-
our approach, we apply informed replication to the de-tion as hosts are treated. However, such technigues are
sign and implementation of Phoenix. Phoenix is a coop{eactive in nature and hosts still become infected.
erative, distributed remote backup system that protects Containment techniques, such as throttling [21, 44]
stored data against Internet catastrophes that cause datad filtering [28, 39], block infectious communication
loss [26]. The usage model of Phoenix is straightfor-between infected and uninfected hosts, thereby reduc-
ward: users specify an amouhtof bytes of their disk  ing or potentially halting the contact rate of a spreading
space for management by the system, and the system prpathogen. The efficacy of reactive containment funda-
tects a proportional amouiit/ k of their data using stor- mentally depends upon the ability to quickly detect a new
age provided by other hosts, for some valuecofWe  pathogen [19, 29, 37, 46], characterize it to create filters
implement Phoenix as a service layered on the Pastrgpecific to infectious traffic [10, 16, 17, 34], and deploy
DHT [32] in the Macedon framework [31], and evaluate such filters in the network [22, 40]. Unfortunately, con-
its ability to survive emulated catastrophes on the Plantainment at Internet scales is challenging, requiringtshor
etLab testbed. reaction times and extensive deployment [28, 45]. Again,



since containment is inherently reactive, some hosts alwhere the failures ofi; andh, are correlated whilé:s
ways become infected. fails independent of the other hosts.hlf fails, then the
Various approaches take advantage of software hetergrobability of h, failing is high. As a result, one might
geneity to make systems fault-tolerant. N-version pro-sett = 2 and thereby require+ 1 = 3 replicas. How-
gramming uses different implementations of the sameever, if we place replicas doy andhs, the object’s avail-
service to prevent correlated failures across implemenability may be acceptably high with just two replicas.
tations. Castro’s Byzantine fault tolerant NFS service To better address issues of optimal replication in the
(BFS) is one such example [4] and provides excellenface of correlated failures, we have defined an abstrac-
fault-tolerant guarantees, but requires multiple imple-tion that we call acore [15]. A core is a minimal set
mentations of every service. Scrambling the layout ancbf hosts such that, in any execution, at least one host
execution of code can introduce heterogeneity into dein the core does not fail. In the above example, both
ployed software [1]. However, such approaches canh;, h3} and{hs, h3} are cores{hy, ho} would not be
make debugging, troubleshooting, and maintaining softa core since the probability of both failing is too high and
ware considerably more challenging. In contrast, our ap<{h4, ho, h3} would not be a core since it is not minimal.
proach takes advantage of existing software diversity. Using this terminology, a central problem of informed
Lastly, Phoenix is just one of many proposed cooperareplication is the identification of cores based on the cor-
tive systems for providing archival and backup servicesrelation of failures.
For example, Intermemory [5] and Oceanstore [18] en- An Internet catastrophe causes hosts to fail in a corre-
able stored data to persist indefinitely on servers distated manner because all hosts running the targeted soft-
tributed across the Internet. As with Phoenix, Oceanstorgvare are vulnerable. Operating systems and Web servers
proposes mechanisms to cope with correlated failare examples of software commonly exploited by Inter-
ures [43]. The approach, however, is reactive and doefet pathogens [27, 36]. Hence we characterize a host’s
not enable recovery after Internet catastrophes. Witlyulnerabilities by the software they run. We associate
Pastiche [8], pStore [2], and CIBS [20], users relinquishwith each host a set aittributes where each attribute is a
a fraction of their computing resources to collectively canonical name of a software package or system that the
create a backup service. However, these systems targgbst runs; in Section 3.2 below, we discuss the tradeoffs
localized failures simply by storing replicas offsite. 8uc of representing software packages at different granulari-
systems provide similar functionality as Phoenix, but areties. We call the combined representation of all attributes
not designed to survive wide-spread correlated failuresf a host theconfigurationof the host. An example of a
of Internet catastrophes. Finally, Glacier is a systemconfiguration is{Windows, IIS, IE, whereWindowsis
specifically designed to survive highly correlated faikire g canonical name for an operating systdﬂ@ for a Web
like Internet catastrophes [11]. In contrast to Phoenixserver package, arlé for a Web browser. Agreeing on
Glacier assumes a very weak failure model and insteadanonical names for attribute values is essential to en-
copes with catastrophic failures via massive replicationsure that dependencies of host failures are appropriately
Phoenix relies upon a stronger failure model, but replicacaptured.
tion in Phoenix is modest in comparison. An Internet pathogen can be characterized by the set
of attributesA that it targets. Any host that has none
of the attributes in4 is not susceptible to the pathogen.
A core is a minimal seC of hosts such that, for each

, . athogen, there is a hoktin C that is not susceptible
As a first step toward the development of a technique t gen, ¢ P

i Int { catastrophes. in thi i 4 o the pathogen. Internet pathogens often target a sin-
cope with Internet catastropnes, in this section we (:E'I‘e (possibly cross-platform) vulnerability, and the ones

3 System model

scribe our system r_nodel for representing and reasoning, ¢ target multiple vulnerabilities target the same oper-
abqut correlated failures, and .d'SCl.JSS the granularity ting system. Assuming that any attribute is susceptible
which we represent software diversity. to attack, we can re-define a core using attributes: a core
is a minimal set”' of processes such that no attribute is
3.1 Representing correlated failures common to all hosts i, In Section 5.4, we relax this
assumption and show how to extend our results to toler-
Consider a system composed of a&edf hosts each of ate pathogens that can exploit multiple vulnerabilities.
which is capable of holding certain objects. These hosts To illustrate these concepts, consider the system de-
can fail (for example, by crashing) and, to keep thesescribed in Example 3.1. In this system, hosts are charac-
objects available, they need to be replicated. A simplderized by six attributes which we classify for clarity into
replication strategy is to determine the maximum numbe@perating system, Web server, and Web browser.
t of hosts that can fail at any time, and then maintain
more than replicas of each object.
HOW(_ever, using more than repl[cas may lead to Attributes:  Operating System fUnix, Windows};
excessive replication when host failures are correlated. Web Server {Apache, I1S;
As a simple example, consider three hots, ho, hs} Web Browser ={|E, Netscapé.

Example 3.1



Hosts: H; = {Unix, Apache, Netscage Worm Form of infection (Service) Platform
H> = {Windows, IIS, IE; Code Red| port 80/http (MS 1IS) Windows
Hs = {Windows, IS, Netscape Nimda multiple: email; Trojan horse versions| Windows
Y . using open network shares (SMB: ports
H, = {Windows, Apache, I 137-139 and 445); port 80/HTTP
Cores= {{H1, H2},{H1, Hs, Ha}}. (MS 1IS); Code Red backdoors
Sapphire | port 1434/udp (MS SQL, MSDE) Windows
. Sasser port 445/tcp (LSASS) Windows
H, and H2 comprise what we call arthogonal - [Twitty port 4000/udp (BlackICE) Windows
core, which is a core composed of hosts that have dis-
joint configurations. Given our assumption that Internet Table 1: Recent well-known pathogens.

