
Final Field Semantics

Jeremy Manson and William Pugh

April 7, 2003, 12:27pm

Final fields are fields that are initialized once and then never changed.
The detailed semantics of final fields are somewhat different from those of
normal fields. In particular, we provide the compiler with great freedom to
move reads of final fields across synchronization barriers and calls to arbitrary
or unknown methods. Correspondingly, we also allow the compiler to keep
the value of a final field cached in a register and not reload it from memory
in situations where a non-final field would have to be reloaded.

Final fields also provide a way to create thread-safe immutable objects
that do not require synchronization. A thread-safe immutable object is seen
as immutable by all threads, even if a data race is used to pass references to
the immutable object between threads.

In the abstract, the guarantees for final fields are as follows. When we
say an object is “reachable” from a final field, that means that the field is
a reference, and the object can be found by following a chain of references
from that field. When we say the “correctly initialized” value of a final field,
we mean both the value of the field itself, and, if it is a reference, all objects
reachable from that field.

• At the end of an object’s constructor, all of its final fields are “frozen”
by an implicit “freeze” action.

• If a thread only reads references to an object that were written after
the last freeze of its final fields, that thread is always guaranteed to
see the frozen value of the object’s final fields. Such references are
called correctly published, because they are published after the object
is initialized. There may be objects that are reachable by following a
chain of references from such a final field. Reads of those objects will
be up to date as of the the freeze of the final field.

1

• Conversely, if a thread reads a reference to an object written before a
freeze, that thread is not automatically guaranteed to see the correctly
initialized value of the object’s final fields. Similarly, if a thread reads
a reference to an object reachable from the final field without reaching
it by following pointers from that final field, the thread is not auto-
matically guaranteed to see the value of that object when the field was
frozen.

• If a thread is not guaranteed to see a correct value for a final field or
anything reachable from that field, the guarantees can be enforced by a
normal happens-before relationship. In other words, those guarantees
can be enforced by normal synchronization techniques.

• When you freeze a final which points to an object, then freeze a final
field of that object, there is a happens-before relationship between the
first freeze and the second.

Complications Retrofitting the semantics to the existing Java program-
ming language requires that we deal with a number of complications:

• Using serialization in Java to read an object requires that the object
first be constructed, initializing the final fields of the object. Then
deserialization code is invoked to set the object to what is specified in
the serialization stream. This means that the semantics must allow for
final fields to change after objects have been constructed.

Although our semantics allows for this, the guarantees we make are
somewhat limited; they are specialized to deserialization. These guar-
antees are not intended to be part of a general and widely used mech-
anism for changing final fields. In particular, using JNI to modify final
fields is illegal; the use of this technique will invalidate the semantics
of the VM.

To formalize the semantics for multiple writes/initializations of a fi-
nal field, we allow multiple freezes. A second freeze action might, for
example, take place after deserialization is complete.

• The final static fields System.in, System.out and System.err are defined
to be mutable by public methods. Thus, we treat these three fields (and
only these three fields) as write-protected, rather than final.

2

1 Introduction to Semantics

The semantics are laid out somewhat more formally than this. Accesses
to final fields have the same semantics as accesses to ordinary fields. The
only difference in their respective semantics is that the happens-before rela-
tionship includes a set writesBeforeDereference of additional writes that are
visible when executing a given action. Most of this document discusses the
construction of that set.

2 Full Semantics

We present here the formal semantics in full. We will then deconstruct them
more carefully.

hb→ The notation a
hb→ b denotes that a happens before b because of the

semantics of non-final fields.

2.1 Freezes Associated with Writes

When an address a is stored in the heap by thread t at write w, it is stored
as a pair 〈a,G〉, where G is a set of freeze operations defined as:

G = {f | f hb→ w} ∪ freezesBeforeDereference(t, a)

The set freezesBeforeDereference(t, a) is the set of freezes associated with
the address a in thread t, as defined below.

2.2 Effect of Reads

A read r in thread t of field x of the object at address c returns a tu-
ple 〈a,G〉; each such read has two corresponding sets. The first, the set
freezeBeforeRead(r), is a set of freezes associated with the read. The sec-
ond, the set writesBeforeRead(r), is a set of writes associated with the read.
These sets are used to compute the values that are legal to see for final fields.

