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ABSTRACT

This paper presents and analyzes user behavior and network perfor-
mance in a public-area wireless network using a workload captured
at a well-attended ACM conference. The goals of our study are: (1)
to extend our understanding of wireless user behavior and wireless
network performance; (2) to characterize wireless users in terms of
a parameterized model for use with analytic and simulation stud-
ies involving wireless LAN traffic; and (3) to apply our workload
analysis results to issues in wireless network deployment, such as
capacity planning, and potential network optimizations, such as al-
gorithms for load balancing across multiple access points (APS) in
a wireless network.

1. INTRODUCTION

Advances in communication technology and the proliferation of
lightweight, hand-held devices with built-in, high-speed radio ac-
cess are making wireless access to the Internet the common case
rather than an exception. Wireless LAN installations based on
IEEE 802.11 [8] technology are emerging as an attractive solution
for providing network connectivity in corporations and universi-
ties, and in public places like conference venues, airports, shopping
malls, etc. — places where individuals spend a considerable amount
of their time outside of home and work. In addition to the con-
venience of untethered networking, contemporary wireless LANs
provide relatively high data connectivity at 11 Mb/s and are easy to
deploy in public settings.

As part of a larger research project, we have been exploring issues
in implementing and deploying public-area wireless networks, and
exploring optimizations for improving their performance [1]. In
order to evaluate and validate the techniques that we are develop-
ing, we consider it essential to use realistic workloads of user be-
havior and wireless network performance to make design decisions
and tradeoffs. However, since public wireless LANSs have only re-
cently become widely deployed, such workload characterizations
are scarce. Initial studies of wireless networks have explored low-
level error models and RF signal characteristics [5], installation and
maintenance issues of a campus wireless network [3], user mobil-
ity in a low-bandwidth metropolitan area network [18], and user

Paramvir Bahl
Microsoft Research
One Microsoft Way

Redmond, WA 98052
bahl@microsoft.com

P. Venkat Rangan
U. C., San Diego
9500 Gilman Dr. 0114
La Jolla, CA 92093
venkat@cs.ucsd.edu

behavior and traffic characteristics in a university department net-
work [19] and, very recently, a college campus [11].

In this paper, we extend previous studies by presenting and analyz-
ing user behavior and network performance in a public-area wire-
less network using a trace recorded over three days at the ACM
SIGCOMM’01 conference held at U.C. San Diego in August 2001.
The trace consists of two parts. The first part is a record of perfor-
mance monitoring data sampled from wireless access points (APS)
serving the conference, and the second consists of anonymized
packet headers of all wireless traffic. Both parts of the trace span
the three days of the conference, capturing the workload of 300,000
flows from 195 users consuming 4.6 GB of bandwidth.

The high-level goals of our study are three-fold. First, we want to
supplement the existing domain knowledge about wireless user be-
havior and wireless network performance; research in Web infras-
tructure, for example, has greatly benefited from the understanding
gained from many workload studies from different settings over
time. By comparing and contrasting the workload in our setting
with previous ones, we can begin to identify and separate wireless
workload characteristics that apply to the wireless domain in gen-
eral from those that are specific to a particular setting or network
configuration. Second, we want to specifically characterize user be-
havior and network performance in a public wireless LAN environ-
ment. We characterize user behavior in terms of connection session
length, user distribution across APs, mobility, application mix, and
bandwidth requirements; we characterize network performance in
terms of overall and individual AP load, and packet errors and re-
transmissions. From these analyses, we characterize wireless users
in terms of a parameterized model for use with analytic and sim-
ulation studies involving wireless LAN traffic. Third, we want to
apply our workload analyses to better understand issues in wireless
network deployment, such as capacity planning, and potential net-
work optimizations, such as algorithms for load balancing across
multiple APs in a wireless network.

For our conference workload trace, our overall analysis of user be-
havior shows that:

e In our setting, users are evenly distributed across all APs and
user arrivals are correlated in time and space. \We can cor-
relate user arrivals into the network according to a two-state
Markov-Modulated Poisson Process (MMPP). The mean inter-
arrival time during the ON state is 38 seconds, and the mean
duration of the OFF state is 6 minutes.

e Most of the users have short session times: 60% of the user
sessions last less than 10 minutes. Users with longer ses-



sion times are idle for most of the session. The session time
distribution can be approximated by a General Pareto distri-
bution with a shape parameter of 0.78 and a scale parameter
of 30.76. The R? value is 0.9. Short session times imply
that network administrators using DHCP for IP address leas-
ing can configure DHCP to provide short-term leases, after
which IP addresses can be reclaimed or renewed.