pathogens target only one vulnerability or multiple vul-
nerabilities on one platform, an orthogonal core will con-
tain two hosts{ H,, Hs, H, } is also a core because there
is no attribute presentin all hosts, and it is minimal.
The smaller coré Hy, H>} might appear to be the bet-

tations can have attributes for different versions of op-
erating systems and applications. For example, we can
represent the various releases of Windows, such as “Win-
ter choice since it requires less replication. Choosing th&l0Ws 2000” and “Windows XP”, or even versions such as

smallest core, however, can have an adverse effect o T _4'05p4” as attributes._ ._Suqh fine-.grained_ attributes
individual hosts if many hosts use this core for placingprov'de considerable flexibility in placing replicas. For

replicas. To represent this effect, we defio@d to be the e)l(aarr?plte{ we ctantplacg atrephca on an N-IC-: h(;)stRar:jdtr?nt
amount of storage a host provides to other hosts. In enviX I Qts o’\?_:_o ec agatl)n? W(t)rmsxs;c as oBe tde tha
ronments where some configurations are rare, hosts witfXP'0!t @1 INT SErvice but not an AF service. but doing

the rare configurations may occur in a large percentagéo greatly increases the cost and complexity of collect-

of the smallest cores. Thus, hosts with rare configuralng and represerjting hO.St attributes, as well as computing
' ores to determine replica sets.

tions may have a significantly higher load than the othel® o . .
hosts. Indeed, having a rare configuration can increase a OUr initial work [14] suggested that informed repli-
host's load even if the smallest core is not selected. Fofation can be effective with relatively coarse-grained at-

example, in Example 3.1, is the only host that has a tributes for representing software diversity. As a result,

flavor of Unix as its operating system. Consequeritly we use attributes that represent just the class of operating
is present in both cores ' "’ system and network services on hosts in the system, and

To make our argument more concrete, consider thQOt their speC|f|c versions. In subsequent sections, we

worms summarized in Table 1, which are well-known _show that, when representing diversity at this granular-

worms unleashed in the past three years. For each wornl: hosts in an enterprise-scale network have substantial

given two hosts with one not running Windows or not a’nd sufficient software diversity for efficiently support-

running a specific server such as a Web server or ing informed replication. Our experience suggests that,

database, at least one survives the attack. With eve I_tl?ciugh we ::aq_represint softwa_rf(_e dlv?trwslty at finer at-
a very modest amount of heterogeneity, our method o L' ute gra?u artties ﬁ.uc as ds?eg Ic software versions,
constructing cores includes such pairs of hosts. ere 1S nota competiing need to do so.

3.2 Attribute granularity 4 Hostdiversity

Attributes can represent software diversity at many dif-With informed replication, the difficulty of identifying
ferent granularities. The choice of attribute granularitycores and the resulting storage load depend upon the ac-
balances resilience to pathogens, f|ex|b|||ty for p|acingtua| distribution of attrlbutes_ among a set of hosts. To
rep|icasl and degree of rep"cation_ An examp|e of thebetter understand these two ISsues, we measured the soft-
coarsest representation is for a host to have a configuare diversity of a large set of hosts at UCSD. In this
ration comprising a single attribute for the generic classsection, we first describe the methodology we used, and
of operating system, e.g., “Windows”, “Unix”, etc. This discuss the biases and limitations our methodology im-
single attribute represents the potential vulnerabdliie ~ Poses. We then characterize the operating system and
all versions of software running on all versions of the network service attributes found on the hosts, as well as
same class of operating system. As a result, replicathe host configurations formed by those attributes.

would always be placed on hosts with different operating

systems. A Iess coarse representation is to have attri_butgﬁ 1 Methodology

for the operating system as well as all network services

running on the host. This representation yields moreOn our behalf, UCSD Network Operations used the
freedom for placing replicas. For example, we can placexmap tool [12] to scan IP address blocks owned by
replicas on hosts with the same class of operating systetdCSD to determine the host type, operating system, and
if they run different services. The cofgd;, Hs, Hy} network services running on the host. Nmap uses var-
in Example 3.1 is an example of this situation sidfég  ious scanning techniques to classify devices connected
and H, both run Windows. More fine-grained represen-to the network. To determine operating systems, nmap



interacts with the TCP/IP stack on the host using var- 0S Port

0, 0,
ious packet sequences or pac_ket contents that_produce W,\ilrijn;\?vs fggj:t(éf)l) 139T#§&§;_Ssn) fgfgt(égf)?’)
known behaviors associated with specific operating Sys+—sofaris 301 (10.0) 135 (epmap) | 1496 (50.4)
tem TCP/IP implementations. To determine the network| MacOS X | 296 (10.0) | | 445 (microsoft-ds)| 1157 (39.0)
services running on hosts, nmap scans the host port spage Nll_inué()s 22%31(3605(;) 11212((58hd) ; ?ég ggg

i i ac . sunrpc .
to |dent|fy all open TCP and UDP.ports on the host. We FeeRED 622 TooE (varic?us) 735 (24.8)
anonymized host IP addresses prior to processing. IRIX 60(2.0) 25 (smtp) 575 (19.4)

Due to administrative constraints collecting data, we [ AP-UX 32 (1.1) 80 (httpd) 534 (18.0)
obtained the operating system and port data at different BSD/OS 28(0.9) 21 (ftpd) 528 (17.8)
times. We had a port trace collected between Decembet _Trué4Unix | 22(0.7) 515 (printer) | 462 (15.6)
19-22, 2003, and an operating system trace collected be- @) (b)

tween December 29, 2003 and January 7, 2004. The port
trace contained 11,963 devices and the operating systeifable 2: Top 10 operating systems (a) and ports (b)
trace contained 6,395 devices. among the 2,963 general-purpose hosts.

Because we are interested in host data, we first dis-
carded entries for specialized devices such as printer
routers, and switches. We then merged these traces . . .
produce a combined trace of hosts that contained both Another b'as arises from thg environment we sur-
operating system data and open port data for the same s§gY€d: A university environmentis not necessarily repre-
of hosts. When fingerprinting operating systems, nI,na&entatlve of the Intern_et, or spe_cmc subsets of it. We sus-
determines both a class (e.g., Windows) as well as 2&)ectthat such an environmentis more diverse in terms of
version (e.g., Windows XP). Fc;r added consistency, w oftware use than_other environments, such as the hosts
discarded host information for those entries that did nog a corporate environment or in a governmental agency.
have consistent OS class and version info. The result was " the other hand, there are perhaps thousands of univer-

a data set with operating system and port data for 2,96 |tées|2/)vk;t: 1?&%%iﬁglggr$gﬂgﬁ)?§cxg é?g&n;fggeéﬁ:%uaqg
general-purpose hosts. 9 '

Our data set was constructed using assumptions th&'® undoubtedly not singular.