3

2.2.1 Freezes Seen as a Result of Reads

Consider a read r in thread t of field x of the object at address c that returns
a tuple 〈a,G〉. The set of freezes freezeBeforeRead(r) associated with a read
r of address a is:

freezeBeforeRead(r) = G ∪ {f | f hb→ r} ∪ freezesBeforeDereference(t, c)

The set freezesBeforeDereference(t, a) is the intersection of the sets of
freezes freezeBeforeRead(r) that that thread saw every time it read a refer-
ence to o. Let sawAddress(t, a) be the set of reads in thread t that returned
the address a.

freezesBeforeDereference(t, a) =
⋂

r∈sawAddress(t,a)

freezeBeforeRead(r)

If a thread t allocated a (including all situations where sawAddress(t, a)
is empty), then the set freezesBeforeDereference(t, a) is empty. Because the
definition of freezesBeforeDereference(t, a) uses freezeBeforeRead(t, c), the
actual freezesBeforeDereference sets are defined by the least fixed point so-
lution to these equations (i.e., the smallest sets that satisfy these equations).
This is explained more fully in Appendix A.

2.2.2 Writes Visible at a Given Read

For any read instruction r, there is a set of writes, writesBeforeRead(r),
that is known to be ordered before r due to the special semantics of final
fields. These ordering constraints are taking into account in determining
which writes are visible to the read r. However, these ordering constraints
do not otherwise compose with the standard happens before ordering con-
straints.

The set writesBeforeRead(r) is defined in terms the writes that are known
to occur before any dereference of the address c by thread t, which is given by
writesBeforeDereference(t, c). These equations are recursive so the solution
is defined to be the least fixed point solution.

4

Result set for non-final fields or array elements Consider a read r in
thread t of non-field field or element x of the object at address c. The set of
writes writesBeforeRead(r) is defined as:

writesBeforeRead(r) = writesBeforeDereference(t, c)

Result set for final fields Consider a read r in thread t of final field x of
the object at address c. The set of writes writesBeforeRead(r) is defined as:

writesBeforeRead(r) =
writesBeforeDereference(t, c) ∪

{w | ∃f s.t. f ∈ freezesBeforeDereference(t, c)
∧ f is a freeze of c.x

∧ w
hb→ f}

Result set for static fields The set writesBeforeRead(r) associated with
a read r of a static field is the empty set.

Visible Write Set The set writesBeforeDereference(t, a) is defined to be
the intersection of the writesBeforeRead sets for all reads that see the value
a.

writesBeforeDereference(t, a) =
⋂

r∈sawAddress(t,a)

writesBeforeRead(r)

If a thread t allocated a (any situations where sawAddress(t, a) is empty
are included in this), then writesBeforeDereference(t, a) is empty. As with
freezesBeforeDereference, these equations are recursive and the solution is
defined to be the least fixed point solution to the equations (i.e., the smallest
sets that satisfy these equations). This is explained more fully in Appendix A.

When a read r examines the contents of any field a.x in thread t, all of
the writes in writesBeforeRead(r) are considered to be ordered before r. In
addition, if a.x is a final static field, then r will always return a.x’s correctly
constructed value, unless r happens in the thread that performed the class
initialization, before the field was written. These constraints, along with the
normal happens before constraints, are used to determine the legal values for
the read.

5

2.3 Single Threaded Guarantees

For cases where a final field is set once in the constructor, the rules are simple:
the reads and writes of the final field in the constructing thread are ordered
according to program order.

We must treat the cases (such as deserialization) where a final field can
be modified after the constructor is completed a little differently. Before
modifying a frozen final field, the system must call a realloc() function,
passing in a reference to the object, and getting out a reference to the object
through which the final fields can be reassigned. The only appropriate way
to use this realloc() function is to pass the only live reference to the object
to the realloc() function, and only to use that value realloc() returns to
refer to the object after that call.

After getting back a “fresh” copy from realloc(), the final fields can be
modified and refrozen. The realloc() function will likely be implemented as
a no-op, but it can be thought of as a function that might decide to perform
a shallow copy.

In more detail, each reference within a thread essentially has a version
number. Passing a reference through realloc() increments that version
number. A read of a final field is ordered according to program order with
all writes to that field using the same or smaller version number.

Note that two references to the same object but with different version
numbers should not be compared for equality. If one reference is ever com-
pared to a reference with a lower version number, then that read and all
reads of final fields from that reference are treated as if they have the lower
version number.

2.4 Write Protected Fields

System.in, System.out, and System.err are final static fields that can
be changed by the methods System. setIn(), System. setOut() and
System. setErr(). These methods call native code that can modify the
respective fields; we refer to them as “write-protected” fields to distinguish
them from ordinary final fields.