e Sessions can be broadly categorized based on their band-
width consumption into light, medium, and heavy sessions:
light sessions on average generate traffic at 15 Kbps, medium
sessions between 15 and 80 Kbps, and heavy sessions above
80 Kbps. The highest instantaneous bandwidth demand is
590 Kbps. The average and peak bandwidth requirements of
our users are lower than those in a campus network [19], re-
flecting a difference in the type of tasks people do in the two
settings.

e \Web traffic accounts for 46% of the total bandwidth of all ap-
plication traffic, and 57% of all flows. Web and SSH together
account for 64% of the total bandwidth and 58% of flows.

Our analysis of network performance shows that:

e The load distribution across APs is highly uneven and does
not directly correlate to the number of users at an AP. Stated
another way, the peak offered load at an AP is not reached
when the number of associated users is a maximum. Rather,
the load at an AP is determined more by individual user
workload behavior. One implication of this result is that load
balancing solely by the number of associated users may per-
form poorly.

e The wireless channel characteristics are similar across APS;

the variation is more time-dependent than location-dependent.

The median packet error rate is 2.15%, and the median packet
retransmission percentage is 1.63%.

The rest of the paper is organized as follows. In Section 2 we pro-
vide an overview of related work. Section 3 provides a brief de-
scription of the wireless network environment where the trace was
collected and describes the trace collection methodology. We then
analyze the trace for user behavior in Section 4 and network per-
formance in Section 5. Finally, we conclude in Section 6.

2. RELATED WORK

Researchers at Stanford have performed a number of useful studies
of wireless network usage. Recently, Tang and Baker [19] ana-
lyzed a 12-week trace collected from the wireless network used by
the Stanford Computer Science department; this study built on ear-
lier work involving fewer users and a shorter duration [12]. Their
study provides a good qualitative description of how mobile users
take advantage of a wireless network, although it does not give a
0 characterization of user workloads in the network. Earlier, Tang
and Baker [18] also characterized user behavior in a metropolitan-
area network, focusing mainly on user mobility. Furthermore, the
network was spread over a larger geographical area and had very
different performance characteristics.

Other studies of wireless networks have focused more on network
performance and less on user behavior. For example, researchers at
CMU [5] examined their campus-wide WaveL AN installation. The
focus of their study was on the error model and signal characteris-
tics of the RF environment in the presence of obstacles. Another

study of the same campus wireless network [3] described the issues
involved in installing and maintaining a large-scale wireless LAN
and compared its performance to a wired LAN.

A joint research effort between CMU and Berkeley [15] proposed a
novel method for network measurement and evaluation applicable
to wireless networks. The technique, called trace modulation, in-
volves recording known workloads at a mobile host and using it as
input to develop a model for network behavior. Although this work
helps in developing a good model of network behavior, it does not
provide a realistic characterization of user activity in a mobile set-
ting.

Simultaneous with this study, Kotz and Essien [11] traced and char-
acterized the Dartmouth College campus-wide wireless network
during their Fall 2001 term. Their workload is quite extensive, both
in scope (1706 users across 476 access points) and duration (12
weeks). Whereas our study focuses on small-scale characteristics,
like modeling individual user bandwidth requirements and traffic
load on individual APs, Kotz and Essien focus on large-scale char-
acteristics of the campus, such as overall application mix, overall
traffic per building and AP, mobility patterns, etc. In terms of ap-
plication mix, their network carries a richer set of applications that
reflects the nature of campus-wide applications. For example, a
much larger fraction of their traffic is addressed to unknown ports,
and traffic from a backup application for laptops is a significant el-
ement of the workload. As a result, interactive applications like
SSH constitute a smaller part of the workload. With the size of
their network, they were able to study mobility patterns as well.
Interestingly, they found that most users were stationary within a
session, and overall associated with just a few APs during the term.

3. METHODOLOGY

In this section, we first describe the configuration of the wireless
network from which we collected our trace data, and then describe
our methodology for trace collection and analysis.

