JDEP 284H
Foundations of Computer Systems

Processor Architecture 1V:
Pipelined Implementation

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/JDEP284

Giving credit where credit is due

mMost of slides for this lecture are based on
slides created by Dr. Bryant, Carnegie
Mellon University.

m| have modified them and added new
slides.

Real-World Pipelines: Car Washes

Sequential Parallel

Idea
= Divide process into
independent stages
= Move objects through stages
in sequence
= At any given time, multiple
objects being processed

Computational Example

300 ps 20 ps
— Combinational | Delay = 320 ps
logic Throughput = 3.12 GOPS

Clock

System
= Computation requires total of 300 picoseconds
= Additional 20 picoseconds to save result in register
= Can must have clock cycle of at least 320 ps

3-Way Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. Comb. Comb. Delay = 360 ps
—> logic [ logic [ logic [ y = 360 p
Throughput = 8.33 GOPS
A B C
Clock
System

= Divide combinational logic into 3 blocks of 100 ps each
= Can begin new operation as soon as previous one passes
through stage A.
® Begin new operation every 120 ps
= Overall latency increases
@ 360 ps from start to finish

Pipeline Diagrams

Unpipelined

OP1 |
oP2 | |

OP3

= Cannot start new operation until previous one completes

Time

3-Way Pipelined

oP1| A ‘ B c

op2 Al |c]

oP3 A B ‘ C ‘
Time

—_—

= Up to 3 operations in process simultaneously

Page 1




Operating a Pipeline
12241][300] 5]
Clock

OP1
oP2
oP3 A [ B ©
f t t t t |
0 120 240 360 480 640
Time
100ps 20ps  100ps 20ps  100ps  20ps
Comb. Comb.
%’2 logic logic 7 =
A B

Clclck

Limitations: Register Overhead

50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps

iComb| IComb IComb IComb, IComb, IComb,
logic logic logic logic logic logic

Delay = 420 ps, Throughput = 14.29 GOPS

Clock

= As try to deepen pipeline, overhead of loading registers
becomes more significant
= Percentage of clock cycle spent loading register:

e 1-stage pipeline: 6.25%
® 3-stage pipeline:  16.67%
® 6-stage pipeline:  28.57%

= High speeds of modern processor designs obtained through
very deep pipelining

Data Hazards

L

Comb. Comb. R Comb.
=> logic [ logic [=>e™> logic [
A B g ©
\
oril[A[BJCKN Clock
oP2 A B [
OP3 B C
oP4 AlB]c]
Time

= Result does not feed back around in time for next operation
= Pipelining has changed behavior of system

Limitations: Nonuniform Delays

= Throughput limited by slowest stage
= Other stages sit idle for much of the time
= Challenging to partition system into balanced stages

50ps 20ps 150 ps 20 ps 100 ps 20 ps
omb | Comb. Comb. _
logic logic f—p logic [E— Delay = 510_ps
A B c Throughput = 5.88 GOPS
Clock
opr1|[A] B | C | e
oP2 [A] B c
oP3 Al B | c]
Time

Data Dependencies

L

Combinational
logic

Clock

oP2 < [y
oP3

Time

System
= Each operation depends on result from preceding one

10

Data Dependencies in Processors

[2 tmovi s50, Gean) |
[z a1 Geaxy, Gebm)
re

‘ 3 mrmovl 100( (kebx)),

%edx

= Result from one instruction used as operand for another
® Read-after-write (RAW) dependency

= Very common in actual programs

= Must make sure our pipeline handles these properly

® Get correct results
® Minimize performance impact

11

Page 2



SEQ Hardware .

= Stages occur in sequence

= One operation in process
atatime

Memory

Execute

-

®
B
._

Decode

Wit back

Fetch

13

SEQ+ Hardware

Memory

m Still sequential . -
implementation @
= Reorder PC stage to putat =" By |
beginning
PC Stage _:lvwv\
m Task is to select PC for

|

current instruction

m Based on results
computed by previous
instruction

Write back

Fetch

Processor State
m PCis no longer stored in
register
= But, can determine PC
based on other stored
information

14

Adding Pipeline Registers

Witeback Vil Wt W5 w_asod

Memory Memory

Execute —

Decode

15

ot v il v w s

Pipeline Stages

Memory

Fetch

= Select current PC

= Read instruction

= Compute incremented PC
Decode

= Read program registers
Execute

= Operate ALU
Memory

= Read or write data memory
Write Back

= Update register file

Feten

16

Write back

PIPE- Hardware

= Pipeline registers hold
intermediate values
from instruction
execution

Execute

Forward (Upward) Paths
= Values passed from one
stage to next
= Cannot jump past
stages
® e.g., valC passes
through decode

- EE

Decode

17

Write back

Feedback Paths

Predicted PC
= Guess value of next PC

Branch information
= Jump taken/not-taken

= Fall-through or target
address

Return point
= Read from memory

Decode

Register updates

= To register file write
ports

Page 3




Predicting the
PC

= Start fetch of new instruction after current one has completed
fetch stage
© Not enough time to reliably determine next instruction
= Guess which instruction will follow
@ Recover if prediction was incorrect

19

Our Prediction Strategy

Instructions that Don’t Transfer Control
= Predict next PC to be valP
= Always reliable

Call and Unconditional Jumps
= Predict next PC to be valC (destination)
= Always reliable

Conditional Jumps
= Predict next PC to be valC (destination)
= Only correct if branch is taken
® Typically right 60% of time
Return Instruction
= Don't try to predict

