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Abstract
In this paper, we propose a new approach for de-

signing distributed systems to survive Internet catastro-
phes called informed replication, and demonstrate this
approach with the design and evaluation of a coopera-
tive backup system called the Phoenix Recovery Service.
Informed replication uses a model of correlated failures
to exploit software diversity. The key observation that
makes our approach both feasible and practical is that In-
ternet catastrophes result from shared vulnerabilities. By
replicating a system service on hosts that do not have the
same vulnerabilities, an Internet pathogen that exploits a
vulnerability is unlikely to cause all replicas to fail. To
characterize software diversity in an Internet setting, we
measure the software diversity of host operating systems
and network services in a large organization. We then
use insights from our measurement study to develop and
evaluate heuristics for computing replica sets that have
a number of attractive features. Our heuristics provide
excellent reliability guarantees, result in low degree of
replication, limit the storage burden on each host in the
system, and lend themselves to a fully distributed im-
plementation. We then present the design and prototype
implementation of Phoenix, and evaluate it on the Plan-
etLab testbed.

1 Introduction

The Internet today is highly vulnerable to Internet epi-
demics: events in which a particularly virulent Inter-
net pathogen, such as a worm or email virus, compro-
mises a large number of hosts. Starting with the Code
Red worm in 2001, which infected over 360,000 hosts
in 14 hours [27], such pathogens have become increas-
ingly virulent in terms of speed, extent, and sophis-
tication. Sapphire scanned most IP addresses in less
than 10 minutes [25], Nimda reportedly infected mil-
lions of hosts, and Witty exploited vulnerabilities in fire-
wall software explicitly designed to defend hosts from
such pathogens [26]. We call such epidemicsInter-
net catastrophesbecause they result in extensive wide-
spread damage costing billions of dollars [27]. Such
damage ranges from overwhelming networks with epi-
demic traffic [25, 27], to providing zombies for spam re-
lays [30] and denial of service attacks [35], to deleting
disk blocks [26]. Given the current ease with which such

pathogens can be created and launched, further Internet
catastrophes are inevitable in the near future.

Defending hosts and the systems that run on them is
therefore a critical problem, and one that has received
considerable attention recently. Approaches to defend
against Internet pathogens generally fall into three cate-
gories. Prevention reduces the size of the vulnerable host
population [38, 41, 42]. Treatment reduces the rate of in-
fection [9, 33]. Finally, containment techniques block
infectious communication and reduce the contact rate of
a spreading pathogen [28, 44, 45].

Such approaches can mitigate the impact of an Internet
catastrophe, reducing the number of vulnerable and com-
promised hosts. However, they are unlikely to protect all
vulnerable hosts or entirely prevent future epidemics and
risk of catastrophes. For example, fast-scanning worms
like Sapphire can quickly probe most hosts on the Inter-
net, making it challenging for worm defenses to detect
and react to them at Internet scale [28]. The recent Witty
worm embodies a so-calledzero-day worm, exploiting
a vulnerability very soon after patches were announced.
Such pathogens make it increasingly difficult for organi-
zations to patch vulnerabilities before a catastrophe oc-
curs. As a result, we argue that defenses are necessary,
but not sufficient, for entirely protecting distributed sys-
tems and data on Internet hosts from catastrophes.

In this paper, we propose a new approach for design-
ing distributed systems to survive Internet catastrophes
called informed replication. The key observation that
makes informed replication both feasible and practical
is that Internet epidemics exploit shared vulnerabilities.
By replicating a system service on hosts that do not have
the same vulnerabilities, a pathogen that exploits one or
more vulnerabilities cannot cause all replicas to fail. For
example, to prevent a distributed system from failing due
to a pathogen that exploits vulnerabilities in Web servers,
the system can place replicas on hosts running different
Web server software.

The software of every system inherently is a shared
vulnerability that represents a risk to using the system,
and systems designed to use informed replication are no
different. Substantial effort has gone into making sys-
tems themselves more secure, and our design approach
can certainly benefit from this effort. However, with the
dramatic rise of worm epidemics, such systems are now
increasingly at risk to large-scale failures due to vulner-
abilities in unrelatedsoftware running on the host. In-



formed replication reduces this new source of risk.
This paper makes four contributions. First, we develop

a system model using thecoreabstraction [15] to repre-
sent failure correlation in distributed systems. A core is
a reliable minimal subset of components such that the
probability of having all hosts in a core failing is negli-
gible. To reason about the correlation of failures among
hosts, we associateattributeswith hosts. Attributes rep-
resent characteristics of the host that can make it prone
to failure, such as its operating system and network ser-
vices. Since hosts often have many characteristics that
make it vulnerable to failure, we group host attributes to-
gether intoconfigurationsto represent the set of vulnera-
bilities for a host. A system can use the configurations of
all hosts in the system to determine how many replicas
are needed, and on which hosts those replicas should be
placed, to survive a worm epidemic.

Second, the efficiency of informed replication funda-
mentally depends upon the degree of software diversity
among the hosts in the system, as more homogeneous
host populations result in a larger storage burden for par-
ticular hosts. To evaluate the degree of software het-
erogeneity found in an Internet setting, we measure and
characterize the diversity of the operating systems and
network services of hosts in the UCSD network. The
operating system is important because it is the primary
attribute differentiating hosts, and network services rep-
resent the targets for exploit by worms. The results of
this study indicate that such networks have sufficient di-
versity to make informed replication feasible.

Third, we develop heuristics for computing cores that
have a number of attractive features. They provide ex-
cellent reliability guarantees, ensuring that user data sur-
vives attacks of single- and double-exploit pathogens
with probability greater than0.99. They have low over-
head, requiring fewer than 3 copies to cope with single-
exploit pathogens, and fewer than 5 copies to cope with
double-exploit pathogens. They bound the number of
replica copies stored by any host, limiting the storage
burden on any single host. Finally, the heuristics lend
themselves to a fully distributed implementation for scal-
ability. Any host can determine its replica set (its core)
by contacting a constant number of other hosts in the sys-
tem, independent of system size.

Finally, to demonstrate the feasibility and utility of
our approach, we apply informed replication to the de-
sign and implementation of Phoenix. Phoenix is a coop-
erative, distributed remote backup system that protects
stored data against Internet catastrophes that cause data
loss [26]. The usage model of Phoenix is straightfor-
ward: users specify an amountF of bytes of their disk
space for management by the system, and the system pro-
tects a proportional amountF/k of their data using stor-
age provided by other hosts, for some value ofk. We
implement Phoenix as a service layered on the Pastry
DHT [32] in the Macedon framework [31], and evaluate
its ability to survive emulated catastrophes on the Plan-
etLab testbed.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes our
system model for representing correlated failures. Sec-
tion 4 describes our measurement study of the soft-
ware diversity of hosts in a large network, and Sec-
tion 5 describes and evaluates heuristics for computing
cores. Section 6 describes the design and implementa-
tion of Phoenix, and Section 7 describes the evaluation
of Phoenix. Finally, Section 8 concludes.

2 Related work

Most distributed systems are not designed such that fail-
ures are independent, and there has been recent inter-
est in protocols for systems where failures are corre-
lated. Quorum-based protocols, which implement repli-
cated update by reading and writing overlapping sub-
sets of replicas, are easily adapted to correlated fail-
ures. A model of dependent failures was introduced for
Byzantine-tolerant quorum systems [23]. This model,
called afail-prone system, is a dual representation of the
model (cores) that we use here. Our model was devel-
oped as part of a study of lower bounds and optimal pro-
tocols for Consensus in environments where failures can
be correlated [15].

The ability of Internet pathogens to spread through a
vulnerable host population on the network fundamentally
depends on three properties of the network: the number
of susceptible hosts that could be infected, the number of
infected hosts actively spreading the pathogen, and the
contact rate at which the pathogen spreads. Various ap-
proaches have been developed for defending against such
epidemics that address each of these properties.

Prevention techniques, such as patching [24, 38, 42]
and overflow guarding [7, 41], prevent pathogens from
exploiting vulnerabilities, thereby reducing the size of
the vulnerable host population and limiting the extent of
a worm outbreak. However, these approaches have the
traditional limitations of ensuring soundness and com-
pleteness, or leave windows of vulnerability due to the
time required to develop, test, and deploy.

Treatment techniques, such as disinfection [6, 9] and
vaccination [33], remove software vulnerabilities after
they have been exploited and reduce the rate of infec-
tion as hosts are treated. However, such techniques are
reactive in nature and hosts still become infected.

