
February 6, 2004, 1:46pm

Proof sketch that Manson/Pugh allows reordering

Consider a program P and the program P ′ that is obtained from P by reordering two adjacent
statements x and y. Let x be the statement that comes before y in P , and after y in P ′.
The statements x and y may be any two statements such that

• reordering x and y doesn’t eliminate any transitive happens-before edges in any valid
execution (it will reverse the direct happens-before edge between x and y),

• x and y are not conflicting accesses to the same variable,

• x and y are not both synchronization actions, and

• the intra-thread semantics of x and y allow reordering (e.g., x doesn’t store into a regis-
ter that is read by y). This means that common single-threaded compiler optimizations
are legal here.

Assume that we have a valid execution E ′ of program P ′. To show that the transformation
of P into P ′ is legal, we need to show that there is a valid execution E of P that has the
same observable behavior as E ′.

Assume E ′ = 〈S, so, hb′, jo〉. We are going to show that E = 〈S, so, hb, jo〉 is also a valid
execution of P . Let ax and ay denote the actions corresponding to the statements x and y.
Because of the reordering the happens-before ordering may be different but we know that
hb − {ax → ay} ⊆ hb′ − {ay → ax}. Clearly, if E ′ is consistent then E is consistent, so we
only need to worry about showing that jo is justified as the justification order of E.

• Assume that jo = αayβaxγ.

We don’t need to worry about any actions that were prescient in E ′. The justification
of those prescient actions in E ′ will also justify them in E.

The only action that could be prescient in E but not E ′ is ay. If ay is not prescient
in E ′, we know ax is the only action that comes after ay in the justification order such

that ax
hb→ ay. In order to justify the prescient action ay in E, we need to show that

in each non-forbidden NPE of α, an action a′
y congruent to ay occurs.

– If ay is a read, then in order for a′
y to be congruent to ay we must show that the

write seen by ay in E is visible to a′
y.

– If ay is a write, we need to show that the Prescient Write Rule allows ay to occur
presciently.

We know intra-thread semantics will cause ay to occur, since all actions other than ax

that occur before ay in program order are in α, and we have assumed as a condition
for the reordering that ax does not affect the intra-thread semantics of ay.

In any non-prescient extension E ′′ of α, the only actions that can happen-before ay are
either in α or the action corresponding to ax. This is because in E ′, the action ay is

1



non-prescient, so all actions that happen-before ay are in α. In E, due to the ordering
of the statements that generate ax and ay, ax is also ordered before ay, but since ax is
not an acquire action, it doesn’t induce any happens-before edges that cause any other
actions to happen-before ay.

If ay is a read that sees a write w in α, then the writes that can be seen by a′
y are

determined by the conflicting writes that occur before a′
y in the justification order and

by the conflicting writes that happen-before a′
y. Since these are the same in both E

and E ′, a′
y will also be able to see w in E ′.

If ay is a write, we also need to prove that the Prescient Write Rule allows ay to occur
presciently. But in all non-prescient extensions of α, all conflicting reads r such that

r
hb→ ay are in α, so the number of such reads by each thread is the same in both the

justifying execution and the execution being justified.

• Alternatively, assume that jo = αaxβayγ. Then any action in E that is prescient is
also prescient in E ′, and the justifications used to show that those actions are justified
in E ′ will also show that those actions are justified in E.

Proof Sketch that Model Allows Unrolling / Merging

Compiler transformations can take place that take code that executes along one control path,
and split that path so it executes along multiple control paths that are equivalent to the
original. Conversely, it can take code that executes along multiple control paths, and merge
these paths so it only executes along one control path.

Consider a program P , and a program P ′ that is generated by splitting or merging. Is it
the case that every execution E ′ of P ′ has a corresponding execution E in P?

All forms of splitting and merging control paths must preserve intra-thread semantics.
It is therefore only the inter-thread actions that may be affected by splitting and merging.
Because such actions do not need to correspond to program statements, other than that they
must obey the intra-thread semantics of the program, any execution E ′ of P ′ will have the
same actions of an execution E of P .