introduced biases. First, worms exploit vulnerabilities
that are present in network services. We make the a4 2  Attributes
sumption that two hosts that have the same open port are
running the same network service and thus have the samigether, the hosts in our study have 2,569 attributes
vulnerability. In fact, two hosts may use a given port to representing operating systems and open ports. Table 2
run different services, or even different versions (with shows the ten most prevalent operating systems and open
different vulnerabilities) of the same service. Secondports identified on the general purpose hosts. Table 2.a
ignoring hosts that nmap could not consistently finger-shows the number and percentage of hosts running the
print could bias the host traces that were used. Thirdpnamed operating systems. As expected, Windows is the
DHCP-assigned host addresses are reused. Given timeost prevalent OS (54% of general purpose hosts). In-
time elapsed between the time operating system infordividually, Unix variants vary in prevalence (0.03—10%),
mation was collected and port information was collected put collectively they comprise a substantial fraction of
an address in the operating system trace may refer to the hosts (38%).
different host in the port trace. Further, a host may ap- Table 2.b shows the most prevalent open ports on the
pear multiple times with different addresses either in thehosts and the network services typically associated with
port trace or in the operating system trace. Consequentlyhose port numbers. These ports correspond to services
we may have combined information from different hostsrunning on hosts, and represent the points of vulnerabil-
to represent one host or counted the same host multipliey for hosts. On average, each host had seven ports open.
times. However, the number of ports per host varied consider-
The first assumption can make two hosts appear t@bly, with 170 hosts only having one port open while one
share vulnerabilities when in fact they do not, and thehost (running a firewall software) had 180 ports open.
second assumption can consistently discard configuradindows services dominate the network services run-
tions that otherwise contribute to a less skewed distribuning on hosts, with netbios-ssn (55%), epmap (50%),
tion of configurations. The third assumption may makeand domain services (39%) topping the list. The most
the distribution of configurations seem less skewed, buprevalent services typically associated with Unix are ssh
operating system and port counts either remain the sam@1%) and sunrpc (25%). Web servers on port 80 are
(if hosts do not appear multiple times in the traces) orroughly as prevalent as ftp (18%).
increase due to repeated configurations. The net effect These results show that the software diversity is sig-
of our assumptions is to make operating system and pomificantly skewed. Most hosts have open ports that are
distributions appear to be less diverse than it really is, alshared by many other hosts (Table 2 lists specific exam-
though it may have the opposite effect on the distributionples). However, most attributes are found on few hosts,

?g configurations.
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Figure 1: Visualization of UCSD configurations.

i.e., most open ports are open on only a few hosts. Fron§OWs hosts run the epmap (port 135) and netbios (port
our traces, we observe that the first 20 most prevalent39) Services, and many Unix hosts run sshd (port 22)
attributes are found on 10% or more of hosts, but the re&nd X11 (port 6000). Also, in general, non-Windows
maining attributes are found on fewer hosts. hqsts tend to have more open ports (8.3 on average) than
These results are encouraging for the process of find/Vindows hosts (6.0 on average). However, the groups of
ing cores. Having many attributes that are not widelyn0Sts running the same operating system still have sub-
shared makes it easier to find replicas that cover eacfténtial diversity within the group. Although each group

other’s attributes, preventing a correlated failure frgma Nas strong bands, they also have a scattering of open
fecting all replicas. We examine this issue next. ports between the bands contributing to diversity within

the group. Lastly, there is substantial diversity among
the groups. Windows hosts have different sets of open
4.3 Configurations ports than hosts running variants of Unix, and these sets
) ) ) ) even differ among Unix variants. We take advantage of
Each host has multiple attributes comprised of its operthese characteristics to develop heuristics for determin-
ating system and network services, and together these ghg cores in Section 5.
tributes determine its configuration. The distribution of
configurations among the hosts in the system determines Figure 2 provides a quantitative evaluation of the di-
the difficulty of finding core replica sets. The more con- versity of host configurations. It shows the cumula-
figurations shared by hosts, the more challenging it is taive distribution of configurations across hosts for differ
find small cores. ent classes of port attributes, with configurations on the
Figure 1 is a qualitative visualization of the space ofx-axis sorted by decreasing order of prevalence. A distri-
host configurations. It shows a scatter plot of the hosbution in which all configurations are equally prevalent
configurations among the UCSD hosts in our study. Thevould be a straight diagonal line. Instead, the results
x-axis is the port number space from 0-6500, and theshow that the distribution of configurations is skewed,
y-axis covers the entire set of 2,963 host configurationsvith a majority of hosts accounting for only a small per-
grouped by operating system family. A dot correspondscentage of all configurations. For example, when con-
to an open port on a host, and each horizontal slicesidering all attributes, 50% of hosts comprise just 20%
of the scatter plot corresponds to the configuration ofof configurations. In addition, reducing the number of
open ports for a given host. We sort groups in decreasport attributes considered further skews the distribution
ing size according to the operating systems listed in Tafor example, when only considering ports that appear on
ble 2: Windows hosts start at the bottom, then Solarismore than one host, shown by the “Multiple” line, 15%
Mac OS X, etc. Note that we have truncated the portof the configurations represent over 50% of the hosts.
space in the graph; hosts had open ports above 6508nd when considering only the port attributes that ap-
but showing these ports did not add any additional in-pear on at least 100 hosts, only 8% of the configurations
sight and obscured patterns at lower, more prevalent porepresent over 50% of the hosts. Skew in the configu-
numbers. ration distribution makes it more difficult to find cores
Figure 1 shows a number of interesting features of thdor those hosts that share more prevalent configurations
configuration space. The marked vertical bands withinwith other hosts. In the next section, however, we show
each group indicate, as one would expect, strong corthat host populations with diversity similar to UCSD are
relations of network services among hosts running thesufficient for efficiently constructing cores that result in
same general operating system. For example, most Wira low storage load.



5 Surviving catastrophes with S the set of sub-containers and with, : C — 2
the function that maps a container to its sub-containers.

With informed replication, each hostconstructs a core  The functionm,, : C x A — S maps a container and ap-

Core(h) based on its configuration and the configurationplication to a sub-container; thus, for eache h.apps,

of other hosts. Unfortunately, computing a core of op- host# is in each sub-containet, (m.(h.os), a).

timal size is NP-hard, as we have shown with a reduc- At this high level of abstraction, advertising a config-

tion from SET-COVER [13]. Hence, we use heuristics uration is straightforward. Initiall is empty. To ad-

to computeCore(h). In this section, we first discuss a vertise its configuration, a hostfirst ensures that there

structure for representing advertised configurations thais a container: € C such thatm.(h.os) = c. Then,

is amenable to heuristics for computing cores. We therfor each attribute: € h.apps, h ensures that there is a

describe four heuristics and evaluate via simulation thesub-container,(c, a) containingh.

properties of the cores that they construct. As a basis for

our simulations, we use the set of hoat®btained from

the traces discussed in Section 4. 5.2 Computing cores
_ ) ) The heuristics we describe in this section compute
5.1 Advertised configurations Core(h) in time linear with the number of attributes in

h.apps. These heuristics reference theGef containers
and the three functions.., ms andmy, but they do not
reference the full sel of attributes. In addition, these
heuristics do not enumerdté¢, but they do reference the
go(fonfiguration of hosts (to reference the configuration of
a hostl’, they referencé’.os andh’.apps). Thus, the

representation is a three-level hierarchy. . container/sub-container hierarchy is the only data struc-
The top level of the hierarchy is the operating systemy .o that the heuristics use to compute cores.