Containment techniques, such as throttling [21, 44]
and filtering [28, 39], block infectious communication
between infected and uninfected hosts, thereby reduc-
ing or potentially halting the contact rate of a spreading
pathogen. The efficacy of reactive containment funda-
mentally depends upon the ability to quickly detect a new
pathogen [19, 29, 37, 46], characterize it to create filters
specific to infectious traffic [10, 16, 17, 34], and deploy
such filters in the network [22, 40]. Unfortunately, con-
tainment at Internet scales is challenging, requiring short
reaction times and extensive deployment [28, 45]. Again,



since containment is inherently reactive, some hosts al-
ways become infected.

Various approaches take advantage of software hetero-
geneity to make systems fault-tolerant. N-version pro-
gramming uses different implementations of the same
service to prevent correlated failures across implemen-
tations. Castro’s Byzantine fault tolerant NFS service
(BFS) is one such example [4] and provides excellent
fault-tolerant guarantees, but requires multiple imple-
mentations of every service. Scrambling the layout and
execution of code can introduce heterogeneity into de-
ployed software [1]. However, such approaches can
make debugging, troubleshooting, and maintaining soft-
ware considerably more challenging. In contrast, our ap-
proach takes advantage of existing software diversity.

Lastly, Phoenix is just one of many proposed coopera-
tive systems for providing archival and backup services.
For example, Intermemory [5] and Oceanstore [18] en-
able stored data to persist indefinitely on servers dis-
tributed across the Internet. As with Phoenix, Oceanstore
proposes mechanisms to cope with correlated fail-
ures [43]. The approach, however, is reactive and does
not enable recovery after Internet catastrophes. With
Pastiche [8], pStore [2], and CIBS [20], users relinquish
a fraction of their computing resources to collectively
create a backup service. However, these systems target
localized failures simply by storing replicas offsite. Such
systems provide similar functionality as Phoenix, but are
not designed to survive wide-spread correlated failures
of Internet catastrophes. Finally, Glacier is a system
specifically designed to survive highly correlated failures
like Internet catastrophes [11]. In contrast to Phoenix,
Glacier assumes a very weak failure model and instead
copes with catastrophic failures via massive replication.
Phoenix relies upon a stronger failure model, but replica-
tion in Phoenix is modest in comparison.

3 System model

As a first step toward the development of a technique to
cope with Internet catastrophes, in this section we de-
scribe our system model for representing and reasoning
about correlated failures, and discuss the granularity at
which we represent software diversity.

3.1 Representing correlated failures

Consider a system composed of a setH of hosts each of
which is capable of holding certain objects. These hosts
can fail (for example, by crashing) and, to keep these
objects available, they need to be replicated. A simple
replication strategy is to determine the maximum number
t of hosts that can fail at any time, and then maintain
more thant replicas of each object.

However, using more thant replicas may lead to
excessive replication when host failures are correlated.
As a simple example, consider three hosts{h1, h2, h3}

where the failures ofh1 andh2 are correlated whileh3

fails independent of the other hosts. Ifh1 fails, then the
probability ofh2 failing is high. As a result, one might
sett = 2 and thereby requiret + 1 = 3 replicas. How-
ever, if we place replicas onh1 andh3, the object’s avail-
ability may be acceptably high with just two replicas.

To better address issues of optimal replication in the
face of correlated failures, we have defined an abstrac-
tion that we call acore [15]. A core is a minimal set
of hosts such that, in any execution, at least one host
in the core does not fail. In the above example, both
{h1, h3} and{h2, h3} are cores.{h1, h2} would not be
a core since the probability of both failing is too high and
{h1, h2, h3} would not be a core since it is not minimal.
Using this terminology, a central problem of informed
replication is the identification of cores based on the cor-
relation of failures.

An Internet catastrophe causes hosts to fail in a corre-
lated manner because all hosts running the targeted soft-
ware are vulnerable. Operating systems and Web servers
are examples of software commonly exploited by Inter-
net pathogens [27, 36]. Hence we characterize a host’s
vulnerabilities by the software they run. We associate
with each host a set ofattributes, where each attribute is a
canonical name of a software package or system that the
host runs; in Section 3.2 below, we discuss the tradeoffs
of representing software packages at different granulari-
ties. We call the combined representation of all attributes
of a host theconfigurationof the host. An example of a
configuration is{Windows, IIS, IE}, whereWindowsis
a canonical name for an operating system,IIS for a Web
server package, andIE for a Web browser. Agreeing on
canonical names for attribute values is essential to en-
sure that dependencies of host failures are appropriately
captured.

An Internet pathogen can be characterized by the set
of attributesA that it targets. Any host that has none
of the attributes inA is not susceptible to the pathogen.
A core is a minimal setC of hosts such that, for each
pathogen, there is a hosth in C that is not susceptible
to the pathogen. Internet pathogens often target a sin-
gle (possibly cross-platform) vulnerability, and the ones
that target multiple vulnerabilities target the same oper-
ating system. Assuming that any attribute is susceptible
to attack, we can re-define a core using attributes: a core
is a minimal setC of processes such that no attribute is
common to all hosts inC. In Section 5.4, we relax this
assumption and show how to extend our results to toler-
ate pathogens that can exploit multiple vulnerabilities.

To illustrate these concepts, consider the system de-
scribed in Example 3.1. In this system, hosts are charac-
terized by six attributes which we classify for clarity into
operating system, Web server, and Web browser.

Example 3.1

Attributes: Operating System ={Unix, Windows};
Web Server ={Apache, IIS};
Web Browser ={IE, Netscape}.



Hosts: H1 = {Unix, Apache, Netscape};
H2 = {Windows, IIS, IE};
H3 = {Windows, IIS, Netscape};
H4 = {Windows, Apache, IE}.

Cores= {{H1, H2}, {H1, H3, H4}}.

H1 and H2 comprise what we call anorthogonal
core, which is a core composed of hosts that have dis-
joint configurations. Given our assumption that Internet
pathogens target only one vulnerability or multiple vul-
nerabilities on one platform, an orthogonal core will con-
tain two hosts.{H1, H3, H4} is also a core because there
is no attribute present in all hosts, and it is minimal.

The smaller core{H1, H2} might appear to be the bet-
ter choice since it requires less replication. Choosing the
smallest core, however, can have an adverse effect on
individual hosts if many hosts use this core for placing
replicas. To represent this effect, we defineload to be the
amount of storage a host provides to other hosts. In envi-
ronments where some configurations are rare, hosts with
the rare configurations may occur in a large percentage
of the smallest cores. Thus, hosts with rare configura-
tions may have a significantly higher load than the other
hosts. Indeed, having a rare configuration can increase a
host’s load even if the smallest core is not selected. For
example, in Example 3.1,H1 is the only host that has a
flavor of Unix as its operating system. Consequently,H1

is present in both cores.
To make our argument more concrete, consider the

worms summarized in Table 1, which are well-known
worms unleashed in the past three years. For each worm,
given two hosts with one not running Windows or not
running a specific server such as a Web server or a
database, at least one survives the attack. With even
a very modest amount of heterogeneity, our method of
constructing cores includes such pairs of hosts.

3.2 Attribute granularity

Attributes can represent software diversity at many dif-
ferent granularities. The choice of attribute granularity
balances resilience to pathogens, flexibility for placing
replicas, and degree of replication. An example of the
coarsest representation is for a host to have a configu-
ration comprising a single attribute for the generic class
of operating system, e.g., “Windows”, “Unix”, etc. This
single attribute represents the potential vulnerabilities of
all versions of software running on all versions of the
same class of operating system. As a result, replicas
would always be placed on hosts with different operating
systems. A less coarse representation is to have attributes
for the operating system as well as all network services
running on the host. This representation yields more
freedom for placing replicas. For example, we can place
replicas on hosts with the same class of operating system
if they run different services. The core{H1, H3, H4}
in Example 3.1 is an example of this situation sinceH3

andH4 both run Windows. More fine-grained represen-

Worm Form of infection (Service) Platform
Code Red port 80/http (MS IIS) Windows
Nimda multiple: email; Trojan horse versions Windows

using open network shares (SMB: ports
137–139 and 445); port 80/HTTP
(MS IIS); Code Red backdoors

Sapphire port 1434/udp (MS SQL, MSDE) Windows
Sasser port 445/tcp (LSASS) Windows
Witty port 4000/udp (BlackICE) Windows

Table 1: Recent well-known pathogens.

tations can have attributes for different versions of op-
erating systems and applications. For example, we can
represent the various releases of Windows, such as “Win-
dows 2000” and “Windows XP”, or even versions such as
“NT 4.0sp4” as attributes. Such fine-grained attributes
provide considerable flexibility in placing replicas. For
example, we can place a replica on an NT host and an
XP host to protect against worms such as Code Red that
exploit an NT service but not an XP service. But doing
so greatly increases the cost and complexity of collect-
ing and representing host attributes, as well as computing
cores to determine replica sets.