3.1 Network Environment

Our wireless LAN was an IEEE 802.11b [8] network installed in a
large auditorium where the conference sessions were held. Figure 1
shows the network configuration. The auditorium has dimensions
of 110x60x27 ft and was covered by four ORiINOCOT™ AP-
1000 wireless access points, labeled NorthEast (NE), NorthWest
(NW), SouthEast (SE), and SouthWest (SW), installed in the ceil-
ing. The APs provided overlapping coverage in the auditorium and
the lobby. The western APs were close to the stage. The eastern
APs were at the back of the room close to the main entrances, also
providing coverage to the lobby. The subnet of APs was connected
to a Cisco Catalyst 2924 switch over a 100BaseT link, which con-
nected to the venue’s intranet, then the campus gigabit backbone,
and finally to the Internet. The APs were operating at a data rate of
11 Mbps, on channels 1, 4, 7, and 11, and at a power of 200mW.
The AP handoff algorithm was configured to use “small” cells.

The wireless user community consisted of 195 distinct users (dis-
tinct MAC addresses), roughly 40% of the total attendees. User
wireless hardware was heterogeneous, as attendees used their own
personal wireless cards, and the trace includes traffic from 8 differ-
ent vendors.

3.2 TraceCollection and Analysis
Table 1 summarizes the high level characteristics of the trace. Our
trace consisted of two parts. First, we collected a continuous trace
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Figure 1: The public wireless network configuration at the
venue of the conference. The connection to the Cisco router
and the wired backbone have been simplified because they are
not central to the discussion in the paper.

Attribute Values
Number of wireless users 195
Maximum users at an AP 32

Total hours of trace 52
Total bytes transmitted 4.6 GB

Total flows 298995

Peak throughput at an AP | 3.2 Mbps

Table 1: Overall statistics for the trace.

of SNMP data from each of the four APs over a period of 52 hours
from the start of the conference. The SNMP data consisted of ag-
gregate packet level statistics of all traffic through both interfaces of
the APs, including information at the link, network, and transport
levels. In addition, the trace also contained detailed information
about the mobile users associated to each of the APs, including the
MAC address, the received signal-to-noise ratio (SNR), and the ef-
fective throughput.

To collect the SNMP data at the APs, we wrote a program called sn-
mputil that uses the SNMP Management API in Windows. The pro-
gram essentially walks the entire Management Information Base
(MIB) tree exported by the APs and records the data returned from
the SNMP queries. We polled the APs using snmputil approxi-
mately every minute. For post-processing, we used perl scripts that
parse the SNMP output for relevant objects in the MIB tree.

The second trace we collected was a tcpdump trace of the network-
level headers of the packets passing through the Cisco Catalyst
2924 switch for the duration of the conference. We anonymized
sensitive information like sender and receiver IP addresses to pro-
tect user privacy, and discarded all packet payloads. We analyzed
the trace using CoralReef [4], a freely available software suite for
analyzing monitored network traffic.

The snmputil software, our scripts, and both traces are available for
download at the following URL.:
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Figure 2: The number of users associated with an access point
on the second day (Thursday) of the conference.
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4. USER BEHAVIOR

In this section, we analyze the basic characteristics of user behavior
in the wireless LAN. For analyses involving APs where the behav-
ior is similar across all APs, for clarity we present the results for
just one AP, the NorthEast (NE) AP. The conference was held on
two full days, a Wednesday and Thursday, and one half day, a Fri-
day. For our analyses, we only use the data from our traces for the
scheduled times of the conference on each day: 8:00-18:00 for the
full days, and 8:00-14:00 on the half day.

4.1 User Distribution across Access Points
First we characterize the distributions of users associated with APs
as a function of time, and suggest a model for user arrival distribu-
tions in conference-like settings. Figure 2 shows a time-series plot
of the total number of users in the conference auditorium on a sin-
gle day. The dotted lines demarcate the conference sessions, lunch
break, and coffee breaks. As expected from our setting, the num-
ber of associated users steadily climbs to a peak when the confer-
ence was in session (9-10:30, 11-12:30, 14-15:30, and 16-17:30),
and drops significantly during the 30-minute break sessions (10:30,
12:30, 15:30 and 17:30) and the lunch break (13:00-14:00), which
was in a different location. This pattern reflects expected behav-
ior as users were socializing and enjoying refreshments during the
breaks and connected during sessions. We observed that the user
distribution follows the same pattern at all APs.

Figure 3 is a histogram showing the average number of users asso-
ciated at each AP for the entire trace. For the first half of the day we
averaged across the three days, and for the second half of the day
we averaged only across the first two days. From the figure, we see
that all APs see approximately the same number of users through
the day, with the maximum difference among APs being 35% be-
tween 9 and 10:00 A.M. We note, though, that this user distribution
reflects the topology of our network and the setting, where many
users were gathered in a small area during scheduled times. In
contrast, the Stanford study [19], for example, looked at a network
of larger geographic size where the users are unevenly distributed
across the APs in the building. In that network, user distribution
only across a certain subset of the APs where most of the users had
offices is more even as in our workload. Figure 4 summarizes the
user distribution in terms of the mean, median, and 90*" percentile
for the entire trace.
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Figure 3: Average number of users associated with each access
point over the entire trace.