that a host runs, the second level includes the applica-

tions that run on that operating system, and the third level

are hosts. Each host runs one operating system, and $62.1 Metrics

each host is subordinate to its operating system in the hi\?V

erarchy (we can represent hosts running multiple virtual €

machines as multiple virtual hosts in a straightforward

manner). Since most applications run predominately on

one platform, hosts that run a different operating sys-

tem thanh are likely good candidates for including in

Core(h). We call the first level theontainersand the

second level theub-containersEach sub-container con-

tains a set of hosts. Figure 3 illustrates these abstraction

using the configurations of Example 3.1. . ber of coresCore(h) of which A’ is a member.
More formally, letO be the set of canpnlcal operating The maximum load is the largest load of any host
system names ar@ be the set of containers. Each host WoeH

h has an attributé.os that is the canonical name of the

Our heuristics are different versions of greedy algo-
rithms: a hosh repeatedly selects other hosts to include
in Core(h) until some condition is met. Hence we chose
a representation that makes it easier for a greedy al
rithm to find good candidates to include@wre(h). This

evaluate our heuristics using three metrics:

e Average core size|Core(h)| averaged over alt €
‘H. This metric is important because it determines
how much capacity is available in the system. As
the average core size increases, the total capacity of
the system decreases.

e Maximum load: The load of a host’ is the num-

operating system oh. The functionm. : O — C maps e Average coverage We say that an attribute of a

operating system name to container; thus,(h.os) is hosth is coveredin Core(h) if there is at least one
the container that contairs other host:’ in Core(h) that does not have. Thus,
an exploit of attribute: can affectr, but noth’, and
o g8 ° 8 . so not all hosts irCore(h) are affected. Theover-
M A mg u% u Q UE ageof Core(h) is the fraction of attributes of that

o 2 ! g Ha|™ |Ha| S [Hs| 5 (2 are covered. Thaverage coveragis the average of
< = the coverages dfore(h) over all hostsh € H. A

Unix Windows high average coverage indicates a higher resilience

to Internet catastrophes: many hosts have most or
all of their attributes covered. We return to this dis-
cussion of what coverage means in practice in Sec-
tion 5.3, after we present most of our simulation re-
sults for context.

Figure 3: lllustration of containers and sub-containers.

Let h.apps denote the set of canonical names of the
applications that are running o, and let.A be the

canonical names of all of the applications. We denote For brevity, we use the terms core size, load, and cov-

IMore preciselyCore(h) is a core constrained to contafn That ~ €rage to indicate average core size, maximum load, and
is, Core(h) \ {h} may itself be minimal, but we require € Core(h). average coverage, respectively. Where we do refer to




I Corzs'ze C%"g%ge Liazd a with Core(h). If it fails to covera, then the heuris-
Uniform 556 09997 284 tic tries up tosane_OS times to covewr by choosing a
Weighted 564 0.9995 84 sub-containesc € m.(h.os) at random and a hoét at
DWeighted 2.58 0.9997 91 random fromsc.

The goal for having two steps, one with f f _OS and
Table 3: A typical run of the heuristics. another withsame _CS, is to first exploit diversity across

operating systems, and then to exploit diversity among

these terms in the context of a particular host, we say0Sts within the same operating system group. Refer-
so explicitly. ring back to Figure 1, the set of prevalent services among

A good heuristic will determine cores with small size, NOStS running the same operating system varies across
low load, and high coverage. Coverage is the most critithe different operating systems. In the case the attrlb_ute
cal metric because it determines how well it does in guar£annot be covered with hosts running other operating
anteeing service in the event of a catastrophe. Coverag®y/Stems, the diversity within an operating system group
may not equal 1 either because there was no hicstat ~ May be sufficient to find a hoat without attributeu.
was available to cover an attributeof h, or because the N all of our simulations, we sedi ff 05 to 7 and
heuristic failed to identify such a hoat. As shownin Same.C5to 4. After experimentation, these values have

the following sections, the second case rarely happengrovided a good trade-off between number of useless
with our heuristics. tries and obtaining good coverage. However, we have
Note that, as a single number, the coverage of a give¥€t t0 study how to in general choose good values of
Core(h) does not fully capture its resilience. For exam-di ff-OS andsane.GS.
ple, consider host; with two attributes and hogt, with Pseudo-code fddniform is as follows.
10 attributes. 1{Core(h,) covers only one attribute, then Algori . . )
gorithm Uniform on i nput h:
Core(hy) has a coverage of 0.5. @ore(hy) has the same i eger i
coverage, then it covers only 5 of the 10 attributes. Thereore — {a};
are more ways to fail all of the hosts @ore(hy) than €' —C\ {me(h.0s)}
those inCore(h; ). Consequently, we also use the num-" Oir%eSCh attribute a < h.apps
ber of cores that do not have a coverage of 1.0 as an €X-yhjle (a is not covered) A

tension of the coverage metric. (i < diff_OS+same 0S)
if (i<diff_0S) choose randomly ceC’
o el se ¢ — m¢(h.0s)
5.2.2 Heuristics choose random y sc € ms(c)\ {mn(c,a)}
) ) . . . ) choose a host h' €sc:h'#h
We begin by using simulation to evaluate a naive heuris- if (k' covers a) add k' to core

tic calledRandom that we use as a basis for compari- < i+1
son. Itis not a greedy heuristic and does not referencé® urn core

the advertised configurations. Insteadsimply chooses  The second row of Table 3 shows the performance of
at random a subset 6f of a given size containing. Uniform for a representative run of our simulator. The
The first row of Table 3 shows the resultsRéndom  core size is close to the minimum size of two, and the
using one run of our simulator. We set the size of thecoverage is very close to the ideal value of one. This
cores to 5, i.e.Random chose 5 random hosts to form means that using/niform results in significantly bet-
a core. The coverage of 0.977 may seem high, but thergsr capacity and improved resilience thaandom. On
are still many cores that have uncovered attributes anghe other hand, the load is very high: there is at least
choosing a core size smaller than five results in evempne host that participates in 284 cores. The load is so
lower coverage. The load is 12, which is significantly high becausé: chooses containers and sub-containers
higher than the lower bound of%. uniformly. When constructing the cores for hosts of a
Our first greedy heuristitiniform (“uniform” selec-  given operating system, the other containers are refer-
tion among operating systems) operates as follows. Firsgnced roughly the same number of times. Thirsform
it chooses a host with a different operating system thartonsiders hosts running less prevalent operating systems
h.os to cover this attribute. Then, for each attribute for inclusion in cores a disproportionately large number
h.apps it chooses both a containere C \ {m.(h.0s)}  oftimes. A similar argument holds for hosts running less
and a sub-containefc € ms(c) \ {mn(c,a)} at ran-  popular applications.
dom. Finally, it chooses a hoét at random fromsc. This behavior suggests refining the heuristic to choose
If a ¢ h'.apps then it includesh’ in Core(h). Other-  containers and applications weighted on the popularity
wise, it tries again by choosing a new containgsub-  of their operating systems and applications. Given a con-
containersc, and hosth” at random. Uniform repeats tainerc, let N, (c) be the number of distinct hosts in the
this proceduredi f f _OS times in an attempt to cover sub-containers of, and given a set of containef let
2To meet this bound, number the hostsHhfrom O to |H| — 1. NC(C) be the sum OWC(C) forall c € €. The heuris-

Let Core(h) be the hostg/, h & 1,h 2, h @ 3, h & 4} wheredr s tiC Weighted (“weighted” OS selection) is the same as
addition moduld /. Uniform except that for the firsti f f _OS attempts




chooses a container with probability N.(c)/N.(C \ 10
{mc(h.os)}). HeuristicDWeighted (“doubly-weighted” ol oo
selection) takes this a step further. LB%(c,a) be DWeighted -~
|mn(c,a)| and Ng(c, A) be the size of the union of .l
mp(c,a) for all @ € A. Heuristic DWeighted is the B o7r =
same asWeighted except that, when considering at- § 6l =
tributea € h.apps, h chooses a host from sub-container £ | .
my(c, a’) with probability N, (c,a’) /Ns(c, A\ {a}). 2
In the third and fourth rows of Table 3, we show a rep- 4 :
resentative run of our simulator for both of these varia- 3p e
tions. The two variations result in comparable core sizes L, ‘ ‘ ‘ ‘ ‘ ‘
and coverage a&niform, but significantly reduce the 2 8 4 5 6 7T 8 9 10

Load limit

load. The load is still very high, though: at least one host
ends up being assigned to over 80 cores.