Proof Sketch that Model Allows Speculative Reads

Some systems perform speculative reads. This proof describes certain kinds of speculative
reads, and shows that they are allowed by the memory model. The proof doesn’t say anything
about other kind of speculative reads (they may very well be allowed by the memory model,
but that fact is not shown in this proof).

A speculative read is one that is executed before it is known if the read will occur or
what address will be read. If the speculation is wrong, the read is invalid, and anything
dependent on the read must be re-performed at the appropriate place. If it is found to be
invalid when the read was supposed to occur, the read is performed again, where it was
originally supposed to be performed. A speculative read cannot occur earlier than the last
synchronization action that performed an acquire, or earlier than a write to the variable from

2



which it reads. We will call the early read the speculation point, and the original location of
the read will be the original point.

The value read at the speculation point must be legal to read at the original point
under the memory model. A read must see a value that is written before that read in the
justification order. If the justification order for an execution where the read occurs at the
speculation point is E ′ = αrβγ, then an equivalent execution where the read occurs at the
original point would be E = αβrγ, where r sees a value written in α. Assume that the value
that r returned in E ′ could not have been returned in E. Then either

• The variable was re-written between the speculation point and the original read point.
In this case, the read was invalid and would have been re-performed (by definition).

• The variable was written by another thread, and this thread performed an acquire that
forced it not to see the value read. Since there are no acquires between the speculative
point and the original point, this, too, is impossible.

Finally, the speculative read cannot influence its own validity, because its return value is
not used until the original point; the validity is determined before this.

3



Correctly Synchronized Programs exhibit only SC Behaviors

We say an execution has sequentially consistent (SC) results if its results are the same as if
the actions of all the thread were executed in some sequential order, and the actions of each
individual thread appear in this sequence in program order.

Two memory accesses are conflicting if they access the same variable and one or both of
them are writes. A program is defined to be correctly synchronized (CS) if in all sequentially
consistent executions, any two conflicting accesses are ordered by a happens-before path.

A justification order will return a non-SC result if a read returns a value of a write that
does not happen before that read.

Lemma 1 If an execution E has a non-prescient justification order and all conflicting ac-
cesses are ordered by happens-before edges, E has sequentially consistent behavior.

Proof: Assume we have an execution E with a non-prescient justification order jo.
Since jo is non-prescient, the ordering of the actions in jo is an valid sequentially consistent
execution order. The only way the execution could not be sequentially consistent is if a read
of a variable v, rather than seeing the most recent write to v, sees an earlier write to v. But
all of those accesses are ordered by happens before edges, so only the most recent write to v
is visible. So only sequentially consistent behaviors are allowed.

Definition 1 A program is correctly synchronized if and only if in all sequentially consis-
tent executions, all conflicting accesses to non-volatile variables are ordered by happens-before
edges.

Lemma 2 In all non-prescient executions of correctly synchronized programs, all conflicting
accesses are ordered by happens-before edges.

Proof: By contradiction. Assume there is a non-prescient execution with a justifica-
tion order αxβ, where x is the first action on the justification order that is not correctly
synchronized with respect to conflicting actions that occur before it in the justification order.

Let x′ be an action congruent to x; if x is a read of a variable v, then x′ sees the last
write to v in α.

By executing additional actions β′ according to sequentially consistent semantics, we
arrive at a sequentially consistent execution with a justification order αx′β′ that has a data
race. So this program must not have been correctly synchronized.

Lemma 3 All non-prescient executions of correctly synchronized programs exhibit sequen-
tially consistent behavior.

Proof: Follows directly from Lemmas 2 and 1.

Definition 2 Let E be an execution with a justification order αxyβ such that x is prescient,
y is not prescient, and y is not a read that sees x and x and y are not both synchronization
actions. Then αyxβ is the justification order of an execution E ′ that is the prescient
relaxation of x in E. Note that E and E ′ have the same actions, behavior, synchronization
order and happens-before edges.