— [EMean mMedian 090th %ile]

30

25+

20+

number of mobile users
=
!

o

NE Nw SE sw

Access Point

Figure 4: Mean, Median, and 90" percentile of the number of
users at each AP for the entire trace.

The user arrival patterns also strongly reflect the nature of a con-
ference workload. We can see from Figure 2 that there is a steady
increase in user arrivals as sessions start, and a steady decrease in
users as sessions concludes. Further, there is a correlation in time
between user arrivals into a cell, and a correlation in space between
user arrivals to neighboring cells. Such behavior is typical of set-
tings like classrooms, meeting and conference rooms, airport gates,
etc., and can be well modeled as a Markov-Modulated Poisson Pro-
cess (MMPP) [17]. We model the arrival process as governed by
an underlying Markov chain, which is in one of two states, ON or
OFF. The OFF state is when there are no arrivals into the system,
which would typically be midway into the conference session. Dur-
ing the ON state, arrivals vary randomly over time with a more or
less constant arrival rate. The mean inter-arrival time during the
ON state is 38 seconds. The mean duration of the OFF state is 6
minutes, with longer OFF periods during the session breaks and the
lunch break.

Our observations indicate that the traditional method of modeling
user arrivals according to a Poisson arrival process [14] may not
adequately characterize scenarios where arrivals are correlated with
time and space [7]. However, although the MMPP model is well-
suited to our conference setting where most users follow a common
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Figure 6: Histogram of users with session time less than an
hour.

schedule, we do not expect it to generalize to every public-area
wireless network. For example, it may be appropriate in an airport
network where users cluster at gates at specific times in anticipation
of departures, but not for a shopping mall network where we would
expect user arrivals, departures, and mobility to be more random.

4.2 User Session Duration

We now study user session duration, and discuss its implications
on DHCP timeouts. We define a user session to be a contiguous
sequence of time values when a certain MAC address associates
and disassociates at an AP. Thus we capture user behavior as it
varies from one session to another, as a user could have more than
one session at one or more APs at different times during the day.

Figure 5 plots the cumulative distribution of all session durations,
and Figure 6 shows a histogram of the sessions lasting less than one
hour for the NE access point; the results are similar for the other
APs as well. Figure 5 shows that 90% of the sessions last less than
one hour and 10% ranging between one and three hours, thus skew-
ing the distribution. In order to determine a statistical distribution
for user session time, we compared and fit the measured session
time samples to a known analytical distribution. The PDF of the
session time (not shown) closely follows a General Pareto Distri-
bution [9] with a shape parameter of 0.78 and a scale parameter of
30.76. The coefficient of determination, R? is 0.9. Figure 6 shows
the session times as a histogram, indicating that many sessions are
extremely short (5 minutes or less).
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We also observed that some long user sessions were mainly idle
with little or no data transfer. Figure 7 shows this behavior us-
ing a CDF characterizing the percentage of time during the session
that users are idle. While most of the sessions (88%) witness data
transfer (i.e., are not idle) for longer than 70% of the full length of
a session, about 4% are inactive for more than half of their session
length. With further analysis, we found that these relatively idle
sessions were mainly those with the longer session lengths in Fig-
ure 5. We attribute this behavior to users whose machines associate
with an AP, but remain idle as they pay attention to the conference
sessions.

Some long user sessions have disconnections of the order of tens of
seconds. We observed that this was due to the fact that the received
SNR at the mobile host goes below a certain threshold, either due
to the varying channel conditions or due to user’s location, which in
turn causes the mobile host to disassociate from the AP. We found
that the SNR threshold on most hosts was between 18 and 20 dB?.

One implication of the short session times of users has to do with
IP-address leasing. Organizations hosting public networks tradi-
tionally use DHCP to provide IP addresses to subscribers. Knowing
that users have short session times, network administrators can con-
figure their DHCP servers to have short lease times on addresses,
say, 10 minutes, after which IP addresses can be reclaimed or re-
newed. In networks that do not use a NAT [16], this scheme pro-
vides a way to overcome limited DHCP addresses by recycling ad-
dresses quickly.