Our initial work [14] suggested that informed repli-
cation can be effective with relatively coarse-grained at-
tributes for representing software diversity. As a result,
we use attributes that represent just the class of operating
system and network services on hosts in the system, and
not their specific versions. In subsequent sections, we
show that, when representing diversity at this granular-
ity, hosts in an enterprise-scale network have substantial
and sufficient software diversity for efficiently support-
ing informed replication. Our experience suggests that,
although we can represent software diversity at finer at-
tribute granularities such as specific software versions,
there is not a compelling need to do so.

4 Host diversity

With informed replication, the difficulty of identifying
cores and the resulting storage load depend upon the ac-
tual distribution of attributes among a set of hosts. To
better understand these two issues, we measured the soft-
ware diversity of a large set of hosts at UCSD. In this
section, we first describe the methodology we used, and
discuss the biases and limitations our methodology im-
poses. We then characterize the operating system and
network service attributes found on the hosts, as well as
the host configurations formed by those attributes.

4.1 Methodology

On our behalf, UCSD Network Operations used the
nmap tool [12] to scan IP address blocks owned by
UCSD to determine the host type, operating system, and
network services running on the host. Nmap uses var-
ious scanning techniques to classify devices connected
to the network. To determine operating systems, nmap



interacts with the TCP/IP stack on the host using var-
ious packet sequences or packet contents that produce
known behaviors associated with specific operating sys-
tem TCP/IP implementations. To determine the network
services running on hosts, nmap scans the host port space
to identify all open TCP and UDP ports on the host. We
anonymized host IP addresses prior to processing.

Due to administrative constraints collecting data, we
obtained the operating system and port data at different
times. We had a port trace collected between December
19–22, 2003, and an operating system trace collected be-
tween December 29, 2003 and January 7, 2004. The port
trace contained 11,963 devices and the operating system
trace contained 6,395 devices.

Because we are interested in host data, we first dis-
carded entries for specialized devices such as printers,
routers, and switches. We then merged these traces to
produce a combined trace of hosts that contained both
operating system data and open port data for the same set
of hosts. When fingerprinting operating systems, nmap
determines both a class (e.g., Windows) as well as a
version (e.g., Windows XP). For added consistency, we
discarded host information for those entries that did not
have consistent OS class and version info. The result was
a data set with operating system and port data for 2,963
general-purpose hosts.

Our data set was constructed using assumptions that
introduced biases. First, worms exploit vulnerabilities
that are present in network services. We make the as-
sumption that two hosts that have the same open port are
running the same network service and thus have the same
vulnerability. In fact, two hosts may use a given port to
run different services, or even different versions (with
different vulnerabilities) of the same service. Second,
ignoring hosts that nmap could not consistently finger-
print could bias the host traces that were used. Third,
DHCP-assigned host addresses are reused. Given the
time elapsed between the time operating system infor-
mation was collected and port information was collected,
an address in the operating system trace may refer to a
different host in the port trace. Further, a host may ap-
pear multiple times with different addresses either in the
port trace or in the operating system trace. Consequently,
we may have combined information from different hosts
to represent one host or counted the same host multiple
times.

The first assumption can make two hosts appear to
share vulnerabilities when in fact they do not, and the
second assumption can consistently discard configura-
tions that otherwise contribute to a less skewed distribu-
tion of configurations. The third assumption may make
the distribution of configurations seem less skewed, but
operating system and port counts either remain the same
(if hosts do not appear multiple times in the traces) or
increase due to repeated configurations. The net effect
of our assumptions is to make operating system and port
distributions appear to be less diverse than it really is, al-
though it may have the opposite effect on the distribution

OS
Name Count (%)

Windows 1604 (54.1)
Solaris 301 (10.1)

Mac OS X 296 (10.0)
Linux 296 (10.0)

Mac OS 204 (6.9)
FreeBSD 66 (2.2)

IRIX 60 (2.0)
HP-UX 32 (1.1)
BSD/OS 28 (0.9)

Tru64 Unix 22 (0.7)

(a)

Port
Number Count (%)

139 (netbios-ssn) 1640 (55.3)
135 (epmap) 1496 (50.4)

445 (microsoft-ds) 1157 (39.0)
22 (sshd) 910 (30.7)

111 (sunrpc) 750 (25.3)
1025 (various) 735 (24.8)

25 (smtp) 575 (19.4)
80 (httpd) 534 (18.0)
21 (ftpd) 528 (17.8)

515 (printer) 462 (15.6)

(b)

Table 2: Top 10 operating systems (a) and ports (b)
among the 2,963 general-purpose hosts.

of configurations.
Another bias arises from the environment we sur-

veyed. A university environment is not necessarily repre-
sentative of the Internet, or specific subsets of it. We sus-
pect that such an environment is more diverse in terms of
software use than other environments, such as the hosts
in a corporate environment or in a governmental agency.
On the other hand, there are perhaps thousands of univer-
sities with a large setting connected to the Internet around
the globe, and so the conclusions we draw from our data
are undoubtedly not singular.

4.2 Attributes

Together, the hosts in our study have 2,569 attributes
representing operating systems and open ports. Table 2
shows the ten most prevalent operating systems and open
ports identified on the general purpose hosts. Table 2.a
shows the number and percentage of hosts running the
named operating systems. As expected, Windows is the
most prevalent OS (54% of general purpose hosts). In-
dividually, Unix variants vary in prevalence (0.03–10%),
but collectively they comprise a substantial fraction of
the hosts (38%).

Table 2.b shows the most prevalent open ports on the
hosts and the network services typically associated with
those port numbers. These ports correspond to services
running on hosts, and represent the points of vulnerabil-
ity for hosts. On average, each host had seven ports open.
However, the number of ports per host varied consider-
ably, with 170 hosts only having one port open while one
host (running a firewall software) had 180 ports open.
Windows services dominate the network services run-
ning on hosts, with netbios-ssn (55%), epmap (50%),
and domain services (39%) topping the list. The most
prevalent services typically associated with Unix are ssh
(31%) and sunrpc (25%). Web servers on port 80 are
roughly as prevalent as ftp (18%).

These results show that the software diversity is sig-
nificantly skewed. Most hosts have open ports that are
shared by many other hosts (Table 2 lists specific exam-
ples). However, most attributes are found on few hosts,
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Figure 1: Visualization of UCSD configurations.

i.e., most open ports are open on only a few hosts. From
our traces, we observe that the first 20 most prevalent
attributes are found on 10% or more of hosts, but the re-
maining attributes are found on fewer hosts.

These results are encouraging for the process of find-
ing cores. Having many attributes that are not widely
shared makes it easier to find replicas that cover each
other’s attributes, preventing a correlated failure from af-
fecting all replicas. We examine this issue next.

4.3 Configurations

Each host has multiple attributes comprised of its oper-
ating system and network services, and together these at-
tributes determine its configuration. The distribution of
configurations among the hosts in the system determines
the difficulty of finding core replica sets. The more con-
figurations shared by hosts, the more challenging it is to
find small cores.

Figure 1 is a qualitative visualization of the space of
host configurations. It shows a scatter plot of the host
configurations among the UCSD hosts in our study. The
x-axis is the port number space from 0–6500, and the
y-axis covers the entire set of 2,963 host configurations
grouped by operating system family. A dot corresponds
to an open port on a host, and each horizontal slice
of the scatter plot corresponds to the configuration of
open ports for a given host. We sort groups in decreas-
ing size according to the operating systems listed in Ta-
ble 2: Windows hosts start at the bottom, then Solaris,
Mac OS X, etc. Note that we have truncated the port
space in the graph; hosts had open ports above 6500,
but showing these ports did not add any additional in-
sight and obscured patterns at lower, more prevalent port
numbers.