The compiler needs to treat these fields differently from other final fields.
A read of an ordinary final field is “immune” from synchronization: the
barrier involved in an acquire does not affect what value is read from the
final field. Since these other fields may be seen to change, synchronization

6

f1 is a final field; its default value is 0

Thread 1 Thread 2 Thread 3
o.f1 = 42 r = p; s = q;
p = o; i = r.f1; j = s.f1;
freeze o.f1 t = q;
q = o; if (t == r)

k = t.f1;

We assume r and s do not see the value null. i and k can be 0 or 42, and j
must be 42.

Figure 1: Example of Simple Final Semantics

events should have an affect on them.
Therefore, the semantics dictate that these fields be treated as normal

fields that cannot be changed by bytecode, unless that bytecode is in the
constructor of the System class. Since these fields do not have the semantics
of final fields, but can only be changed by special code, we call them write-
protected fields.

3 Simple Semantics

We can now go more carefully into the details of how the semantics work.
We will first discuss how the notion of a freeze is communicated between
threads.

Consider Figure 1. A freeze, for the moment, is simply what happens at
the end of a constructor. Although s, r and t can see the value null, we will
not concern ourselves with that; that just leads to a null pointer exception.

The reference q is correctly published after the end of o’s constructor. Our
semantics guarantee that threads that only see correctly published references
to o will see the correct value for o’s final fields. We therefore want to
construct a special happens before relationship between the freeze of o.f1
and the read of it as q.f1 in Thread 3.

The read of p.f1 in Thread 2 is a different case. Thread 2 sees p, an
incorrectly published reference to object o; it was made visible before the
end of o’s constructor. A read of p.f1 could easily see the default value for
that field, if a compiler decided to reorder the write to p with the write to

7

o.f1. No read of p.f1 should be guaranteed to see the correctly constructed
value of the final field.

What about the read of q.f1 in Thread 2? Is that guaranteed to see the
correct value for the final field? A compiler could determine that p and q
point to the same object, and therefore reuse the same value for both p.f1
and q.f1 for that thread. We want to allow the compiler to remove redundant
reads of final fields wherever possible, so we allow k to see the value 0. The
object can be thought of as being “tainted”; the thread is never guaranteed
to see its correctly constructed final fields.

In addition to compiler transformations allowing this behavior, a DSM-
like implementation would allow it. More generally, if a thread t reads an
incorrectly published reference to an object o, thread t forever sees a tainted
version of o without any guarantees of seeing the correct value for the final
fields of o.

These properties also need to be discussed in terms of multiple freeze oper-
ations; we will allow multiple freezes for various implementation dependent
issues. The tainting process therefore becomes slightly more complicated.
Each reference to an object is associated with some set of guarantees about
what will be seen. These guarantees tell which freeze operations are visible
to the read. A thread only gets those guarantees that are associated with all
of the references it sees.

In Figure 1, Thread 1 is provided with the guarantees from the p reference,
because p in Thread 1 provides the fewest guarantees. Thread 2 is provided
with the guarantees from the q reference, because, in Thread 2, q provides
the fewest guarantees. We can now present this formally: we will show the
relevant portions of the full semantics.

Freezes are ordered with respect to writes of references When an
address a is stored in the heap by thread t at write w, it is stored as a pair
〈a,G〉, where G is a set of freeze operations defined as:

G = {f | f hb→ w}

Freezes that are associated with a read r of a variable v (which
is o.f) by thread t Consider a reference a to an object o. A thread t
may read a multiple times: each such read r will be a member of the set
sawAddress(t, a). The set of freezes freezeBeforeRead(r) associated with one

8

o.f2 is a final reference to the class of object p. p.b is a reference to an
integer array. a is a length 1 array whose contents are initialized to 0s.

Thread 1 Thread 2 Thread 3
o.f2 = p; i = a[0]; s1 = pub.f2;
p.b = a; r1 = pub.f2; s2 = s1.b;
a[0] = 42; r2 = r1.b; s3 = s2[0];
freeze o.f2; r3 = r2[0];
pub = o;

We assume r1 and s1 do not see the value null.
r2 and s2 must both see the correct pointer to array a.

s3 must be 42, but r3 does not have to be 42.

Figure 2: Example of Transitive Final Semantics

of these reads r is G:

freezeBeforeRead(r) = G

The set freezesBeforeDereference(t, a) is the intersection of the sets of
freezes freezeBeforeRead(r) that that thread saw at r.

freezesBeforeDereference(t, a) =
⋂

r∈sawAddress(t,a)

freezeBeforeRead(r)

If a thread t allocated a (including all situations where sawAddress(t, a)
is empty), then the set freezesBeforeDereference(t, a) is empty.