4.3 User Data Rates

Next we study the individual workloads of users’ sessions, and find
that data rates are relatively low and correlate with session times.
We measured the average data rates using the total bytes transferred
to and from the mobile hosts in a one-minute interval, and averaged
it over the entire session. The minimum, average, and peak band-
widths of each user session are widely spread; per session average
bandwidths range from as low as 15 kbps to as high as 590 kbps. In
order to categorize the sessions based on data rates, we chose three
intervals in the bandwidth distribution. After sorting the sessions
based on average bandwidth, we classify the lower 25" percentile
of the sessions as light sessions, the 25" to the 90*" percentile as

'Note that most diagnostic utilities that monitor the state of the
wireless network measure the quality of the channel in terms of
signal strength, measured in dBm rather than SNR.

Session Type | Mean data rate | Peak Data Rate
(Kbps) (Kbps)
Light below 15 below 60
Medium 15-80 60-175
Heavy above 80 above 175

Table 2: The average and peak data rates of light, medium and
heavy sessions.

medium sessions, and the remaining top 10% as heavy sessions.

Table 2 shows the range of average and peak data rates for a typical
session for each class. The peak data rate of a heavy session is at
most 590 Kbps. As will be seen in the next section, HTTP and SSH
are the most commonly seen traffic; they appear in all sessions,
light, medium and heavy. Therefore, we are unable to determine a
unique application mix that characterizes each class of user.

Comparing data rates with the Stanford study highlights differences
between our settings. That study found that users occasionally con-
sumed most of the available bandwidth in bursts when, e.g., down-
loading large files. Our workload does not show similar behavior;
the maximum peak data rate (recorded over a one-minute interval)
was 590 Kbps, well below the maximum bandwidth of the wireless
and wired networks used. This contrast reflects a difference in the
type of tasks that people do in the two settings, i.e., web brows-
ing and email versus large downloads in desktop and development
settings.

We also note that there is some correlation between data rates and
session time. The long sessions in Figure 5 have a low average
data rate. In fact, by our classification, all sessions longer than 40
minutes are light sessions. Even among the shorter sessions, we
see a predominance (> 60%) of light sessions. These observations
are in line with what one would expect for bursty data traffic. In
the next section, we analyze the data traffic further to determine
popular applications and protocols.

4.4 User Application Popularity

In this section, we report our analysis of the packet header trace.
Figure 8a shows a histogram of the top protocols responsible for
the traffic, and Figure 8b shows a histogram of the most popular
applications seen in the trace. By byte count, we see that most
traffic is generated by TCP (91%). The remaining 9% of the traffic
is accounted for by UDP, ICMP, IGMP, and traffic to ports that
are not well-known. We also see some IPv6 traffic, although it
accounted for less than 1% of the total bytes transferred. In terms
of flow count, the traffic is again dominated by TCP flows (76%)
followed by UDP (23%).

In Figure 8b, we can see that web browsing (HTTP) is by far the
most popular application, contributing 46% of the total bytes trans-
ferred, followed by secure shell (SSH) (18%) and the Internet Cache
Protocol (9%). About 5% of the traffic is due to unknown appli-
cations, which use unassigned port numbers but are based on ei-
ther TCP or UDP. The only significant real-time application that
we see is Real-Audio (2%). Note that we show only those applica-
tions whose contribution is 1% and above; the remaining applica-
tions that account for the decreasing numbers of bytes transferred
are SMTP, PPTP, Nethios-SSN, Kerberos, IGMP, RTSP, AOL chat,
NTP, and Multimedia Conference Control. By flow count, HTTP
and SSH together contribute 58% of the flows. DNS “flows”, as
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Figure 9: Total number of access points visited by users during
each day of the conference.

characterized by CoralReef, are high in number (23%) although
each flow is very short.

The popularity of Web and SSH applications explains the small
average and peak user bandwidth requirements since session band-
widths for these protocols are relatively small (e.g., mean Web ob-
ject sizes are 8 KB [21], and SSH sessions are comprised of in-
teractive user input and output). We also note that users appear to
rely upon application-level security through SSH and VPN appli-
cations, and that the availability of last-hop security [10] would not
be a major concern for them.

45 User Mobility

One of the important conveniences of a wireless LAN is user mo-
bility, and our trace shows that users are mobile when expected,
i.e., at the beginning and end of conference sessions. Since wire-
less coverage was provided in the entire auditorium, users could
access the network while sitting anywhere. The primary constraint
to mobility is power, which was amply provided along the aisle
rows in the conference hall.