Figure 1 shows a number of interesting features of the
configuration space. The marked vertical bands within
each group indicate, as one would expect, strong cor-
relations of network services among hosts running the
same general operating system. For example, most Win-
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Figure 2: Distribution of configurations, with configura-
tions sorted in decreasing order of prevalence.

dows hosts run the epmap (port 135) and netbios (port
139) services, and many Unix hosts run sshd (port 22)
and X11 (port 6000). Also, in general, non-Windows
hosts tend to have more open ports (8.3 on average) than
Windows hosts (6.0 on average). However, the groups of
hosts running the same operating system still have sub-
stantial diversity within the group. Although each group
has strong bands, they also have a scattering of open
ports between the bands contributing to diversity within
the group. Lastly, there is substantial diversity among
the groups. Windows hosts have different sets of open
ports than hosts running variants of Unix, and these sets
even differ among Unix variants. We take advantage of
these characteristics to develop heuristics for determin-
ing cores in Section 5.

Figure 2 provides a quantitative evaluation of the di-
versity of host configurations. It shows the cumula-
tive distribution of configurations across hosts for differ-
ent classes of port attributes, with configurations on the
x-axis sorted by decreasing order of prevalence. A distri-
bution in which all configurations are equally prevalent
would be a straight diagonal line. Instead, the results
show that the distribution of configurations is skewed,
with a majority of hosts accounting for only a small per-
centage of all configurations. For example, when con-
sidering all attributes, 50% of hosts comprise just 20%
of configurations. In addition, reducing the number of
port attributes considered further skews the distribution.
For example, when only considering ports that appear on
more than one host, shown by the “Multiple” line, 15%
of the configurations represent over 50% of the hosts.
And when considering only the port attributes that ap-
pear on at least 100 hosts, only 8% of the configurations
represent over 50% of the hosts. Skew in the configu-
ration distribution makes it more difficult to find cores
for those hosts that share more prevalent configurations
with other hosts. In the next section, however, we show
that host populations with diversity similar to UCSD are
sufficient for efficiently constructing cores that result in
a low storage load.



5 Surviving catastrophes

With informed replication, each hosth constructs a core
Core(h) based on its configuration and the configuration
of other hosts.1 Unfortunately, computing a core of op-
timal size is NP-hard, as we have shown with a reduc-
tion from SET-COVER [13]. Hence, we use heuristics
to computeCore(h). In this section, we first discuss a
structure for representing advertised configurations that
is amenable to heuristics for computing cores. We then
describe four heuristics and evaluate via simulation the
properties of the cores that they construct. As a basis for
our simulations, we use the set of hostsH obtained from
the traces discussed in Section 4.

5.1 Advertised configurations

Our heuristics are different versions of greedy algo-
rithms: a hosth repeatedly selects other hosts to include
in Core(h) until some condition is met. Hence we chose
a representation that makes it easier for a greedy algo-
rithm to find good candidates to include inCore(h). This
representation is a three-level hierarchy.

The top level of the hierarchy is the operating system
that a host runs, the second level includes the applica-
tions that run on that operating system, and the third level
are hosts. Each host runs one operating system, and so
each host is subordinate to its operating system in the hi-
erarchy (we can represent hosts running multiple virtual
machines as multiple virtual hosts in a straightforward
manner). Since most applications run predominately on
one platform, hosts that run a different operating sys-
tem thanh are likely good candidates for including in
Core(h). We call the first level thecontainersand the
second level thesub-containers. Each sub-container con-
tains a set of hosts. Figure 3 illustrates these abstractions
using the configurations of Example 3.1.

More formally, letO be the set of canonical operating
system names andC be the set of containers. Each host
h has an attributeh.os that is the canonical name of the
operating system onh. The functionmc : O → C maps
operating system name to container; thus,mc(h.os) is
the container that containsh.
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Figure 3: Illustration of containers and sub-containers.

Let h.apps denote the set of canonical names of the
applications that are running onh, and letA be the
canonical names of all of the applications. We denote

1More precisely,Core(h) is a core constrained to containh. That
is, Core(h) \ {h}may itself be minimal, but we requireh ∈ Core(h).

with S the set of sub-containers and withms : C → 2S

the function that maps a container to its sub-containers.
The functionmh : C ×A → S maps a container and ap-
plication to a sub-container; thus, for eacha ∈ h.apps,
hosth is in each sub-containermh(mc(h.os), a).

At this high level of abstraction, advertising a config-
uration is straightforward. InitiallyC is empty. To ad-
vertise its configuration, a hosth first ensures that there
is a containerc ∈ C such thatmc(h.os) = c. Then,
for each attributea ∈ h.apps, h ensures that there is a
sub-containermh(c, a) containingh.

5.2 Computing cores

The heuristics we describe in this section compute
Core(h) in time linear with the number of attributes in
h.apps. These heuristics reference the setC of containers
and the three functionsmc, ms andmh, but they do not
reference the full setA of attributes. In addition, these
heuristics do not enumerateH, but they do reference the
configuration of hosts (to reference the configuration of
a hosth′, they referenceh′.os andh′.apps). Thus, the
container/sub-container hierarchy is the only data struc-
ture that the heuristics use to compute cores.

5.2.1 Metrics

We evaluate our heuristics using three metrics:

• Average core size: |Core(h)| averaged over allh ∈
H. This metric is important because it determines
how much capacity is available in the system. As
the average core size increases, the total capacity of
the system decreases.

• Maximum load: The load of a hosth′ is the num-
ber of coresCore(h) of which h′ is a member.
The maximum load is the largest load of any host
h′ ∈ H.

• Average coverage: We say that an attributea of a
hosth is coveredin Core(h) if there is at least one
other hosth′ in Core(h) that does not havea. Thus,
an exploit of attributea can affecth, but noth′, and
so not all hosts inCore(h) are affected. Thecover-
ageof Core(h) is the fraction of attributes ofh that
are covered. Theaverage coverageis the average of
the coverages ofCore(h) over all hostsh ∈ H. A
high average coverage indicates a higher resilience
to Internet catastrophes: many hosts have most or
all of their attributes covered. We return to this dis-
cussion of what coverage means in practice in Sec-
tion 5.3, after we present most of our simulation re-
sults for context.

For brevity, we use the terms core size, load, and cov-
erage to indicate average core size, maximum load, and
average coverage, respectively. Where we do refer to



Core size Coverage Load
Random 5 0.977 12
Uniform 2.56 0.9997 284
Weighted 2.64 0.9995 84
DWeighted 2.58 0.9997 91

Table 3: A typical run of the heuristics.

these terms in the context of a particular host, we say
so explicitly.

A good heuristic will determine cores with small size,
low load, and high coverage. Coverage is the most criti-
cal metric because it determines how well it does in guar-
anteeing service in the event of a catastrophe. Coverage
may not equal 1 either because there was no hosth′ that
was available to cover an attributea of h, or because the
heuristic failed to identify such a hosth′. As shown in
the following sections, the second case rarely happens
with our heuristics.

Note that, as a single number, the coverage of a given
Core(h) does not fully capture its resilience. For exam-
ple, consider hosth1 with two attributes and hosth2 with
10 attributes. IfCore(h1) covers only one attribute, then
Core(h1) has a coverage of 0.5. IfCore(h2) has the same
coverage, then it covers only 5 of the 10 attributes. There
are more ways to fail all of the hosts inCore(h2) than
those inCore(h1). Consequently, we also use the num-
ber of cores that do not have a coverage of 1.0 as an ex-
tension of the coverage metric.

5.2.2 Heuristics

We begin by using simulation to evaluate a naive heuris-
tic calledRandom that we use as a basis for compari-
son. It is not a greedy heuristic and does not reference
the advertised configurations. Instead,h simply chooses
at random a subset ofH of a given size containingh.

The first row of Table 3 shows the results ofRandom
using one run of our simulator. We set the size of the
cores to 5, i.e.,Random chose 5 random hosts to form
a core. The coverage of 0.977 may seem high, but there
are still many cores that have uncovered attributes and
choosing a core size smaller than five results in even
lower coverage. The load is 12, which is significantly
higher than the lower bound of 5.2

Our first greedy heuristicUniform (“uniform” selec-
tion among operating systems) operates as follows. First,
it chooses a host with a different operating system than
h.os to cover this attribute. Then, for each attributea ∈
h.apps, it chooses both a containerc ∈ C \ {mc(h.os)}
and a sub-containersc ∈ ms(c) \ {mh(c, a)} at ran-
dom. Finally, it chooses a hosth′ at random fromsc.
If a 6∈ h′.apps then it includesh′ in Core(h). Other-
wise, it tries again by choosing a new containerc, sub-
containersc, and hosth′ at random. Uniform repeats
this procedurediff OS times in an attempt to cover

2To meet this bound, number the hosts inH from 0 to |H| − 1.
Let Core(h) be the hosts{h, h⊕ 1, h⊕ 2, h⊕ 3, h⊕ 4} where⊕ is
addition modulo|H|.

a with Core(h). If it fails to covera, then the heuris-
tic tries up tosame OS times to covera by choosing a
sub-containersc ∈ mc(h.os) at random and a hosth′ at
random fromsc.

