
Informal Description of Manson/Pugh model

February 6, 2004, 1:45pm

Note: the issue of what it means for an action to occur in more than one execution is
elided.

There is a happens-before relation
hb→ defined on actions i

hb→ j if i is before j in
program order, if i is an unlock or volatile write and j is a matching lock or volatile read

that comes after it in the total order over synchronization actions, or if i
hb→ k

hb→ j for some
k.

A read r is allowed to see a write w to the same variable v if r does not happen-before

w and if there is no other write w′ to v such that w
hb→ w′ hb→ r.

An execution that has only allowed reads and respects intra-thread semantics (see Ap-
pendix A) is a happens-before consistent execution, or hb-consistent for short.

For every execution, there is a total order over actions, consistent with the synchronization
order, called the justification order.

Any read action must see a write that occurs earlier in the justification order. A volatile
read always sees the result of the most recent volatile write of the same variable in the
justification order.

An action x is prescient if there exists an action y that occurs after x in the justification

order such that y
hb→ x. Each prescient action x in an execution E must be justified by

the actions that come before it in the justification order. Let α be the sequence of actions
that precedes x in the justification order of E. Let J be the set of all non-forbidden hb-
consistent executions whose justification order consists of α followed by non-prescient actions
(see Appendix B for an algorithm to generate J). To prove x is justified, we need to show
that for each E ′ in J it must have an action x′ such that:

• x′ is congruent to x; specifically, either x′ and x are the same action, or they are both
reads of the same variable and it would be hb-consistent for x′ to see the write seen by
x, and

• (Prescient Write Rule) if x is a write, then for each thread t, let c be the number of
reads in E ′ performed by t that conflict with x′ and happen-before x′. At least c reads
that conflict with x and happen-before x must be performed by t in E.

Prescient Relaxation Executions may contain prescient actions that either do not need to
be prescient, or occur earlier in the justification order than is necessary. Prescient relaxation
ensures that all prescient actions occur at the latest possible point. Forbidden executions
are defined in terms of executions whose actions have all had prescient relaxation applied.

Consider any execution E with justification order αxyβ where:

• x and y are not both synchronization actions, and

• x is prescient, y is not.

• x is not a write seen by y.

1



Given this, the prescient relaxation of x in E gives an execution E ′ that is identical
to E, except that the justification order of E ′ is αyxβ.

Forbidden Executions Justification may involve the use of forbidden executions. For-
bidden executions are defined by a set of forbidden justification order prefixes F . For each
forbidden prefix αx, the action x must be either a read or a synchronization action. Given F ,
an execution E is forbidden by F if any application of zero or more applications of prescient
relaxation to E generates an execution trace whose justification order starts with a forbidden
prefix (typically, F is empty and no executions are forbidden).

A set of forbidden prefixes must be valid. To show that a set of forbidden prefixes is
valid, we must show that for each prefix αx ∈ F , we have the following constraints:

• If x is a read, either:

– There exists some non-forbidden execution E with a justification order αx′β such
that β contains no prescient actions, and x′ is a read corresponding to x (a read
by the same thread of the same variable, but of a different write in α of a different
value), or

– Without considering αx as a forbidden prefix, there exists a non-forbidden ex-
ecution E with a justification order α′w′x′β′ such that β contains no prescient
actions and x′ sees w′.

• If x is a synchronization action, there exists some non-forbidden execution E with a
justification order αx′β such that β contains no prescient actions, and x′ must be a
different synchronization action (by another thread).

Note: In the full semantics, we also deal with forbidding infinite unfair executions.

Valid Executions Given these definitions, an hb-consistent execution E is legal if and
only if there exists a set of forbidden prefixes FE such that E is not forbidden by FE and
using FE as the forbidden prefixes, all of the prescient actions in E are justified.

2



Appendix

These appendices include clarifications that have been requested.

A Intra-thread Semantics

Given an execution where each read sees a write that it is allowed to see by the happens-
before constraint, we verify that the execution respects intra-thread semantics as follows.
For each thread t, we go through the actions of that thread in program order. For each
non-read action x, we verify that the behavior of that action is what would follow from the
previous actions in that thread according to the JLS/JVMS. For a read action, we only verify
that the variable read is the one that is determined by the previous actions in the thread
according to the JLS; the value seen by the read is determined by the memory model.

B Generating Non-prescient Extensions

Say we have a program P , and a partial justification order α. We can compute the set of all
non-prescient extensions to α as follows.

• Let S be a set of partial and complete justification orders, initialized to be the singleton
set containing α.

• Let W be a worklist of justification orders to be explored, initialized to S.

• While W is non-empty, choose and remove a justification order β from W

– For each thread t in P , select the first statement in program order whose execution
is not in β.

∗ If that statement is not a read, then evaluate that statement in the thread-
local context of β, generating action x, and add βx to both S and W .

∗ If that statement is a read, determine, in the thread-local context of β, which
variable v will be read. For each write w ∈ β of v that could be seen by the
read, generate the action r corresponding to that read seeing w, and add βr
to both S and W .

• When W is empty, the complete justification orders in S corresponding to hb-consistent
executions are the non-prescient extensions to α.

3