We plot user mobility in Figure 9 as a histogram showing the num-
ber of users seen at a given number of APs during each day of the
conference. We see that the mobility pattern on the first two days
of the conference is slightly different from the third day. On the
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time window on the second day (Thursday) of the conference.

first two days a vast majority (> 80%) of the users are seen at more
than one AP, i.e., they move around during the day. Only about
16% of the users are stationary. There is much less roaming on the
last day when the conference ended at 1:00 P.M. The fact that most
users are seen at more than one AP indicates that users occupy dif-
ferent seats (and hence associate with different APs) each time they
exit and re-enter the auditorium. As would be expected, a major-
ity of the stationary users are those that have longer sessions (see
Figure 6).

In contrast, the Stanford study has very localized mobility among a
subset of the installed APs. We believe that this is a key distinguish-
ing feature between campus networks and public-area wireless net-
works. The former supports a user community that (a) is known
and authorized a priori, and (b) accesses the network from habitual
locations. Public-area wireless networks, on the other hand, deal
with users who do not have assigned locations and who tend to
access the network via different APs over time.

Having looked at mobility from the users’ standpoint, we now ex-
amine it from the standpoint of the APs. In Figure 10, we plot the
number of handoffs seen at the NE AP as a function of time of day
with two different time windows, 5 minutes and 15 minutes. The



Parameter Minimum Mean Median | 90°" %ile Peak
Number of users per AP 0 18 20 28 33
User session time 4 min. 22 min. 8 min. 61 min. 180 min.
Number of APs users seen at
(degree of roaming) 1 N/A 2 N/A 4
SNR of user session 0dB 39.8dB 40 dB 54 dB 75 dB
Bandwidth (light session) 0-5 kbps | below 15 kbps N/A N/A Below 60 kbps
Bandwidth (medium session) | 5-20 kbps 15-80 kbps N/A N/A 60-175 kbps
Bandwidth (heavy session) | 20-80 kbps | 80-265 kbps N/A N/A 175-590 kbps

Table 3: Parameterized model summarizing user behavior

dotted lines demarcate the conference sessions, lunch break, and
coffee breaks. From the perspective of an AP, we define a handoff
as either a new connection or a connection handed off from an-
other AP. Over a moving window of time samples, we plot the total
number of handoffs (entering and leaving users) observed at an AP.
Not unexpectedly, the peaks in both curves show that the greatest
extent of mobility (change of AP association) happens soon after
the break sessions. Also, as expected from Figure 2, the number of
handoffs is close to zero during the lunch session.

4.6 Summary of User Behavior

We summarize our conclusions of this section by giving a high-
level characterization of a wireless user in a conference setting. The
high-level characterization of a user is described in the form of a
parameterized model in Table 3. Specifically, our observations are:

e Users are evenly distributed across all APs and user arrivals
are correlated in time and space. This is a direct consequence
of the conference setting.

e Most of the users have short session times: 60% of the user
sessions last less than 10 minutes. Users with longer session
times are idle for most of the session.

e User sessions can broadly be categorized based on their band-
width consumption into light, medium, and heavy sessions:
light sessions on average generate traffic at 15 Kbps, medium
sessions between 15 and 80 Kbps, and heavy sessions above
80 Kbps. The highest peak data rate over a one-minute inter-
val is 590 Kbps.

e \Web and SSH traffic account for about 64% of the total ap-
plication traffic bytes and 58% of the flows.

e Our analysis of user mobility shows that users are mobile
when expected, i.e., at the beginning and end of the confer-
ence sessions. About 75% of the users are seen at more than
one AP during the day.

Based on our observations of user behavior, we make the following
conclusions.

e \We can correlate user arrivals into the network according to a
two-state Markov-Modulated Poisson Process (MMPP). The
mean inter-arrival time during the ON state is 38 seconds,
and the mean duration of the OFF state is 6 minutes.

e The session time distribution can be approximated to a Gen-
eral Pareto Distribution with a shape parameter of 0.78 and
a scale parameter of 30.76. The coefficient of determination
is 0.9. Short session times imply that network administra-
tors using DHCP for IP address leasing can configure DHCP

to provide short-term leases (< 10 min.), after which IP ad-
dresses can be reclaimed or renewed.

e There is an implicit correlation between session duration and
average data rates. Longer sessions typically have very low
data requirements. Most of the sessions with high average
data rate are very short (< 15 minutes).

5. NETWORK PERFORMANCE

Having studied user behavior in detail, we now focus on network
performance. We first examine the offered load on the wireless
network at each AP. Next, we study performance of the RF channel
by characterizing channel error and MAC-level retransmissions.