20

Recovering
from PC
Misprediction

= Mispredicted Jump
@ Will see branch flag once instruction reaches memory stage
® Can get fall-through PC from valA

m Return Instruction
o Will get return PC when ret reaches write-back stage

21

Pipeline Demonstration

[iz]sf«fsTe7]s]o]
irmovl  $1,%eax #I1 ‘ F ‘ D|E|M|W
irmovl  $2,%ecx #12 [FlplE[M][wW
irmovl  $3,%edx #I3 F|IDIE | M|W
irmovl  $4,%ebx 14 Flp|[E[M[wW]
halt #I5 F|D M ‘ W ‘
Cycle 5

I1

I2

I3

I4

15

LEEEE

22

Data Dependencies: 3 Nop’s

¥ proaive [l 2]af«fs[e[v]af[e]o[u]
0x000: irmovl $10,%edx ‘ Fl DIl E| M| W
0x006: irmovl $3,%eax \F D| E| M| W
0x00c: nop F|D| E[M|W
0x00d: nop F|D|E| M| W
0x00e: nop F|D| E| M| W
0x00f: addl %edx,%eax F| D| E Ml Wl
0x011: halt F| D E‘ M‘ W‘
Cycle 6
w
R[seax] <3
Cycle 7
D
valA <R[sedx] = 10
valB «<R[seax] =3
23

Data Dependencies: 2 Nop’s

[[z[a]a[s[s]7[e]e]nw]

# prog2.ys
0x000: irmovl $10,%edx ‘ Fl D|E| M| W
0x006: irmovl $3,%eax [FIp[E[M[W
0x00c: nop F| D| E[| M| W
0x00d: nop FI o]l E[ M[w]
0x00e: addl %edx,%eax F{D| E Ml Wl
0x010: halt F| D E‘ M‘ W‘
Cycle 6
w
Rl[seax] <3
D
valA «<R[sedx] = 19/ Error
valB «<R[seax] =0

Page 4




Data Dependencies: 1 Nop

Data Dependencies: No Nop

[ press e | Glelelelsl e[ o] el 17]
0x000: irmovl $10,%edx ‘ F‘ D|E| MW 0x000: irmovl $10,%edx ‘ F‘ D|E| M| W
0x006: irmovl §3,¥eax LFl o[ E[M]w 0x006: irmovl $3,%eax [Fl o[ E[™M[wW
0x00c: nop FIo[E[M[wW 0x00c: addl %edx, veax FI D[ E[ M[w]
0x00d: addl %edx, $eax FI|D|E|M ‘ 0x00e: halt F| D] E M‘ W‘
0x00£: halt F| o] E[ mM[ w]
Cycle 5 Cycle 4
W M
M_valE = 10
R[sedx <10 M_dStE = 3edx
M E
M valE = 3 evalE «0+3=3
M_dStE = veax E_dStE = yeax
. D
. L — E
. valA <Risead = 07 ] rer
valB «R[%eax = 0
D
L — E
valA «<R[3edx] 20: rer
valB «R[seax] =0 25 2
Branch Misprediction Example Branch Misprediction Trace of prog8
#prog8 1 2 3 4 5 6 7 8 9
prog8 with 3 nop’s inserted 0x000 xorl seax,5eax | F | D|E [M[W
0x002:  jne t # Not taken [Flo]e|m]w
0%000: xorl ¥eax,%¥eax 0x011: t: irmovl $3, %edx # Target | F |[D | E | M| W
) " 0x017 irmovl $4, tecx # Target+l FlopJeE[m]|w
:.|ne £ # Not taken 0%007 irmovl $1, ¥eax # Fall Through FID[E[M]wW]
irmovl $1, %eax # Fall through
nop
nop
nop
halt = Incorrectly execute two
irmovl $3, %edx # Target (Should not execute) instructions at branch target
irmovl $4, %ecx # Should not execute E
irmovl $5, %edx # Should not execute valE « 3
dSIE = yedx
= Should only execute first 7 instructions 2
valC =4
dStE = yecx
F
vaiC « 1
1B « %eax
27 28
Ret E |@ demo-ret:ys based on progt.ys Incorrect Return Example
eturn Example o
0x000: irmovl Stack,%esp # Intialize stack pointer 0x023: ret ‘ E ‘ DIE[M|wW
0x006: nop # Avoid hazard on %esp 0x024 irmovl $1,%eax # Oopsl‘ FID|E|M|W
0x007: nop 0x02a: irmovl $2,%ecx # Oops! F|I|D|E|M|W
0x008: nop 0x030 irmovl $3,%edx # Oops! F|D|E|M W‘
0x009: call p # Procedure call 0x00e irmovl $5,%esi # Return F|D|E|M ‘ w ‘
0x00e: irmovl $5,%esi # Return point
0x014: halt
0x020: .pos 0x20 n !ncorrec_tly execute_s
0x020: p: ret # procedure instructions following ret Wi
0x021: nop valM = 0xoe
0x022: nop ™M
0x023: nop valE =1
0x024: irmovl $1,%eax # Should not be executed dSIE = $eax
0x02a: irmovl $2,%ecx # Should not be executed E
0x030: irmovl $3,%edx # Should not be executed valE « 2
0x036: irmovl $4,%ebx # Should not be executed dstE = $ecx
0x100: .pos 0x100 D
0x100: Stack: # Stack: Stack pointer valc =3
dSIE = sedx
= Require lots of nops to avoid data hazards F
valC « 5
29 1B « tesi 30

Page 5




Pipeline Summary

Concept
= Break instruction execution into 5 stages
= Run instructions through in pipelined mode

Limitations
= Can't handle dependencies between instructions when
instructions follow too closely

= Data dependencies
@ One instruction writes register, later one reads it

= Control dependency
® Instruction sets PC in way that pipeline did not predict correctly
® Mispredicted branch and return

Fixing the Pipeline
= We'll do that next

31

Page 6