As a first approximation, we make the following guarantee: if a freeze of
an object is associated with a given read r of one of that object’s final fields,
r will return the correctly constructed value for that final field. This will be
refined in the next section.

4 Reachability Guarantees

4.1 Standard Visibility Rules

Now consider Figure 2. In this example, the final field o.f2 is a reference.
In this case, we want to make some additional guarantees. It would not be

9

Thread 1 Thread 2
o.f = p; i = pub.x;
p.g = 42; j = pub.y;
pub.x = o; k = j.f;
freeze p.g; l = k.g;
pub.y = o;

Figure 3: Example of Reachability

very useful if we only guaranteed that the values read for references were
correct, without also making some guarantees about the objects to which
those references point. In this case, we need to make guarantees for o.f2, the
object p to which it points and the array pointed to by p.b.

We make a very simple guarantee: if a final reference is published cor-
rectly, and its correct value was guaranteed to be seen by an accessing thread
(as described in Section 3), everything transitively reachable from that final
reference is also guaranteed to be up to date as of the freeze. In Figure 2,
o’s reference to p, p’s reference to a and the contents of a are all guaranteed
to be seen by Thread 3. We call this idiom a dereference chain.

We make one exception to this rule. In Figure 2, Thread 2 reads a[0]
through two different references. A compiler might statically determine that
these references are the same, and reuse i for r3. Here, a reference reachable
from a final field is read by a thread in a way that does not provide guarantees;
it is not read through the final field. If this happens, the thread “gives up”
its guarantees from that point in the dereference chain; the address is now
tainted. In this example, the read of a[0] in Thread 2 can return the value 0.

4.2 More about Reachability

The definition of reachability is a little more subtle than might immediately
be obvious. Consider Figure 3. It may seem that the final field p.g can only
be reached through one dereference chain. However, consider the read of
pub.x. A global analysis may indicate that it is feasible to reuse its value for
j. o.f and p.g may then be read without the guarantees that are provided
when they are reached from pub.y.

The upshot of this is that a reachability chain is not solely based on syn-
tactic rules about where dereferences occur. There is a link in a dereference

10

chain from any dynamic read of a value to any action that dereferences that
value, no matter where the dereference occurs in the code.

We can now provide detailed semantics for the way in which writes reach-
able from final fields are made visible to other threads; this was deferred from
the previous section.

4.3 Formal Reachability Guarantees

If a variable is only accessed via a series of dereferences from final
fields, it garners the guarantees made by those final fields. Oth-
erwise, the correct value must be seen as a result of some other
happens-before relationship.

We define a set writesBeforeDereference(t, a) that contains the writes
that happen before reads of an address a in thread t because of the special
semantics of final fields. As we have seen, if a is the value returned by a read
of some variable o.x, then the writes guaranteed to be visible when reading a
depend on the writes that were guaranteed to be seen when reading o. This
is because o is the previous element on the dereference chain. The set visible
at the read of o is writesBeforeDereference(t, o).

To define the set writesBeforeDereference(t, a) formally, we need to ex-
amine what values might be seen at any read that might return the value a.
For a given read r, this is the set writesBeforeRead(r).

When a read r is of a static variable, the set writesBeforeRead(r) is the
empty set. All reads of static final fields f are guaranteed to see the correctly
constructed value for that field, unless those reads occur before the write to
f .

For a read r of a non-final field o.x that sees a, the set writesBeforeRead(r)
is simply the set of writes available to be seen when we read o, the last element
in the dereference chain before o.x. The set writesBeforeDereference(t, o) is
defined in this way.

For a read of a final field c.x that sees a, the set writesBeforeRead(r)
consists partly of the set of writes available to be seen when we read o; this is
the set writesBeforeDereference(t, o). For the additional guarantees for final
fields, we also include all writes that happen before freezes of o.f associated
with o.

writesBeforeRead(r) = writesBeforeDereference(t, c) ∪
{w | w hb→ f∧

11

Thread 1 Thread 2 Thread 3
o.f1 = 42; r1 = Global.a; s1 = Global.b;
freeze o.f1; Global.b = r2; s2 = s1.f1;
Global.a = o;

s2 is guaranteed to see 42, if s1 is a reference to o.