5.1 Offered Load in the Wireless Networ k
Figure 11ais a time-series plot of the wireless throughput at the NE
AP for the duration of the conference. We see that the offered load
on the wireless network peaks between 11 AM and 12:30 PM and
again between 2 PM and 3 PM. The offered load drops considerably
between 12:30 PM and 2 PM (the lunch hour). The peak through-
put seen at the AP is 3.2 Mbps, about half its measured maximum
capacity. Figure 11b is a similar time-series plot of the NE AP, but
focuses on the second day of the conference, Thursday. Overlayed
on the graph in vertical dashed lines is the conference schedule for
the day, showing the greatest load during the session times.

The overall bursty behavior and peaks and troughs are similar at
all APs, though the absolute peak throughput at each AP varies.
Figure 12 illustrates this effect by showing the offered load at each
AP as a function of time on the second day of the conference. From
the figure, we see that there is a rather uneven load distribution
among the APs. APs NE and NW handle much higher peak loads
than APs SE and SW. For example, over the three days there is a
37% difference between the peak throughput of APs NE and SW,
even though they have roughly the same peak number of associated
users.

This behavior does not appear to be due to the location of the APs,
but rather to the application workload of the users associated with
the APs. Comparing the offered load at an AP in Figure 12 with
the number of users in Figure 3, two things become apparent. First,
even though the number of users associated to each AP during the
day is roughly the same, the offered load in terms of bandwidth at
the APs vary considerably. This indicates that offered load is more
sensitive to individual user bandwidth requirements rather than just
the number of users. Second, APs do not reach peak offered load
when the number of associated users is a maximum. Again, the
offered load at an AP is determined more by individual user ap-
plication requirements. As a result, we conclude that existing AP
load balancing algorithms that try to balance AP load according
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Figure 11: The total wireless throughput at the NE AP (a) throughout the conference and (b) on the second day (Thursday).

Statistic % Packets in Error
NE | NW | SE | SW | Overall
Mean 281|281 | 283|275 241
Median | 2.16 | 1.99 | 2.13 | 2.18 2.15
90°" 9%ile | 5.32 | 6.07 | 5.33 | 5.59 4,01

Table 4: The mean, median, and 90" percentile values of per-
centage packet error observed at each AP over the duration of
the conference. The last column is the aggregate value across
APs.

to the number of associated users alone can perform poorly, and
that such algorithms would benefit from the additional complexity
of balancing users across APs according to their actual bandwidth
requirements. We are investigating such algorithms in related re-
search [1].

5.2 Channel Characteristics

In this section, we analyze channel errors and retransmissions, and
compare our observations with traditional analytic models for chan-
nel error. In both cases, we report the result as a percentage of the
total packets transmitted in the time interval.

5.2.1 Packet Errors

Table 4 shows the mean, median, and 90th percentile of packet
errors as seen at each AP and overall for the entire trace period.
We calculate the error rates as a percentage of the total packets
transmitted and received. This data is obtained from the SNMP
trace, where the APs maintain a running count of the total number
of packets transmitted and received and the number of packets in
error. \We take into account both inbound packets that could not
be delivered to a higher layer protocol due to errors, and outbound
packets that could not be transmitted due to a poor channel.

From the table we see that the error rates are low but not insignif-
icant, and similar for all APs. Although our environment was a
large auditorium without many obstructions, obtaining a clear line-
of-sight with the AP may have been difficult for a number of users:
in many cases, users were seated with machines on their laps with
people in seats in front and to their sides, and RF signals would
have had to propagate through human obstructions on their way to

Statistic | Overall Error | Overall Retransmissions
(% packets) (Yopackets)
Mean 2.41 2.26
Median 2.15 1.63
90 %ile 401 4.32

Table 5: The mean, median, and 90" percentile values of per-
centage packet error and retransmission.

and from the APs.

To look at error patterns more closely, Figure 13 plots the varia-
tion of error as seen at the NE access point during the second day
(Thursday). We see that the error rates are bursty over time, and
can be quite high for significant periods of time. For ten minutes
just after 11am, for example, error rates varied between 6-28%.
Comparing with Figure 10, we see that this time period correlates
to a large number of handoffs.