Another approach to avoid a high load is to simply
disallow it at the risk of decreasing the coverage. That

Figure 4: Average core size.

is, for some value ofL, once a host/ is included in 1 ————————
L cores,h’ is removed from the structure of advertised "
configurations. Thus, the load of any host is constrained 0.95

to be no larger thaih.

What is an effective value df that reduces load while
still providing good coverage? We answer this question
by first establishing a lower bound on the value lof
Suppose thai is the most prevalent attribute (either ser-

09

0.85

Average coverage

vice or operating system) among all attributes, and it is 08 ¢ Random =
presentin a fractiom of the host population. As a simple puagnted
application of the pigeonhole principle, some host must 0O T T . s 6 7 s 9 1w
be in at least cores, wheré is defined as: Load limit
I [ |H| - x W B [ x W ) Figure 5: Average coverage.
H-(=2) |~ |0=2)

In Figure 5, we show results for coverage. Coverage

Thus, the value of. cannot be smaller thah Using s slightly smaller thari.0 for Uniform, Weighted, and
Table 2, we have that the most prevalent attribute (porbWeighted when L is greater or equal to three. For
139) is present in 55.3% of the hosts. In this cédse,2. L = 2, Weighted and DWeighted still have coverage

Using simulation, we now evaluate our heuristics in slightly smaller thari.0, butUniform does significantly
terms of core size, coverage, and load as a function oivorse. Using weighted selection is useful wheris
the load limit L. Figures 4—7 present the results of our sSmall. Random improves coverage with increasing
simulations. In these figures, we vafyfrom the mini-  because the size of the cores increases. Note that, to
mum 2 through a high load of 10. All the points shown reach the same value of coverage obtained by the other
in these graphs are the averages of eight simulated ruri¥uristicsRandomrequires a large core size of
with error bars (although they are too narrow to be seen There are two other important observations to make
in some cases). For Figures 4—6, we use the standard eabout this graph. First, coverage is roughly the same for
ror to determine the limits of the error bars, whereas forUniform , Weighted, andDWeightedwhenL > 2. Sec-
Figure 7 we use the maximum and minimum observecbnd, asl continues to increase, there is a small decrease
among our samples. When using load limit as a threshin coverage. This is due to the nature of our traces and
old, the order in which hosts request cores frahwill to the random choices made by our algorithms. Ports
produce different results. In our experiments, we ran-such as 111 (portmapper, rpcbind) and 22 (sshd) are open
domly choose eight different orders of enumeratiig on several of the hosts with operating systems different
for constructing cores. For each heuristic, each run othan Windows. For small values &f these hosts rapidly
the simulator uses a different order. Finally, we vary thereach their threshold. Consequently, when hosts that do
core size oRandomusing the load limit_ to illustrate  have these services as attributes request a core, there are
its effectiveness across a range of core sizes. fewer hosts available with these same attributes. On the

Figure 4 shows the average core size for the four algoether hand, for larger values @f, these hosts are more
rithms for different values of.. According to this graph, available, thus slightly increasing the probability that n
Uniform, Weighted, andDWeighteddo not differ much  all the attributes are covered for hosts executing an oper-
in terms of core size. The average core sizRahdom  ating system different than Windows. We observed this
increases linearly witli. by design. phenomenon exactly with ports 22 and 111 in our traces.
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Figure 6: Average fraction of uncovered hosts. Figure 7: Average load variance.

This same phenomenon can be observed in Figure thave vulnerabilities as vectors for propagation. Code
In this figure, we plot the average fraction of hosts thatRed, for example, used a vulnerability in the 1IS Web
are not fully covered, which is an alternative way of vi- server to infect hosts. In this example, a vulnerability on
sualizing coverage. We observe that there is a share ¢f single attribute (Web server listening on port 80) was
the population of hosts that are not fully covered, but thisexploited. In other instances, such as with the Nimda
share is very small fadniform and its variations. Sucha worm, more than one vulnerability was exploited dur-
set is likely to exist due to the non-deterministic choicesing propagation, such as via e-mail messages and Web
we make in our heuristics when forming cores. These unprowsing. Although these cases could be modeled as
covered hosts, however, are not fully unprotected. Frongexploits to vulnerabilities on multiple attributes, we ob-
our simulation traces, we note the average number of unserve that previous worms did not propagate across oper-
covered attributes is very small foiniform and its vari-  ating system platforms: in fact, the worms targeted ser-
ations. In all runs, we have just a few hosts that do notices on various versions of Windows.
have all their attributes covered, and in the maj(_)rity of By covering classes of operating systems in our cores,
the instances there is just a single uncovered attribute. we guarantee that pathogens that exploit vulnerabilities

Finally, we show the resulting variance in load. Sinceon a single platform are not able to compromise all the
the heuristics limit each host to be in no more than members of a cor€ of a particular hosk, assuming that
cores, the maximum load equals The variance in-  ( covers all attributes df. Even ifCore(h) leaves some
dicates how fairly the load is spread among the hostsattributes uncovered, is still protected against attacks
As expectedRandomdoes well, having the lowest vari- targeting covered attributes. Referring back to Figure 6,
ance among all the algorithms and for all valueslof  the majority of the cores have maximum coverage. We
Ordering the greedy heuristics by their variance in loadalso observed in the previous section that, for cores that
we haveUniform - Weighted > DWeighted Thisis  do not have maximum coverage, usually it is only a sin-
not surprising since we introduced the weighted selecgle uncovered attribute.
tion exactly to better balance the load. Itis interestingto  ynder our assumptions, informed replication miti-
observe that for every value df, the load variance ob- gates the effects of a worm that exploits vulnerabilities
tained forUniform is close toL. This means that there op a service that exists across multiple operating sys-
were several hosts not participating in any core and se\rems, and of a worm that exploits vulnerabilities on ser-
eral other hosts participating i cores. o ~ vices in a single operating system. Figure 6 presents a

A larger variance in load may not be objectionable in conservative estimate on the percentage of the popula-
practice as long as a maximum load is enforced. GiveRjon that is unprotected in the case of an outbreak of such
the extra work of maintaining the functiod$, andN., 3 pathogen. Assuming conservatively that every host that
the heuristidUniform with small L (L > 2) is the best s not fully covered has the same uncovered attribute, the
choice for our application. However, should load vari- nympers in the graph give the fraction of the population
ance be an issue, we can use one of the other heuristicghat can be affected in the case of an outbreak. As can be

seen, this fraction is very small.
5.3 Translating to real pathogens With our current use of attributes to represent software
heterogeneity, a worm can be effective only if it can ex-
In this section, we discuss why we have chosen to tolploit vulnerabilities in services that run across opegtin
erate exploits of vulnerabilities on a single attribute at asystems, or if it exploits vulnerabilities in multiple oper
time. We do so based on information about past wormsting systems. To the best of our knowledge, there has
to support our choices and assumptions. been no large-scale outbreak of such a worm. Of course,
Worms such as the ones in Table 1 used services thatich a worm could be written. In the next section, we dis-



cuss how to modify our heuristics to cope with exploits é A‘ggégg‘zg"ggez‘?e A‘gg-gégc(g"ggg?e A\Allgi gg%gif)e
of vulnerabilities on multiple attributes. 5 0.902 (0.002) 0.917 (0.002) 459 (0.005)
7 | 0.981(0.001) 0.987 (0.001) | 5.00 (0.005)
. : - 3 0.995 (0.0) 1.0(0.0) 5.11 (0.005)
5.4 Exploits of multiple attributes 5 0-996 (0.0) 10(00) 5 14(0.005)
10 0.997 (0.0) 1.0(0.0) 5.17 (0.003)