The goal for having two steps, one withdiff OS and
another withsame OS, is to first exploit diversity across
operating systems, and then to exploit diversity among
hosts within the same operating system group. Refer-
ring back to Figure 1, the set of prevalent services among
hosts running the same operating system varies across
the different operating systems. In the case the attribute
cannot be covered with hosts running other operating
systems, the diversity within an operating system group
may be sufficient to find a hosth′ without attributea.

In all of our simulations, we setdiff OS to 7 and
same OS to 4. After experimentation, these values have
provided a good trade-off between number of useless
tries and obtaining good coverage. However, we have
yet to study how to in general choose good values of
diff OS andsame OS.

Pseudo-code forUniform is as follows.

Algorithm Uniform on input h:
integer i;
core ← {h};
C′ ← C \ {mc(h.os)}
for each attribute a ∈ h.apps

i← 0
while (a is not covered) ∧

(i ≤ diff OS + same OS)
if (i ≤ diff OS) choose randomly c ∈ C′

else c← mc(h.os)
choose randomly sc ∈ ms(c) \ {mh(c, a)}
choose a host h′ ∈ sc : h′ 6= h

if (h′ covers a) add h′ to core
i← i + 1

return core

The second row of Table 3 shows the performance of
Uniform for a representative run of our simulator. The
core size is close to the minimum size of two, and the
coverage is very close to the ideal value of one. This
means that usingUniform results in significantly bet-
ter capacity and improved resilience thanRandom. On
the other hand, the load is very high: there is at least
one host that participates in 284 cores. The load is so
high becauseh chooses containers and sub-containers
uniformly. When constructing the cores for hosts of a
given operating system, the other containers are refer-
enced roughly the same number of times. Thus,Uniform
considers hosts running less prevalent operating systems
for inclusion in cores a disproportionately large number
of times. A similar argument holds for hosts running less
popular applications.

This behavior suggests refining the heuristic to choose
containers and applications weighted on the popularity
of their operating systems and applications. Given a con-
tainerc, let Nc(c) be the number of distinct hosts in the
sub-containers ofc, and given a set of containersC, let
Nc(C) be the sum ofNc(c) for all c ∈ C. The heuris-
tic Weighted (“weighted” OS selection) is the same as
Uniform except that for the firstdiff OS attempts,h



chooses a containerc with probability Nc(c)/Nc(C \
{mc(h.os)}). HeuristicDWeighted(“doubly-weighted”
selection) takes this a step further. LetNs(c, a) be
|mh(c, a)| and Ns(c, A) be the size of the union of
mh(c, a) for all a ∈ A. Heuristic DWeighted is the
same asWeighted except that, when considering at-
tributea ∈ h.apps, h chooses a host from sub-container
mh(c, a′) with probabilityNs(c, a

′)/Ns(c,A \ {a}).
In the third and fourth rows of Table 3, we show a rep-

resentative run of our simulator for both of these varia-
tions. The two variations result in comparable core sizes
and coverage asUniform , but significantly reduce the
load. The load is still very high, though: at least one host
ends up being assigned to over 80 cores.

Another approach to avoid a high load is to simply
disallow it at the risk of decreasing the coverage. That
is, for some value ofL, once a hosth′ is included in
L cores,h′ is removed from the structure of advertised
configurations. Thus, the load of any host is constrained
to be no larger thanL.

What is an effective value ofL that reduces load while
still providing good coverage? We answer this question
by first establishing a lower bound on the value ofL.
Suppose thata is the most prevalent attribute (either ser-
vice or operating system) among all attributes, and it is
present in a fractionx of the host population. As a simple
application of the pigeonhole principle, some host must
be in at leastl cores, wherel is defined as:

l =

⌈

|H| · x

|H| · (1 − x)

⌉

=

⌈

x

(1 − x)

⌉

(1)

Thus, the value ofL cannot be smaller thanl. Using
Table 2, we have that the most prevalent attribute (port
139) is present in 55.3% of the hosts. In this case,l = 2.

Using simulation, we now evaluate our heuristics in
terms of core size, coverage, and load as a function of
the load limitL. Figures 4–7 present the results of our
simulations. In these figures, we varyL from the mini-
mum 2 through a high load of 10. All the points shown
in these graphs are the averages of eight simulated runs
with error bars (although they are too narrow to be seen
in some cases). For Figures 4–6, we use the standard er-
ror to determine the limits of the error bars, whereas for
Figure 7 we use the maximum and minimum observed
among our samples. When using load limit as a thresh-
old, the order in which hosts request cores fromH will
produce different results. In our experiments, we ran-
domly choose eight different orders of enumeratingH
for constructing cores. For each heuristic, each run of
the simulator uses a different order. Finally, we vary the
core size ofRandom using the load limitL to illustrate
its effectiveness across a range of core sizes.

Figure 4 shows the average core size for the four algo-
rithms for different values ofL. According to this graph,
Uniform , Weighted, andDWeighteddo not differ much
in terms of core size. The average core size ofRandom
increases linearly withL by design.
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In Figure 5, we show results for coverage. Coverage
is slightly smaller than1.0 for Uniform , Weighted, and
DWeighted when L is greater or equal to three. For
L = 2, Weighted andDWeighted still have coverage
slightly smaller than1.0, butUniform does significantly
worse. Using weighted selection is useful whenL is
small. Random improves coverage with increasingL
because the size of the cores increases. Note that, to
reach the same value of coverage obtained by the other
heuristics,Random requires a large core size of9.

There are two other important observations to make
about this graph. First, coverage is roughly the same for
Uniform , Weighted, andDWeightedwhenL > 2. Sec-
ond, asL continues to increase, there is a small decrease
in coverage. This is due to the nature of our traces and
to the random choices made by our algorithms. Ports
such as 111 (portmapper, rpcbind) and 22 (sshd) are open
on several of the hosts with operating systems different
than Windows. For small values ofL, these hosts rapidly
reach their threshold. Consequently, when hosts that do
have these services as attributes request a core, there are
fewer hosts available with these same attributes. On the
other hand, for larger values ofL, these hosts are more
available, thus slightly increasing the probability that not
all the attributes are covered for hosts executing an oper-
ating system different than Windows. We observed this
phenomenon exactly with ports 22 and 111 in our traces.
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Figure 6: Average fraction of uncovered hosts.

This same phenomenon can be observed in Figure 6.
In this figure, we plot the average fraction of hosts that
are not fully covered, which is an alternative way of vi-
sualizing coverage. We observe that there is a share of
the population of hosts that are not fully covered, but this
share is very small forUniform and its variations. Such a
set is likely to exist due to the non-deterministic choices
we make in our heuristics when forming cores. These un-
covered hosts, however, are not fully unprotected. From
our simulation traces, we note the average number of un-
covered attributes is very small forUniform and its vari-
ations. In all runs, we have just a few hosts that do not
have all their attributes covered, and in the majority of
the instances there is just a single uncovered attribute.

Finally, we show the resulting variance in load. Since
the heuristics limit each host to be in no more thanL
cores, the maximum load equalsL. The variance in-
dicates how fairly the load is spread among the hosts.
As expected,Randomdoes well, having the lowest vari-
ance among all the algorithms and for all values ofL.
Ordering the greedy heuristics by their variance in load,
we haveUniform ≻ Weighted ≻ DWeighted. This is
not surprising since we introduced the weighted selec-
tion exactly to better balance the load. It is interesting to
observe that for every value ofL, the load variance ob-
tained forUniform is close toL. This means that there
were several hosts not participating in any core and sev-
eral other hosts participating inL cores.

A larger variance in load may not be objectionable in
practice as long as a maximum load is enforced. Given
the extra work of maintaining the functionsNs andNc,
the heuristicUniform with smallL (L > 2) is the best
choice for our application. However, should load vari-
ance be an issue, we can use one of the other heuristics.