Figure 4: Freezes are Passed Between Threads

f ∈ freezesBeforeDereference(t, c)∧
f is a freeze of c.x}

The notation a
hb→ b denotes that a happens before b. As a reminder, the

set freezesBeforeDereference(t, a) is the set of freezes associated with a.
Finally, the set writesBeforeDereference(t, a) consists of the intersection,

for all reads in thread t of the sets writesBeforeRead(r), where v is any
variable. This is defined as:

writesBeforeDereference(t, a) =
⋂

r∈sawAddress(t,a)

writesBeforeRead(r)

The set sawAddress(t, a) is the set of reads in thread t that returned
the address a. If a thread t allocated a (including all situations where
sawAddress(t, a) is null), then the set writesBeforeDereference(t, a) is empty.
When reading any field a.x in thread t, writesBeforeRead(t, a) is used for
determining the legal values; it is the set of actions that are seen to happen
before this read due to the special semantics of final fields.

The full semantics of final fields is discussed in Section 2. That discussion
also includes additional guarantees made for static fields.

5 Freezes Are Passed Between Threads

Consider Figure 4. If s1 is a reference to o, should s2 have to see 42? The
answer to this lies in the way in which Thread 3 saw the reference to o.

Thread 1 correctly published a reference to o, which Thread 2 then ob-
served. Had Thread 2 then read a final field of o, it would have seen the
correct value for that field; the thread would have to have ensured that it

12

saw all of the updates made by Thread 1. To do this on SMP systems, Thread
2 does not need to know that it was Thread 1 that performed the writes to the
final variable, it needs only to know that updates were performed. On sys-
tems with weaker memory constraints (such as DSMs), Thread 2 would need
this information; we shall discuss implementation issues for these machines
later.

How does this impact Thread 3? Well, like Thread 2, Thread 3 cannot
see a reference to o until the freeze has occurred. Like Thread 2, Thread 3 is
guaranteed to see all of the writes to o that occurred prior to the freeze. There
is therefore no reason not to provide Thread 3 with the same guarantees with
which we provide Thread 2.

This causes a slight change to the formal semantics. Remember that there
are a set of freezes associated with each write of a reference. Until now, this
set only included the freezes that explicitly happened before that write. It
must now include any freezes that are guaranteed to be seen by the reference
we are writing out. In Figure 4, the write to Global.b will include the freezes
that Global.a sees. The change is a simple one. Recall that when we write out
an address, we write it out as a pair 〈a,G〉: G is the set of freezes associated
with that address. We simply add the set freezesBeforeDereference(t, a) to
G:

G = freezesBeforeDereference(t, a) ∪ {f | f hb→ w}

6 Additional Information for Reads

6.1 Semantics’ Interaction with Happens Before Edges

Now consider Figure 5. We want to describe the interaction between ordinary
happens-before relationships and final field guarantees. In Thread 1, o is
published incorrectly (before the freeze). However, if the code in Thread 1
happens before the code in Thread 2, the normal happens-before relationships
ensure that Thread 2 will see all of the correctly published values. As a result,
j will be 42.

What about the reads in Thread 3? We assume that k does not see a
null value: should the normal guarantees for final fields be made? We can
answer this by noting that the write to Global.b in Thread 2 is the same as
a correct publication of o, as it is guaranteed to happen after the freeze. We

13

p.x is initialized to 42.
o.f is final.

Thread 1 Thread 2 Thread 3
lock m; lock m; k = Global.b;
Global.a = o; i = Global.a; l = k.x;
o.f = p; Global.b = i;
freeze o.f; j = i.x;
unlock m unlock m;

If the unlock in Thread 1 happens before the unlock in Thread 2:
i will see o.
j will see 42.

k will see o or null.
l will see 42 or throw a null pointer exception..

Figure 5: Example of Happens Before Interaction

therefore make the same guarantees for any read of Global.b that sees o as
we do for a read of any other correct publication of o.

A freeze can piggyback on a happens-before relationship Given a
freeze f and a read r of a final variable v, where the read r happens in thread

t, if f
hb→ r, the set containing that freeze counts as one of the sets associated

with the the read of the object pointing to v.
We can now define the changes to the formalism that reflect this. The dif-

ference is in the set of freezes read at an access r: the set freezeBeforeRead(r).
The formulation is now as follows:

freezeBeforeRead(r) = G ∪ {f | f hb→ w}

7 Reads and Writes of Final Fields in the

Same Thread

Up to this point, we have only made guarantees about the contents of final
fields for reads that have seen freezes of those final fields. This implies that

14

The deserialize() method sets the final field p.x to 42 and then performs
a freeze on p.x. It passes back a reference to the p object. This is done in

native code.
i = p.x;
q = deserialize(p);
j = p.x;
k = q.x;
i may be 42 or 0.
j may be 42 or 0.
k must be 42.

i = p.x;
deserialize(p);

i may be 42 or 0.

q = deserialize(p);
j = q.x;

j must be 42.