To tolerate exploits on multiple attributes, we need to
construct cores such that, for subsets of attributes posrpe 4- Summary of simulation results for= 2 for 8
sessed by members of a core, there must be a core mefxarent runs.

ber that does not have these attributes. We cdll a
resilient coreC' a group of hosts ift{ such that, for every

I attributes of bers of there is at least host i table we present the average across all hosts and across
attibutes or members @, there IS atleast one NOStIN g ajght runs of the simulatofL.-coveragds the same as

C that does not contain any of these attributes. In thigpe » erage coverage metric defined in Section 5.2. Fi-
te_rmm(_)logy, the cores we have been considering up t(?]ally, the last column shows average core size.
this point have b_egitrre&hent_cores. . According to the coverage results, the heuristic does
Toillustrate this |d_ea, conS|derth_e foII0W|ng_exampIe.We" in finding cores that protect hosts against potential
Hosts runWindows Linux, andSolarisas operating sys- pathogens that exploit vulnerabilities in at most two at-
tems, andS, Apgche andZeusas Web servers. An ex- tributes. A beneficial side-effect of protecting against ex
ample of &Tres'l'ent core s a.subset qomposed of hOStSploits on two attributes is that the amount of diversity in
h1, ha, hs with conﬂggraﬂons.hl = {Linux, Apachg; a 2-resilient core permits better protection to its client
hy = {Wmdows,.IIS}, h3_ - {Solans,.Zeu}a In this gainst pathogens that exploit vulnerabilities on single
core, for every pair of attributes, there is at least one hosk b tes  For values of greater than seven, all clients

that contains none of them. o have all their attributes covered (the averageoverage
As before, every hosh builds a k-resilient core metric is one and the standard error is zero)
Corg(h). To build Core(h), hosth uses the following . L
heuristic: Having a system that more br(_)adly protects its hosts
requires more resources: core sizes are larger to obtain

Steptlh Stil?m ran};jomlfyc —1 hqsts,f1L1 thro}:ghlh;ﬁ,l, such  gyfficiently high degrees of coverage. Compared to the
a 2'03_75 -0s, for everyi € { o b results in Section 5.2, we observe that we need to dou-

Step 2 UseUniform to search for d-resilient coreC' for h ble the load limit to obtain similar values for coverage.

This is not surprising. In our heuristic, for each host, we

search for twol-resilient cores. We therefore need to

Step 4 Core(h) — CUCL U...UCh_1. roughly double the amount _of resources used. .

. B Of course, there is a limit to what can be done with
Intuitively, to form ak-resilient core we need to gather jnformed replication. As: increases, the demand on re-
enough hosts such that we can split these hostskinto gorces continues to grow, and a point will be reached
subsets, where at least one subset israsilient core. iy which there is not enough diversity to withstand an

Moreover, if there are two of these subsets where, fOhttack that targets + 1 attributes. Using our diversity
each subset, all of the members of that subset share sonag, gy results in Table 2, if a worm were able to simulta-

attribute, then the shared attribute of one set must be difheously infect machines that run one of the first four op-

ferent from the shared attribute of the other set. Oulgrating systems in this table, the worm could potentially
heuristic is conservative in searching independently fofinfectg4% of the population. The release of such a worm
L-resilient cores because the problem does not requirg oyl most likely cause the Internet to collapse. An ap-
all such sets to be-resilient cores. In doing so, we pro- proach beyond informed replication would be needed to

tect clients and at the same time avoid the complexity ot:ombat an act of cyberterrorism of this magnitude.
optimally determining such sets. The sets output by the

heuristic, however, may not be minimal, and therefore
they are approximations of theoretical cores. We discus® The Phoenix Recovery Service
this heuristic further in [13].

In Table 4, we show simulation results for this heuris- A cooperative recovery service is an attractive architec-
tic for k = 2. The first column shows the values of ture for tolerating Internet catastrophes. It is an attrac-
load limit (L) used by théJniform heuristic to compute tive system for both individual Internet users, like home
cores. We chose values 6f> 5 based on an argument broadband users, who do not wish to pay for commer-
generalized from the one given in Section 5.2 giving thecial backup service or deal with the inconvenience of
lower bound ofL [13]. In the second and third columns, making manual backups, as well as corporate environ-
we present our measurements for coverage with standardents, which often have a significant amount of un-
error in parentheses. For each computed €oe(h), used disk space per machine. If Phoenix were deployed,
we calculate the fraction of pairs of attributes such thatusers would not need to exert significant effort to backup
atleast one host’ € Core(h) contains none of attributes their data, and they would not require local backup sys-
of the pair. We name this metrizcoverage and in the tems. Phoenix makes specifying what data to protect

Step 3 For eachi € {1,...,k — 1}, useUniform to search
for a1-resilient coreC; for h;;