To model error rates as a function of time, we characterize the chan-
nel behavior in two states, good and bad, as has been done previ-
ously [6, 20, 22]. The good state is when the packet error rate is
fairly steady, while the bad state is characterized by bursts of high
error rate. Table 4 shows the parameter values when applying this
model to all traffic in our trace. When characterized this way, we
find that the parameter values for our model of channel error are
greater than those traditionally used in simulations [13, 14]. Fur-
ther, the mean duration of the bad state is less than 10% of the
duration of the good state.

The difference between our measurements and values previously
used by other researchers may be explained in the following man-
ner. Our measurements reflect the errors at the packet level rather
than bit level, and represent values that must be taken into account
in optimizing higher level protocol design. For example, TCP’s
performance is influenced to a large extent by the packet error rate
and not the bit error rate [2]. The lower time-scale errors, seen at
the bit level, are hidden from higher layers and often handled effi-
ciently in hardware. Furthermore, we do not believe that these error
rates are an artifact due to an implementation problem by a particu-
lar vendor since we saw packets from 8 popular wireless hardware
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Figure 12: The total wireless throughput at each AP through the day.

vendors.

5.2.2 MAC-level Retransmissions

Table 5 presents the mean, median, and 90th percentile of the packet
retransmissions for the NE AP through a typical day as a percent-
age of the total packets transmitted and received. Retransmissions
at the MAC level are necessitated when poor channel conditions
result in the original packet not being received and successfully de-
coded at the AP. The number of link-level retransmissions does not
match the number of errors because the error count also includes
MAC-level beacons in error. Since beacons are not retransmitted,
the number of retransmissions is less than the number of packet er-
rors. The table indicates that a small fraction of the packet errors,
roughly 6% on average, are due to beacon packet errors.

5.3 Summary of Network Performance
Overall, our analysis shows that:

e Not surprisingly, the offered load on the network directly cor-
relates with the conference schedule. It is highest during the
talks, and lowest during the breaks.

e The bandwidth distribution across APs is highly uneven and
does not directly correlate to the number of users at an AP.
Rather, the load at an AP is determined more by individual
user workload behavior.

e Even with just four APs for 195 users, the network is over-
provisioned. None of the APs in the network reach their max-
imum capacity even with peak loads.

e The wireless channel characteristics are similar across APS;

the variation is more time-dependent than location-dependent.

The overall median packet error rate is 2.15%, and the me-
dian packet retransmission percentage is 1.63%.

6. CONCLUSIONS

In this paper we have presented and analyzed user behavior and
network performance in a public-area wireless network based on a

trace collected at the ACM SIGCOMM’01 conference held at U.C.
San Diego in August, 2001. The goals of our study were to extend
our understanding of wireless user behavior and wireless network
performance by comparing and contrasting the workload in our set-
ting with previous ones, to characterize wireless users in terms of
a parametrized model for use with analytic and simulation studies
involving wireless LAN traffic, and to apply our workload analysis
results to better understand issues in wireless network deployment
and potential network optimizations.

For our conference workload of 195 users, our high-level results
indicate that most sessions are relatively short (< 10 minutes), and
longer sessions tend to be idle for the majority of time. Short ses-
sion times imply that network administrators using DHCP for IP
address leasing can configure DHCP to provide short-term leases,
after which IP addresses can be reclaimed or renewed. Web brows-
ing and secure shell are the dominant applications (64% of all bytes,
58% of all flows).

In accordance with the dominant applications, we found that both
average and peak individual user bandwidth requirements are rel-
atively small. These low bandwidth requirements imply that, even
with current 802.11b wireless technology, few APs are needed for
a large number of users in such settings, and capacity planning will
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be made even easier with the advent of higher capacity 802.11a
wireless technology. We also found that the load distribution in
terms of bandwidth across APs is highly uneven and not very well
correlated with the number of users associated with those APs. Asa
result, we conclude that existing AP load balancing algorithms that
attempt to balance AP load according to the number of users alone
can perform poorly, and that such balancing algorithms would ben-
efit from the additional complexity of balancing users across APs
according to their actual bandwidth requirements.

Finally, we note that the workload in this study is from a particular
setting, a computer networking conference, characterized by a con-
centrated space and scheduled periods of use. This workload likely
shares characteristics with similar wireless settings like classrooms,
meeting and conference rooms, airport gates, etc., but does not rep-
resent all settings in which public-area wireless networks will be
deployed. Consequently, our hope is that others will perform fu-
ture studies of user behavior and network performance in similar
and different wireless networks so that general characteristics and
trends can be identified over time.

The snmputil program, analysis scripts, and trace data used in this
study are available at:

http://ranp. ucsd. edu/ pawn/ si gconm trace
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