// In p’s
// constructor
q.x = 42;
i = q.x;
i must be 42.

Figure 6: Four Examples of Final Field Optimization

a read of a final field in the same thread as the write, but before a freeze,
might not see the correctly constructed value of that field.

Sometimes this behavior is acceptable, and sometimes it is not. We have
four examples of how such reads could occur in Figure 6. In three of the
examples, a final field is written via deserialization; in one, it is written in a
constructor.

We wish to preserve the ability of compiler writers to optimize reads of
final fields wherever possible. When the programs shown in Figure 6 access
p.x before calling the deserialize() method, they may see the uninitialized
value of p.x. However, because the compiler may wish to reorder reads of
final fields around method calls, we allow reads of p.x to see either 0 or 42,
the correctly written value.

On the other hand, we do want to maintain the programmer’s ability to
see the correctly constructed results of writes to final fields. We have a simple
metric: if the reference through which you are accessing the final field was
not used before the method that sets the final field, then you are guaranteed
to see the last write to the final field. We call such a reference a new reference
to the object.

15

This rule allows us to see the correctly constructed value for q.x. Because
the reference being returned from deserialize() is a new reference to the
same object, it provides the correct guarantees.

For cases where a final field is set once in the constructor, the rules are
simple: the reads and writes of the final field in the constructing thread are
ordered according to program order.

We must treat the cases (such as deserialization) where a final field can
be modified after the constructor is completed a little differently. Before
modifying a frozen final field, the system must call a realloc() function,
passing in a reference to the object, and getting out a reference to the object
through which the final fields can be reassigned. The only appropriate way
to use this realloc() function is to pass the only live reference to the object
to the realloc() function, and only to use that value realloc() returns to
refer to the object after that call.

After getting back a “fresh” copy from realloc(), the final fields can be
modified and refrozen. The realloc() function will likely be implemented as
a no-op, but it can be thought of as a function that might decide to perform
a shallow copy.

In more detail, each reference within a thread essentially has a version
number. Passing a reference through realloc() increments that version
number. A read of a final field is ordered according to program order with
all writes to that field using the same or smaller version number.

Note that two references to the same object but with different version
numbers should not be compared for equality. If one reference is ever com-
pared to a reference with a lower version number, then that read and all
reads of final fields from that reference are treated as if they have the lower
version number.

We can now see how these rules apply to the examples in Figure 6. Any
reference to a final field via q will be treated as a “new” version number, and
see the correct value for the field. Any reference to a final field via p will
have the “old” version number, and not be guaranteed to see the correctly
constructed value.

This final change provides us with the full semantics; we now focus on
additional examples and implementation issues.

16

a is an array whose first element is initialized to 0.
o is of a class that has two final fields, f and g.

o.b is not a final field.

Thread 1 Thread 2 Thread 3
Global.b = a; m = Global.x; n = Global.x;
a[0] = 1; i = m.f[0]; k = n.f[0];
o.f = a; j = m.g[0]; l = Global.b[0];
o.g = a;
freeze o.f;
freeze o.g
Global.x = o;

Figure 7: Thread 2 must see a[0] == 1, Thread 3 may not

8 More Examples

8.1 Reachability from Two Distinct Pointers

In Figure 7, we have three references to the same array; two are final, and one
is not. As with our other examples, we shall assume that no reads return a
null value. In Thread 2, both array references are final fields; both references
should have guarantees about the contents of the array. In Thread 3, only
one of the array references is final. A compiler could reorder the read of
Global.b[0] to the beginning of Thread 3, see the value 0 for a[0], and then
reuse that value for n.f [0]. Thus, no guarantees are made for Thread 3.

How does this play out in the semantics? We first consider every derefer-
ence chain through which we accessed a variable. In Thread 2, the array is
accessed through both m.f and m.g. We then intersect the freezes seen by
both of these chains of access: since m.f and m.g see the same set of freezes,
the read of a[0] is provided a full set of guarantees.

In Thread 3, the array is accessed through both n.f and Global.b. We
intersect the set of freezes see by both “approaches” to the array. Even
though n.f provides guarantees, Global.b provides none: the intersection of
these guarantees is empty. Therefore, no guarantees are made for Thread 3.