5.3 Translating to real pathogens

In this section, we discuss why we have chosen to tol-
erate exploits of vulnerabilities on a single attribute at a
time. We do so based on information about past worms
to support our choices and assumptions.

Worms such as the ones in Table 1 used services that
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have vulnerabilities as vectors for propagation. Code
Red, for example, used a vulnerability in the IIS Web
server to infect hosts. In this example, a vulnerability on
a single attribute (Web server listening on port 80) was
exploited. In other instances, such as with the Nimda
worm, more than one vulnerability was exploited dur-
ing propagation, such as via e-mail messages and Web
browsing. Although these cases could be modeled as
exploits to vulnerabilities on multiple attributes, we ob-
serve that previous worms did not propagate across oper-
ating system platforms: in fact, the worms targeted ser-
vices on various versions of Windows.

By covering classes of operating systems in our cores,
we guarantee that pathogens that exploit vulnerabilities
on a single platform are not able to compromise all the
members of a coreC of a particular hosth, assuming that
C covers all attributes ofh. Even ifCore(h) leaves some
attributes uncovered,h is still protected against attacks
targeting covered attributes. Referring back to Figure 6,
the majority of the cores have maximum coverage. We
also observed in the previous section that, for cores that
do not have maximum coverage, usually it is only a sin-
gle uncovered attribute.

Under our assumptions, informed replication miti-
gates the effects of a worm that exploits vulnerabilities
on a service that exists across multiple operating sys-
tems, and of a worm that exploits vulnerabilities on ser-
vices in a single operating system. Figure 6 presents a
conservative estimate on the percentage of the popula-
tion that is unprotected in the case of an outbreak of such
a pathogen. Assuming conservatively that every host that
is not fully covered has the same uncovered attribute, the
numbers in the graph give the fraction of the population
that can be affected in the case of an outbreak. As can be
seen, this fraction is very small.

With our current use of attributes to represent software
heterogeneity, a worm can be effective only if it can ex-
ploit vulnerabilities in services that run across operating
systems, or if it exploits vulnerabilities in multiple oper-
ating systems. To the best of our knowledge, there has
been no large-scale outbreak of such a worm. Of course,
such a worm could be written. In the next section, we dis-



cuss how to modify our heuristics to cope with exploits
of vulnerabilities on multiple attributes.

5.4 Exploits of multiple attributes

To tolerate exploits on multiple attributes, we need to
construct cores such that, for subsets of attributes pos-
sessed by members of a core, there must be a core mem-
ber that does not have these attributes. We call ak-
resilient coreC a group of hosts inH such that, for every
k attributes of members ofC, there is at least one host in
C that does not contain any of these attributes. In this
terminology, the cores we have been considering up to
this point have been1-resilient cores.

To illustrate this idea, consider the following example.
Hosts runWindows, Linux, andSolarisas operating sys-
tems, andIIS, Apache, andZeusas Web servers. An ex-
ample of a2-resilient core is a subset composed of hosts
h1, h2, h3 with configurations:h1 = {Linux, Apache};
h2 = {Windows, IIS}; h3 = {Solaris, Zeus}. In this
core, for every pair of attributes, there is at least one host
that contains none of them.

As before, every hosth builds a k-resilient core
Core(h). To build Core(h), hosth uses the following
heuristic:

Step 1 Select randomlyk − 1 hosts,h1 throughhk−1, such
thathi.os 6= h.os, for everyi ∈ {1, . . . , k − 1};

Step 2 UseUniform to search for a1-resilient coreC for h

Step 3 For eachi ∈ {1, . . . , k − 1}, useUniform to search
for a1-resilient coreCi for hi;

Step 4 Core(h)← C ∪ C1 ∪ . . . ∪ Ck−1.

Intuitively, to form ak-resilient core we need to gather
enough hosts such that we can split these hosts intok
subsets, where at least one subset is a1-resilient core.
Moreover, if there are two of these subsets where, for
each subset, all of the members of that subset share some
attribute, then the shared attribute of one set must be dif-
ferent from the shared attribute of the other set. Our
heuristic is conservative in searching independently for
1-resilient cores because the problem does not require
all such sets to be1-resilient cores. In doing so, we pro-
tect clients and at the same time avoid the complexity of
optimally determining such sets. The sets output by the
heuristic, however, may not be minimal, and therefore
they are approximations of theoretical cores. We discuss
this heuristic further in [13].

In Table 4, we show simulation results for this heuris-
tic for k = 2. The first column shows the values of
load limit (L) used by theUniform heuristic to compute
cores. We chose values ofL ≥ 5 based on an argument
generalized from the one given in Section 5.2 giving the
lower bound ofL [13]. In the second and third columns,
we present our measurements for coverage with standard
error in parentheses. For each computed coreCore(h),
we calculate the fraction of pairs of attributes such that
at least one hosth′ ∈ Core(h) contains none of attributes
of the pair. We name this metric2-coverage, and in the

L Avg. 2–coverage Avg. 1–coverage Avg. Core size
5 0.829 (0.002) 0.855 (0.002) 4.19 (0.004)
6 0.902 (0.002) 0.917 (0.002) 4.59 (0.005)
7 0.981 (0.001) 0.987 (0.001) 5.00 (0.005)
8 0.995 (0.0) 1.0 (0.0) 5.11 (0.005)
9 0.996 (0.0) 1.0 (0.0) 5.14 (0.005)
10 0.997 (0.0) 1.0 (0.0) 5.17 (0.003)

Table 4: Summary of simulation results fork = 2 for 8
different runs.

table we present the average across all hosts and across
all eight runs of the simulator.1-coverageis the same as
the average coverage metric defined in Section 5.2. Fi-
nally, the last column shows average core size.

According to the coverage results, the heuristic does
well in finding cores that protect hosts against potential
pathogens that exploit vulnerabilities in at most two at-
tributes. A beneficial side-effect of protecting against ex-
ploits on two attributes is that the amount of diversity in
a 2-resilient core permits better protection to its client
against pathogens that exploit vulnerabilities on single
attributes. For values ofL greater than seven, all clients
have all their attributes covered (the average1-coverage
metric is one and the standard error is zero).

Having a system that more broadly protects its hosts
requires more resources: core sizes are larger to obtain
sufficiently high degrees of coverage. Compared to the
results in Section 5.2, we observe that we need to dou-
ble the load limit to obtain similar values for coverage.
This is not surprising. In our heuristic, for each host, we
search for two1-resilient cores. We therefore need to
roughly double the amount of resources used.

Of course, there is a limit to what can be done with
informed replication. Ask increases, the demand on re-
sources continues to grow, and a point will be reached
in which there is not enough diversity to withstand an
attack that targetsk + 1 attributes. Using our diversity
study results in Table 2, if a worm were able to simulta-
neously infect machines that run one of the first four op-
erating systems in this table, the worm could potentially
infect84% of the population. The release of such a worm
would most likely cause the Internet to collapse. An ap-
proach beyond informed replication would be needed to
combat an act of cyberterrorism of this magnitude.

6 The Phoenix Recovery Service

A cooperative recovery service is an attractive architec-
ture for tolerating Internet catastrophes. It is an attrac-
tive system for both individual Internet users, like home
broadband users, who do not wish to pay for commer-
cial backup service or deal with the inconvenience of
making manual backups, as well as corporate environ-
ments, which often have a significant amount of un-
used disk space per machine. If Phoenix were deployed,
users would not need to exert significant effort to backup
their data, and they would not require local backup sys-
tems. Phoenix makes specifying what data to protect
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as straightforward as specifying what data to share on
file-sharing peer-to-peer systems. Further, a cooperative
architecture has little cost in terms of time and money;
instead, users relinquish a small fraction of their disk,
CPU, and network resources to gain access to a highly
resilient backup service.

As with Pastiche [8], we envision using Phoenix as
a cooperative recovery service for user data. However,
rather than exploiting redundant data on similar hosts to
reduce backup costs for operating system and applica-
tion software, we envision Phoenix users only backing up
user-generated data and relying upon installation media
to recover the operating system and application software.
With this usage model, broadband users of Phoenix can
recover 10 GB of user-generated data in a day. Given the
relatively low capacity utilization of disks in desktop ma-
chines [3], 10 GB should be sufficient for a wide range of
users. Further, users can choose to be more selective in
the data backed up to reduce their recovery time. We re-
turn to the issue of bandwidth consumption and recovery
time in Section 7.3.