Sub-zone It therefore generates as many identifiers as the number
(bg bits) of attributes inh.apps It then joins the DHT at multiple
points, each point being characterized by one of these
identifiers. Since the hash of the operating system is the
H initial, “most significant” part of all the host’s identifigr
Zone all identifiers of a host lie within the same zone.
To build Corg(h) usingUniform, hosth selects hosts
at random. When trying to cover an attributgh first se-
Figure 8: Phoenix ring. lects a container at random, which corresponds to choos-
ing a number: randomly from[0, 2% — 1]. The next step
as straightforward as specifying what data to share ois to select a sub-container and a host within this sub-
file-sharing peer-to-peer systems. Further, a cooperativeontainer both at random. This corresponds to choosing
architecture has little cost in terms of time and money;a random numbesc within [0, 2%« — 1] and another ran-
instead, users relinquish a small fraction of their disk,dom numberd within [0,2% — 1], respectively. Hosk
CPU, and network resources to gain access to a highlgreates a Phoenix identifier by concatenating these vari-
resilient backup service. ous components dgo scoid). It then performs a lookup
As with Pastiche [8], we envision using Phoenix ason the Pastry DHT for this identifier. The hdgtthat sat-
a cooperative recovery service for user data. Howeveliisfies this lookup informg of its own configuration. If
rather than exploiting redundant data on similar hosts tahis configuration covers attribute » addsh’ to its core.
reduce backup costs for operating system and applicdf not, h repeats this process.
tion software, we envision Phoenix users only backingup The hosts ink’s core maintain backups of its data.
user-generated data and relying upon installation medighese hosts periodically send announcements. tdn
to recover the operating system and application softwarethe event of a catastrophe Jifloses its data, it waits for
With this usage model, broadband users of Phoenix caBne of these periodic announcements from a host in its
recover 10 GB of user-generated data in a day. Given thgore, sayh’. After receiving such a messagerequests
relatively low capacity utilization of disks in desktop ma- its data fromh’. Since recovery is not time-critical, the
chines [3], 10 GB should be sufficient for a wide range ofperiod between consecutive announcements that a host
users. Further, users can choose to be more selective #&nds can be large, from hours to a day.
the data backed up to reduce their recovery time. We re- A host may permanently leave the system after hav-
turn to the issue of bandwidth consumption and recoveryng backed up its files. In this situation, other hosts need
time in Section 7.3. not hold any backups for this host and can use garbage
collection to retrieve storage used for the departed host’s
files. Thus, Phoenix hosts assume that if they do not re-
ceive an acknowledgment for any announcement sent for
A Phoenix host selects a subset of hosts to store backup large period of time (e.g., a week), then this host has
data, expecting that at least one host in the subset suleft the system and its files can be discarded.
vives an Internet catastrophe. This subset is a core, cho- Since many hosts share the same operating systems,
sen using th&niform heuristic described above. Phoenix identifiers are not mapped in a completely ran-
Choosing cores requires knowledge of host softwarelom fashion into the DHT identifier space. This could
configurations. As described in Section 5, we use thdead to some hosts receiving a disproportionate number
container mechanism for advertising configurations. Inof requests. For example, consider a ho#tat is either
our prototype, we implement containers using the Pasthe first of a populated zone that follows an empty zone
try [32] distributed hash table (DHT). Pastry is an over-or is the last host of a populated zone that precedes an
lay of nodes that have identifiers arranged in a ring. Thissmpty zone. Host receives requests sent to the empty
overlay provides a scalable mechanism for routing rezone because, by the construction of the ring, its address
quests to appropriate nodes. space includes addresses of the empty zone. In our de-
Phoenix structures the DHT identifier space hierarchi-sign, however, once a host reaches its load limit, it can
cally. It splits the identifier space intmones mapping  simply discard new requests by the Phoenix protocol.
containers to zones. It further splits zones isiibd-zones Experimenting with the Phoenix prototype, we found
mapping sub-containers to equally-sized sub-zones. Fighat constructing cores performed well even with an un-
ure 8illustrates this hierarchy. Corresponding to the-hierbalanced ID space. But a simple optimization can im-
archy, Phoenix creates host identifiers out of three partgrove core construction further. The system can maintain
To generate its identifier, a host concatenates the hasim OS hint list that contains canonical names of operating
representing its operating systemos the hash repre- systems represented in the system. When constructing a
senting an attribute € h.apps and the hash represent- core, a host then uses hashes of these names instead of
ing its IP address. As Figure 8 illustrates, each part hagenerating a random number. Such a list could be main-
b, ba, andb; bits, respectively. To advertise its configu- tained externally or generated by sampling. We present
ration, a host creates a hash for each one of its attributesesults for both approaches in Section 7.

(b bits) \ Id (b; bits)

6.1 System overview



We implemented Phoenix using the Macedon [31] Hosts could also advertise false configurations in an
framework for implementing overlay systems. The attempt to free-ride in the system. By advertising at-
Phoenix client on a host takes a tar file of data to betributes that make a host appear more unreliable, the sys-
backed up as input together with a host configuration. Intem will consider the host for fewer cores than otherwise.
the current implementation, users manually specify theAs a result, a host may be able to have its data backed up
host configuration. We are investigating techniques fowithout having to back up its share of data.
automating the configuration determination, but we ex- To provide a disincentive against free-riders, members
pect that, from a practical point of view, a user will want of a core can maintain the configuration of hosts they
to have some say in which attributes are important. serve, and serve a particular client only if their own con-
figuration covers at least one client attribute. By sam-

. pling servers randomly, it is possible to reconstruct cores
6.2 Attacks on Phoenix and eventually find misbehaving clients.

Phoenix uses informed replication to survive wide- An important feature of our heuristic that constrains

spread failures due to exploits of vulnerabilities in un-the impact of malicious hosts on the system is the load

related software on hosts. However, Phoenix itself cadimit: if only a small percentage of hosts is malicious at

also be the target of attacks mounted against the syster@ny given time, then only a small fraction of hosts are

as well as attacks from within by misbehaving peers. ~ impacted by the maliciousness. Hosts not respecting the
The most effective way to attack the Phoenix systemlimit can also be detected by random sampling.

as awhole is to unleash a pathogen that exploits a vulner-

gbility in the Phoenix software. In o'gher words, Phoenix7 Phoenix evaluation

itself represents a shared vulnerability for all hosts run-

ning the service. This shared vulnerability is not a cov-

ered attribute, hence an attack that exploits a vulnerabil

ity in the Phoenix software would make it possible for

data to be lost as a pathogen spreads unchecked throu

the Phoenix system. To the extent possible, Phoenix 'S hent with Phoenix’s ability to recover from large fail-

lies on good programming practices and techniques 1,5 Finally, we discuss the time and bandwidth re-
prevent common attacks such as buffer overflows. HOW'quired to recover from catastrophes

ever, this kind of attack is not unique to Phoenix or the
use of informed re.pliqation. Such an attack is a generaly 1 Prototype evaluation
problem for any distributed system designed to protect
data, even those that use approaches other than inform&de tested our prototype on 63 hosts across the Internet:
replication [11]. A single system fundamentally repre- 62 PlanetLab hosts and one UCSD host. To simulate the
sents a shared vulnerability; if an attacker can exploitdiversity we obtained in the study presented in Section 4,
a vulnerability in system software and compromise thewe selected 63 configurations at random from our set of
system, the system cannot easily protect itself. 2,963 configurations of general-purpose hosts, and made
Alternatively, hosts participating in Phoenix can attackeach of these configurations an input to the Phoenix ser-
the system by trying to access private data, tamper witlvice on a host. In the population we have chosen ran-
data, or mount denial-of-service attacks. To prevent madomly, out of the 63 configurations 38 have Windows as
licious servers from accessing data without authorizatiortheir operating system. Thus, in our setting roughly 60%
or from tampering with data, we can use standard cryptoef the hosts represent Windows hosts. From Equation 1,
graphic techniques [13]. In particular, we can guaranteave obtain that the load limit must be at least three.
the following: (1) the privacy and integrity of any data  For the results we present in this section, we use an
saved by any host is preserved, and (2) if a client hosDS hint list while searching for cores. Varyidg we
contacts an honest server host for a backup operatiomptained the values in Table 5 for coverage, core size,
then the client is able to recover its data after a catastroand load variance for a representative run of our proto-
phe. From a security perspective, the most relevant patype. For comparison, we also present results from our
of the system is the interaction process between a hostimulations with the same set of configurations used for
client and a host server which has agreed to participatéhe PlanetLab experiment. From the results in the table,
in the host’s core. coverage is perfect in all cases, and the average core size
Malicious servers can mount a denial-of-service attacks less than 3 (less than 2 replica copies).
against a client by agreeing to hold a replica copy of the The major difference in increasing the value Iofis
client’s data, and subsequently dropping the data or rethe respective increase in load variance.JAimcreases,
fusing recovery requests. One technique to identify suchoad balance worsens. We also counted the number of
misbehavers is to issuggned receipt§l3]. Clients can  requests issued by each host in its search for a core.
use such receipts to claim that servers are misbehavindifferent from our simulations, we set a large upper
As we mentioned before, servers cannot corrupt data avound on the number of request messaghd { _OS
suming robustness of the security primitives. + same_0OS = 100) to verify the average number of

In this Section, we evaluate our Phoenix prototype on

the PlanetLab testbed using the metrics discussed in Sec-

aﬁ? 5. We also simulate a catastrophic event — the si-
[taneous failure of all Windows hosts — to experi-



Loadlimit (L) | Coresize | Coverage | Load var. necessarily. For the backup file size, we chose an ar-
Imp. [ Sim. [ Imp. | Sim. | Imp. | Sim. . .