4



Definition 3 Given any execution E, the full prescient relaxation of E is an execution
E ′ that is obtained by applying the reordering described in Definition 2 repeatedly until no
more reorderings are possible.

Lemma 4 For any prefix α of a justification order of an execution of a correctly synchronized
program, full prescient relaxation of any non-prescient extension of α gives an equivalent
execution with no prescient actions.

Proof: Our proof is by induction; the inductive hypothesis is that for every execution
E that is a non-prescient extension of α (i.e., E ∈ NPE(α)), full prescient relaxation of E
gives an execution with no prescient actions.

Base Case. In the base case, α is the empty prefix. All non-prescient extensions of the
empty prefix are non-prescient.

Inductive Case. Given the inductive hypothesis, we must show that for every execution
E ∈ NPE(αx), the full prescient relaxation of E is entirely non-prescient.

Every E ∈ NPE(αx) has a justification order αxβ, where β is non-prescient. Repeatedly
apply prescient relaxation to x in E.

• If this makes x non-prescient, then the resulting execution has a justification order
that is a non-prescient extension of α, and our inductive hypothesis tells us that full
prescient relaxation of E gives an entirely non-prescient execution.

• Alternatively, after relaxing x zero or more times, we have a justification order αβ′xyγ,
where x is prescient and cannot be further relaxed, and y, β′ and γ are non-prescient.

– It cannot be the case that both x and y are synchronization actions, since then
the justification order of E wouldn’t respect the synchronization order of E.

– Then it must be the case that y is a read r that sees the write x.

If x
hb→ r, then r would also be prescient. So we know there is no happens-before

edge from x to r. Since r sees x, we also known that there is no happens-before
edge from r to x.

The action x does not influence whether r occurs or the variable it reads; it
only influences the value it sees. We can extend αβ′ with a non-prescient read
r′ corresponding to r (seeing a write in αβ′). Every non-forbidden non-prescient
extension of αβ′r′ must include an x′ that corresponds to x; otherwise, it would
not be possible to include x as the next prescient action in the justification order
after αβ′. Let E ′ be any of those non-forbidden, non-prescient extensions.

Let E ′′ be the full prescient relaxation of E ′. Because β′r′ is non-prescient, we
know that E ′ is a non-prescient extension of α. Therefore, by the inductive hy-
pothesis, E ′′ must be entirely non-prescient. By Lemma 2, all conflicting accesses
are ordered by happens-before edges in E ′′. Since prescient relaxation does not
change actions or happens-before edges, all conflicting actions in E ′ must also be

ordered by happens-before edges. So we know that r′ hb′
→ x′ in E ′.

Let t be the thread that performs both r′ and r. Let c be the number of conflicting

reads in E ′ performed by t that happen-before x′. Since r′ hb′
→ x′ in E ′ and r′ is

5



not in αβ′, we know that c is strictly greater than the number of conflicting reads
performed by t in αβ′.

By the prescient write rule, we know that there must exist at least c conflicting
reads performed by t in αβ′xrγ that happen-before x. Since c is greater than the
number of conflicting reads in αβ′, we know that there must be at least one such
read in rγ. Let r′′ denote some such read.

So this gives us three possibilities:

∗ r′′ is r. But since r′′ hb→ x ∧ ¬(r
hb→ x), this is a contradiction.

∗ r
po→ r′′. But if r

po→ r′′ hb→ x, then r
hb→ x, which is a contradiction.

∗ r′′ po→ r. But since r′′ in γ, this would mean that r is prescient, which
contradicts our assumption that r is non-prescient.

Therefore, our inductive hypothesis holds.

Theorem 5 Correctly synchronized programs have sequentially consistent semantics.

Proof: All executions of correctly synchronized programs are equivalent to non-prescient
executions of the same program because of Lemma 4. Therefore, by Lemma 3, all executions
of correctly synchronized programs exhibit sequentially consistent behavior.

6