6.1 System overview

A Phoenix host selects a subset of hosts to store backup
data, expecting that at least one host in the subset sur-
vives an Internet catastrophe. This subset is a core, cho-
sen using theUniform heuristic described above.

Choosing cores requires knowledge of host software
configurations. As described in Section 5, we use the
container mechanism for advertising configurations. In
our prototype, we implement containers using the Pas-
try [32] distributed hash table (DHT). Pastry is an over-
lay of nodes that have identifiers arranged in a ring. This
overlay provides a scalable mechanism for routing re-
quests to appropriate nodes.

Phoenix structures the DHT identifier space hierarchi-
cally. It splits the identifier space intozones, mapping
containers to zones. It further splits zones intosub-zones,
mapping sub-containers to equally-sized sub-zones. Fig-
ure 8 illustrates this hierarchy. Corresponding to the hier-
archy, Phoenix creates host identifiers out of three parts.
To generate its identifier, a host concatenates the hash
representing its operating systemh.os, the hash repre-
senting an attributea ∈ h.apps, and the hash represent-
ing its IP address. As Figure 8 illustrates, each part has
bo, ba, andbi bits, respectively. To advertise its configu-
ration, a host creates a hash for each one of its attributes.

It therefore generates as many identifiers as the number
of attributes inh.apps. It then joins the DHT at multiple
points, each point being characterized by one of these
identifiers. Since the hash of the operating system is the
initial, “most significant” part of all the host’s identifiers,
all identifiers of a host lie within the same zone.

To build Core(h) usingUniform , hosth selects hosts
at random. When trying to cover an attributea, h first se-
lects a container at random, which corresponds to choos-
ing a numberc randomly from[0, 2bo −1]. The next step
is to select a sub-container and a host within this sub-
container both at random. This corresponds to choosing
a random numbersc within [0, 2ba − 1] and another ran-
dom numberid within [0, 2bi − 1], respectively. Hosth
creates a Phoenix identifier by concatenating these vari-
ous components as(c◦sc◦id). It then performs a lookup
on the Pastry DHT for this identifier. The hosth′ that sat-
isfies this lookup informsh of its own configuration. If
this configuration covers attributea, h addsh′ to its core.
If not, h repeats this process.

The hosts inh’s core maintain backups of its data.
These hosts periodically send announcements toh. In
the event of a catastrophe, ifh loses its data, it waits for
one of these periodic announcements from a host in its
core, sayh′. After receiving such a message,h requests
its data fromh′. Since recovery is not time-critical, the
period between consecutive announcements that a host
sends can be large, from hours to a day.

A host may permanently leave the system after hav-
ing backed up its files. In this situation, other hosts need
not hold any backups for this host and can use garbage
collection to retrieve storage used for the departed host’s
files. Thus, Phoenix hosts assume that if they do not re-
ceive an acknowledgment for any announcement sent for
a large period of time (e.g., a week), then this host has
left the system and its files can be discarded.

Since many hosts share the same operating systems,
Phoenix identifiers are not mapped in a completely ran-
dom fashion into the DHT identifier space. This could
lead to some hosts receiving a disproportionate number
of requests. For example, consider a hosth that is either
the first of a populated zone that follows an empty zone
or is the last host of a populated zone that precedes an
empty zone. Hosth receives requests sent to the empty
zone because, by the construction of the ring, its address
space includes addresses of the empty zone. In our de-
sign, however, once a host reaches its load limit, it can
simply discard new requests by the Phoenix protocol.

Experimenting with the Phoenix prototype, we found
that constructing cores performed well even with an un-
balanced ID space. But a simple optimization can im-
prove core construction further. The system can maintain
an OS hint list that contains canonical names of operating
systems represented in the system. When constructing a
core, a host then uses hashes of these names instead of
generating a random number. Such a list could be main-
tained externally or generated by sampling. We present
results for both approaches in Section 7.



We implemented Phoenix using the Macedon [31]
framework for implementing overlay systems. The
Phoenix client on a host takes a tar file of data to be
backed up as input together with a host configuration. In
the current implementation, users manually specify the
host configuration. We are investigating techniques for
automating the configuration determination, but we ex-
pect that, from a practical point of view, a user will want
to have some say in which attributes are important.

6.2 Attacks on Phoenix

Phoenix uses informed replication to survive wide-
spread failures due to exploits of vulnerabilities in un-
related software on hosts. However, Phoenix itself can
also be the target of attacks mounted against the system,
as well as attacks from within by misbehaving peers.

The most effective way to attack the Phoenix system
as a whole is to unleash a pathogen that exploits a vulner-
ability in the Phoenix software. In other words, Phoenix
itself represents a shared vulnerability for all hosts run-
ning the service. This shared vulnerability is not a cov-
ered attribute, hence an attack that exploits a vulnerabil-
ity in the Phoenix software would make it possible for
data to be lost as a pathogen spreads unchecked through
the Phoenix system. To the extent possible, Phoenix re-
lies on good programming practices and techniques to
prevent common attacks such as buffer overflows. How-
ever, this kind of attack is not unique to Phoenix or the
use of informed replication. Such an attack is a general
problem for any distributed system designed to protect
data, even those that use approaches other than informed
replication [11]. A single system fundamentally repre-
sents a shared vulnerability; if an attacker can exploit
a vulnerability in system software and compromise the
system, the system cannot easily protect itself.

Alternatively, hosts participating in Phoenix can attack
the system by trying to access private data, tamper with
data, or mount denial-of-service attacks. To prevent ma-
licious servers from accessing data without authorization
or from tampering with data, we can use standard crypto-
graphic techniques [13]. In particular, we can guarantee
the following: (1) the privacy and integrity of any data
saved by any host is preserved, and (2) if a client host
contacts an honest server host for a backup operation,
then the client is able to recover its data after a catastro-
phe. From a security perspective, the most relevant part
of the system is the interaction process between a host
client and a host server which has agreed to participate
in the host’s core.

Malicious servers can mount a denial-of-service attack
against a client by agreeing to hold a replica copy of the
client’s data, and subsequently dropping the data or re-
fusing recovery requests. One technique to identify such
misbehavers is to issuesigned receipts[13]. Clients can
use such receipts to claim that servers are misbehaving.
As we mentioned before, servers cannot corrupt data as-
suming robustness of the security primitives.

Hosts could also advertise false configurations in an
attempt to free-ride in the system. By advertising at-
tributes that make a host appear more unreliable, the sys-
tem will consider the host for fewer cores than otherwise.
As a result, a host may be able to have its data backed up
without having to back up its share of data.

To provide a disincentive against free-riders, members
of a core can maintain the configuration of hosts they
serve, and serve a particular client only if their own con-
figuration covers at least one client attribute. By sam-
pling servers randomly, it is possible to reconstruct cores
and eventually find misbehaving clients.

An important feature of our heuristic that constrains
the impact of malicious hosts on the system is the load
limit: if only a small percentage of hosts is malicious at
any given time, then only a small fraction of hosts are
impacted by the maliciousness. Hosts not respecting the
limit can also be detected by random sampling.

7 Phoenix evaluation

In this Section, we evaluate our Phoenix prototype on
the PlanetLab testbed using the metrics discussed in Sec-
tion 5. We also simulate a catastrophic event — the si-
multaneous failure of all Windows hosts — to experi-
ment with Phoenix’s ability to recover from large fail-
ures. Finally, we discuss the time and bandwidth re-
quired to recover from catastrophes.

7.1 Prototype evaluation

We tested our prototype on 63 hosts across the Internet:
62 PlanetLab hosts and one UCSD host. To simulate the
diversity we obtained in the study presented in Section 4,
we selected 63 configurations at random from our set of
2,963 configurations of general-purpose hosts, and made
each of these configurations an input to the Phoenix ser-
vice on a host. In the population we have chosen ran-
domly, out of the 63 configurations 38 have Windows as
their operating system. Thus, in our setting roughly 60%
of the hosts represent Windows hosts. From Equation 1,
we obtain that the load limit must be at least three.

For the results we present in this section, we use an
OS hint list while searching for cores. VaryingL, we
obtained the values in Table 5 for coverage, core size,
and load variance for a representative run of our proto-
type. For comparison, we also present results from our
simulations with the same set of configurations used for
the PlanetLab experiment. From the results in the table,
coverage is perfect in all cases, and the average core size
is less than 3 (less than 2 replica copies).