17

p.g is final in the first and second example, and not final in the second.

Thread 1 Thread 2
p.g = a; i = Global.x;
a[0] = 1; j = i.f;
freeze p.g; k = j.g;
o.f = p; l = k[0];
freeze o.f;
Global.x = o;

Thread 1 Thread 2
p.g = a; i = Global.x;
freeze p.g; j = i.f;
a[0] = 1; k = j.g;
o.f = p; l = k[0];
freeze o.f;
Global.x = o;

Thread 1 Thread 2
p.g = a; i = Global.x;
a[0] = 1; j = i.f;
o.f = p; k = j.g;
freeze o.f; l = k[0];
Global.x = o;

Figure 8: Both Examples are Guaranteed to See a[0] == 1

8.2 Reachability through Multiple Final Fields

Now consider Figure 8. In all of these examples, l in Thread 2 is guaranteed
to be the value 1 (again, assuming that the read of Global.x does not return
a null value). This is a reasonable expectation for each thread. In both the
example in which p.g is not final and the example in which the write to the
array occurs after the freeze of p.g, the read of a should be protected by the
freeze of o.f .

The way that this plays itself out in the formal semantics is very simple;
the freezes that are seen after you have followed a dereference chain are the
freezes seen by all of the final fields in that dereference chain.

9 Implementation Issues

9.1 Permitted Optimizations

The fundamental question under the aegis of implementation issues is a sim-
ple one: what reorderings can a compiler writer prise out of final fields? To
be more precise, we must address two issues: first, what are the reorderings

18

we are not allowed to perform that we might perform on normal fields? Sec-
ond, what are the reorderings we are allowed to perform that we may not
perform on normal fields?

9.1.1 Prohibited Reorderings

The most important guarantee that we make for the use of final fields is that
if an object is only made visible to other threads after its constructor ends,
then those other threads will see the correctly initialized values for its final
fields. It is therefore of paramount importance that a write of a reference to
a memory location where it might become visible to another thread never be
reordered with respect to a write to a final field. In addition, such a write
should never be reordered with anything reachable from a final field that was
written before the end of the constructor.

As an example of this, we look back at Figure 2. In this figure, the write
to pub in Thread 1 must never be reordered with respect to anything that
takes place before the read. If such a reordering occurred, then Thread 3
might be able to see the reference to the object without seeing the correctly
initialized final fields.

9.1.2 Enabled Reorderings

There is one principles that guides whether a reordering is legal for final
fields: the notion that “all references are created equal”. If a thread reads a
final field via multiple references to its containing object, it doesn’t matter
which one of those references is used to access the final field. None of those
references will make more guarantees about the contents of that final field
than any other. The upshot of this is that as soon as a thread sees a reference
to an object, it may load all of that object’s final fields, and reuse those
values regardless of intervening control flow, data flow, or synchronization
operations.

Consider once more the code in Figure 3. As soon as the read of pub.x
occurs, all of the loads of o’s final fields may occur; the reference pub.x of o
is “equal” to the reference pub.y of o. This might cause uninitialized values
to be seen for p.g and o.f , as the read of pub.x can occur before the freeze
of p.g.

This should not be taken to mean that normal fields reachable through
final fields can always be treated in the same way. Consider Figure 9. As

19

ready is a boolean volatile field, initialized to false.
a is an array.

Thread 1 Thread 2
a = 1,2,3; i = pub.x;
ready = true; j = i.f;
o.f = a; if (ready) {
pub.x = o; k = j[0];
freeze o.f; }

Figure 9: Happens Before Does Matter

a reminder, a happens before ordering is enforced between a write to and
a read of a volatile. In this figure, the volatile enforces a happens before
ordering between the write to the array and the read of j[0]: assuming that
the other reads see the correct values (which is not guaranteed), then k is
required to have the value 1.

9.2 Implementation on Weak Memory Orders

One of the problems with guaranteeing where writes are seen without explicit
lock and unlock actions to provide ordering is that it is not always imme-
diately obvious how the implementation will work. One useful thing to do
is consider how this approach might be implemented on a system where few
guarantees are given about memory coherence.

Imagine a Lazy Release Consistent (LRC) machine: a processor acquires
data when a lock action occurs, and releases it when an unlock action occurs.
The data “piggyback” on the lock acquire and release messages in the form of
“diffs”, a listing of the differences made to a given page since the last acquire
of that memory location.