3 5151223710 10 | 165 188 bitrary value since we are not concerned about transfer

5 510 | 225 | 1.0 | 1.0 | 288 | 3.31 time in this experiment. On the other hand, this size was

7 210 | 212 | 1.0 | 1.0 | 444 | 356 large enough to hinder recovery when connectivity be-

tween client and server was intermittent.
_ w___.ltis important to observe that we stressed our proto-
Table 5: Implementation results on PlanetLab (Imp”) type by causing the failure of these hosts almost simuilta-
with simulation results for comparison (*Sim”). neously. Although the number of nodes we used is small
_ compared to the potential number of nodes that Phoenix
requests necessary to build a core, and we had hos{gn have as participants, we did not observe any obvious
searching for other hosts only outside their own Zonescalability problems. On the contrary, the use of a load
(same_GS = 0). The averages for number of requests arqmjt helped in constraining the amount of work a host

14.6,5.2, andd.1 for values ofL of 3, 5, and7, respec-  does for the system, independent of system size.
tively. Hence, we can tradeoff load balance and message

complexity. )
We also ran experiments without using an OS hintlist.7-3 Recovering from a catastrophe
The results are very good, although worse than the imx

plementation that uses hint lists. We observed two mainFma”y’ we examine the bandwidth requirements for re-

consequences in not using a hint list. First, the averagcove”ng from an Internet catastrophe. In a catastrophe,

number of requests is considerably higher (over 2x). Sec?nany hosts will lose their data. When the failed hosts

ond, for small values of, (I = 3, 5), some hosts did not come online again, they will want to recover their data
. from the remaining hosts that survived the catastrophe.
obtain perfect coverage.

With a large fraction of the hosts recovering simultane-
ously, a key question is what bandwidth demands the re-
7.2 Simulating catastrophes covering hosts will place on the system.
The aggregate bandwidth required to recover from a

Next we examine how the Phoenix prototype behaves irtatastrophe is a function of the amount of data stored
a severe catastrophe: the exploitation and failure of alby the failed hosts, the time window for recovery, and
Windows hosts in the system. This scenario correspondhe fraction of hosts that fail. Consider a system of
to a situation in which a worm exploits a vulnerability 10,000 hosts that have software configurations analogous
present irall versions of Windows, and corrupts the datato those presented in Section 4, whetel % of the hosts
on the compromised hosts. Note that this scenario is farun Windows and the remaining run some other operat-
more catastrophic than what we have experienced witlng system. Next consider a catastrophe similar to the
worms to date. The worms listed in Table 1, for example,one above in which all Windows hosts, independent of
exploit only particular services on Windows. version, lose the data they store. Table 6 shows the band-

The simulation proceeded as follows. Using the samevidth required to recover the Windows hosts for various
experimental setting as above, hosts backed up their datiorage capacities and recovery periods. The first col-
under a load limit constraint df = 3. We then triggered umn shows the average amount of data a host stores in
a failure in all Windows hosts, causing the loss of datathe system. The remaining columns show the bandwidth
stored on them. Next we restarted the Phoenix serviceequired to recover that data for different periods.
on the hosts, causing them to wait for announcements The first four rows show the aggregate system band-
from other hosts in their cores (Section 6.1). We thenwidth required to recover the failed hosts: the total
observed which Windows hosts received announcementmount of data to recover divided by the recovery time.
and successfully recovered their data. This bandwidth reflects the load on the Internet during

All 38 hosts recovered their data in a reasonablerecovery. Even for relatively large backup sizes and short
amount of time. For 35 of these hosts, it took on av-recovery periods, this load is small. Note that these re-
erage 100 seconds to recover their data. For the otheults are for a system with 10,000 hosts and that, for an
three machines, it took several minutes due to intermitequivalent catastrophe, the aggregate bandwidth require-
tent network connectivity (these machines were in factments will scale linearly with the number of hosts in the
at the same site). Two important parameters that deteisystem and the amount of data backed up.
mine the time for a host to recover are the frequency of The second four rows show the average per-host band-
announcements and the backup file size (transfer time)idth required by the hosts in the system responding to
We used an interval between two consecutive announceaecovery requests. Recall that the system imposes a load
ments to the same client of 120 seconds, and a total datamit L that caps the number of replicas any host will
size of 5 MB per host. The announcement frequency destore. As a result, a host will only have to recover at
pends on the user expectation on recovery speed. In ounostL other hosts. Note that, because of the load limit,
case, we wanted to finish each experiment in a reasorper-host bandwidth requirements for hosts involved in re-
able amount of time. Yet, we did not want to have hostscovery are independent of both the number of hosts in the
sending a large number of announcement messages usystem and the number of hosts that fail.



[ Size(GB)[ 1hour | 1day [ Iweek | ; ; : - ; .
Aggregate bandwidth ures to exploit software diversity, providing high relia

0T T2Gb/s [ SOMbB/S T 71T MbS b_|||ty with Iow_ repllcatlpn overhead. Using host diver-

1 12 Gb/s | 0.50 Gb/s| 71 Mb/s sity characteristics derived from a measurement study of

10 120 Gb/s | 5.0 Gb/s | 710 Mb/s hosts on the UCSD campus, we developed and evalu-

100 1.27Tb/s | 50Gb/s | 7.1Gb/s ated heuristics for determining the number and place-
Per-host bandwidthl{ = 3) ment of replicas that have a number of attractive fea-

0.1 0.7 Mb/s 28 Kb/s | 4.0Kb/s . . . R

T 67 Mb/s T 280 Kb/s T 40 KbJS tures. Our heuristics pr_o_wde excellent reI|ab|I|_ty guar-

10 66.7 Mb/s | 2.8 Mb/s | 400 Kb/s antees (ove0.99 probability that user data survives at-

100 667 Mb/s | 28 Mb/s | 4.0 Mb/s tacks of single- and double-exploit pathogens), result in

low degree of replication (less than 3 copies for single-
) i exploit pathogens; less than 5 copies for double-exploit
Table 6: Bandwidth consumption after a catastrophe. pathogens), limit the storage burden on each host in the
system, and lend themselves to a fully distributed imple-
The results in the table show the per-host bandwidtinentation. We then used this approach in the design and
requirements with a load limii. = 3, where each host implementation of a cooperative backup system called
responds to at most three recovery requests. The réhe Phoenix Recovery Service. Based upon our evalu-
sults indicate that Phoenix can recover from a sever@tion results, we conclude that our approach is a viable
catastrophe in reasonable time periods for useful backupnd attractive method for surviving Internet catastrophes
sizes. As with other cooperative backup systems like
Pastiche [8], per-host recovery time will depend signifi- Acknowledgements
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