The major difference in increasing the value ofL is
the respective increase in load variance. AsL increases,
load balance worsens. We also counted the number of
requests issued by each host in its search for a core.
Different from our simulations, we set a large upper
bound on the number of request messages (diff OS
+ same OS = 100) to verify the average number of



Load limit (L) Core size Coverage Load var.
Imp. Sim. Imp. Sim. Imp. Sim.

3 2.12 2.23 1.0 1.0 1.65 1.88
5 2.10 2.25 1.0 1.0 2.88 3.31
7 2.10 2.12 1.0 1.0 4.44 3.56

Table 5: Implementation results on PlanetLab (“Imp”)
with simulation results for comparison (“Sim”).

requests necessary to build a core, and we had hosts
searching for other hosts only outside their own zones
(same OS = 0). The averages for number of requests are
14.6, 5.2, and4.1 for values ofL of 3, 5, and7, respec-
tively. Hence, we can tradeoff load balance and message
complexity.

We also ran experiments without using an OS hint list.
The results are very good, although worse than the im-
plementation that uses hint lists. We observed two main
consequences in not using a hint list. First, the average
number of requests is considerably higher (over 2x). Sec-
ond, for small values ofL (L = 3, 5), some hosts did not
obtain perfect coverage.

7.2 Simulating catastrophes

Next we examine how the Phoenix prototype behaves in
a severe catastrophe: the exploitation and failure of all
Windows hosts in the system. This scenario corresponds
to a situation in which a worm exploits a vulnerability
present inall versions of Windows, and corrupts the data
on the compromised hosts. Note that this scenario is far
more catastrophic than what we have experienced with
worms to date. The worms listed in Table 1, for example,
exploit only particular services on Windows.

The simulation proceeded as follows. Using the same
experimental setting as above, hosts backed up their data
under a load limit constraint ofL = 3. We then triggered
a failure in all Windows hosts, causing the loss of data
stored on them. Next we restarted the Phoenix service
on the hosts, causing them to wait for announcements
from other hosts in their cores (Section 6.1). We then
observed which Windows hosts received announcements
and successfully recovered their data.

All 38 hosts recovered their data in a reasonable
amount of time. For 35 of these hosts, it took on av-
erage 100 seconds to recover their data. For the other
three machines, it took several minutes due to intermit-
tent network connectivity (these machines were in fact
at the same site). Two important parameters that deter-
mine the time for a host to recover are the frequency of
announcements and the backup file size (transfer time).
We used an interval between two consecutive announce-
ments to the same client of 120 seconds, and a total data
size of 5 MB per host. The announcement frequency de-
pends on the user expectation on recovery speed. In our
case, we wanted to finish each experiment in a reason-
able amount of time. Yet, we did not want to have hosts
sending a large number of announcement messages un-

necessarily. For the backup file size, we chose an ar-
bitrary value since we are not concerned about transfer
time in this experiment. On the other hand, this size was
large enough to hinder recovery when connectivity be-
tween client and server was intermittent.

It is important to observe that we stressed our proto-
type by causing the failure of these hosts almost simulta-
neously. Although the number of nodes we used is small
compared to the potential number of nodes that Phoenix
can have as participants, we did not observe any obvious
scalability problems. On the contrary, the use of a load
limit helped in constraining the amount of work a host
does for the system, independent of system size.

7.3 Recovering from a catastrophe

Finally, we examine the bandwidth requirements for re-
covering from an Internet catastrophe. In a catastrophe,
many hosts will lose their data. When the failed hosts
come online again, they will want to recover their data
from the remaining hosts that survived the catastrophe.
With a large fraction of the hosts recovering simultane-
ously, a key question is what bandwidth demands the re-
covering hosts will place on the system.

The aggregate bandwidth required to recover from a
catastrophe is a function of the amount of data stored
by the failed hosts, the time window for recovery, and
the fraction of hosts that fail. Consider a system of
10,000 hosts that have software configurations analogous
to those presented in Section 4, where54.1% of the hosts
run Windows and the remaining run some other operat-
ing system. Next consider a catastrophe similar to the
one above in which all Windows hosts, independent of
version, lose the data they store. Table 6 shows the band-
width required to recover the Windows hosts for various
storage capacities and recovery periods. The first col-
umn shows the average amount of data a host stores in
the system. The remaining columns show the bandwidth
required to recover that data for different periods.

The first four rows show the aggregate system band-
width required to recover the failed hosts: the total
amount of data to recover divided by the recovery time.
This bandwidth reflects the load on the Internet during
recovery. Even for relatively large backup sizes and short
recovery periods, this load is small. Note that these re-
sults are for a system with 10,000 hosts and that, for an
equivalent catastrophe, the aggregate bandwidth require-
ments will scale linearly with the number of hosts in the
system and the amount of data backed up.

The second four rows show the average per-host band-
width required by the hosts in the system responding to
recovery requests. Recall that the system imposes a load
limit L that caps the number of replicas any host will
store. As a result, a host will only have to recover at
mostL other hosts. Note that, because of the load limit,
per-host bandwidth requirements for hosts involved in re-
covery are independent of both the number of hosts in the
system and the number of hosts that fail.



Size (GB) 1 hour 1 day 1 week
Aggregate bandwidth

0.1 1.2 Gb/s 50 Mb/s 7.1 Mb/s
1 12 Gb/s 0.50 Gb/s 71 Mb/s
10 120 Gb/s 5.0 Gb/s 710 Mb/s
100 1.2 Tb/s 50 Gb/s 7.1 Gb/s

Per-host bandwidth (L = 3)
0.1 0.7 Mb/s 28 Kb/s 4.0 Kb/s
1 6.7 Mb/s 280 Kb/s 40 Kb/s
10 66.7 Mb/s 2.8 Mb/s 400 Kb/s
100 667 Mb/s 28 Mb/s 4.0 Mb/s

Table 6: Bandwidth consumption after a catastrophe.

The results in the table show the per-host bandwidth
requirements with a load limitL = 3, where each host
responds to at most three recovery requests. The re-
sults indicate that Phoenix can recover from a severe
catastrophe in reasonable time periods for useful backup
sizes. As with other cooperative backup systems like
Pastiche [8], per-host recovery time will depend signifi-
cantly on the connectivity of hosts in the system. For ex-
ample, hosts connected by modems can serve as recovery
hosts for a modest amount of backed up data (28 Kb/s
for 100 MB of data recovered in a day). Such backup
amounts would only be useful for recovering particularly
critical data, or recovering frequent incremental backups
stored in Phoenix relative to infrequent full backups us-
ing other methods (e.g., for users who take monthly full
backups on media but use Phoenix for storing and re-
covering daily incrementals). Broadband hosts can re-
cover failed hosts storing orders of magnitude more data
(1–10 GB) in a day, and high-bandwidth hosts can re-
cover either an order magnitude more quickly (hours) or
even an order of magnitude more data (100 GB). Fur-
ther, Phoenix could potentially exploit the parallelism of
recovering from all surviving hosts in a core to further
reduce recovery time.

Although there is no design constraint on the amount
of data hosts back up in Phoenix, for current disk us-
age patterns, disk capacities, and host bandwidth con-
nectivity, we envision users typically storing 1–10 GB
in Phoenix and waiting a day to recover their data. Ac-
cording to a recent study, desktops with substantial disks
(> 40 GB) use less than 10% of their local disk capacity,
and operating system and temporary user files consume
up to 4 GB [3]. Recovery times on the order of a day are
also practical. For example, previous worm catastrophes
took longer than a day for organizations to recover, and
recovery using organization backup services can take a
day for an administrator to respond to a request.

8 Conclusions

In this paper, we proposed a new approach called in-
formated replication for designing distributed systems to
survive Internet epidemics that cause catastrophic dam-
age. Informed replication uses a model of correlated fail-

ures to exploit software diversity, providing high relia-
bility with low replication overhead. Using host diver-
sity characteristics derived from a measurement study of
hosts on the UCSD campus, we developed and evalu-
ated heuristics for determining the number and place-
ment of replicas that have a number of attractive fea-
tures. Our heuristics provide excellent reliability guar-
antees (over0.99 probability that user data survives at-
tacks of single- and double-exploit pathogens), result in
low degree of replication (less than 3 copies for single-
exploit pathogens; less than 5 copies for double-exploit
pathogens), limit the storage burden on each host in the
system, and lend themselves to a fully distributed imple-
mentation. We then used this approach in the design and
implementation of a cooperative backup system called
the Phoenix Recovery Service. Based upon our evalu-
ation results, we conclude that our approach is a viable
and attractive method for surviving Internet catastrophes.
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