Let us assume that each object with a final field is allocated in space that
had previously been free. The only way for a second processor to see a pointer
to that object at all is to perform an acquire after the processor constructing
the object performed a release. If the release and the acquire do not happen,
the second processor will never see a pointer to that object: in this case,
neither the object’s final fields nor anything reachable in a dereference chain
from its final fields will appear to be incorrectly initialized.

Let us now assume that the acquire and release do happen. As long as

20

q.this$0 and p.x are final

Thread 1 Thread 2
// in constructor for r = Global.b;
// p s = r.this$0;
q.this$0 = p; t = s.x;
freeze q.this$0;
p.x = 42;
freeze p.x;
Global.b = p;

t should be 42

Figure 10: Guarantees Should be made via the Enclosing Object

these actions take place after object has been constructed (and there is no
code motion around the end of the constructor), the diffs that the second
processor acquires are guaranteed to reflect the correctly constructed object.
This property makes implementation of final fields on a LRC-based DSM
possible.

A Guarantees Made by Enclosing Objects

Consider Figure 10. In Thread 1, the inner object q is constructed inside
the constructor for p. This allows a reference to p to be written before the
freeze of p.x. The reference is now tainted, according to our semantics: any
other thread reading it will not be guaranteed to see the correctly constructed
values for p.x.

However, Thread 2 is guaranteed not to see the final fields of p until after
p’s constructor completes, because it can only see them through the correctly
published variable Global.b. Therefore, it is not unreasonable to allow this
thread to be guaranteed to see the correct value for p.x.

In general, we want to change the semantics so that a freeze for an object
o is seen by a thread reading a final field o.f if o is only read through a
dereference chain starting at a reference that was written after the freeze of
o.f .

The change to the semantics that allows this is simple. We state that
when we read a reference to an object, the freezes seen by that read include

21

Initially, a.ptr points to b, and b.ptr points to a. a.o, b.o and obj.x are all
final.

Thread 1 Thread 2
b.o = obj; r1 = A.ptr;
freeze b.o; r2 = r1.o;
a.o = obj; r3 = r2.x
freeze a.o;
obj.x = 42;
freeze obj.x; s1 = B.ptr;
A = a; s2 = s1.o;
B = b; s3 = s2.x;

Figure 11: Cyclic Definition Causes Problems

the freezes seen by the object dereferenced to reach that read. Again, we
are changing the set freezeBeforeRead: the set of freezes seen at a read.
If, at read r of an address a, a is field x of the object at address c, then
freezeBeforeRead is:

freezeBeforeRead(r) = G ∪ {f | f hb→ r} ∪ freezesBeforeDereference(t, c)

The set freezesBeforeDereference(t, c) above becomes the empty set if no
object was dereferenced to read address a.

This formulation now makes the contents of freezesBeforeDereference(t, a)
for some address a dependent on the freezesBeforeDereference(t, c) for an ob-
ject c that has a reference to a. If c and a have references to each other, then
we have a cyclic definition: freezesBeforeDereference(t, a) is defined in terms
of freezesBeforeDereference(t, c), and freezesBeforeDereference(t, c) is defined
in terms of freezesBeforeDereference(t, a). This is obviously undesirable.

To resolve this correctly, we state that the freezesBeforeDereference(t, a)
set is the least fixed point solution to the equations that calculate both itself
and freezesBeforeDereference(t, a); these sets will then consist of the smallest
sets that satisfy these equations.

Consider Figure 11. Thread 2 correctly reads both A and B, and should,
as a result, see the correct result for the final field obj.x, when it is read in
both r3 and s3. This means that the freezesBeforeDereference(t, a) set and
the freezesBeforeDereference(t, b) set must both contain the freeze of obj.x.

22

To calculate the freezesBeforeDereference(t, a) set, we must take into con-
sideration all of the freezesBeforeDereference sets for the addresses through
which a is accessed. It is accessed through a pointer for b when it is read
at s2; we must therefore take into account the freezesBeforeDereference(t, b)
set.

To calculate the freezesBeforeDereference(t, b) set, we must take into con-
sideration all of the freezesBeforeDereference sets for the addresses through
which b is accessed. It is accessed through a pointer for a when it is read
at r2; we must therefore take into account the freezesBeforeDereference(t, a)
set. This gives us a cycle.

To break this cycle, we calculate the least fixed point solution to the
freezesBeforeDereference(t, a) equations. This should generate the appropri-
ate sets without introducing additional, unintended guarantees.

23

