JDEP 284H
Foundations of Computer Systems

Virtual Memory

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/JDEP284

Topics

mMotivations for VM
mAddress translation

mAccelerating translation with TLBs

Motivation #1: DRAM a “Cache” for Disk
Full address space is quite large:

= 32-bit addresses: ~4,000,000,000 (4 billion) bytes

m 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion)
bytes
Disk storage is ~300X cheaper than DRAM storage
= 80 GB of DRAM: ~ $33,000
= 80 GB of disk: ~ $110

To access large amounts of data in a cost-effective manner,
the bulk of the data must be stored on disk

168: ~$200 80 GB: ~$110
4 MB: ~$500
SRAM DRAM Disk

Giving credit where credit is due

mMost of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.

m| have modified them and added new
slides.

Motivations for Virtual Memory

Use Physical DRAM as a Cache for the Disk
= Address space of a process can exceed physical memory size
= Sum of address spaces of multiple processes can exceed
physical memory
Simplify Memory Management
= Multiple processes resident in main memory
® Each process with its own address space
= Only “active” code and data is actually in memory
® Allocate more memory to process as needed
Provide Protection
= One process can't interfere with another
® because they operate in different address spaces
= User process cannot access privileged information
o different sections of address spaces have different permissions

Levels in Memory Hierarchy

cache virtual memory
c
cPU |88 |a|l 328 Memory 4KB
:
e
Register Cache Memory Disk Memory
size: 32B 32 KB-4MB 1024 MB 100 GB
speed: 1ns 2ns 30 ns 8ms
$/Mbyte: $125/MB $0.20/MB $0.001/MB
line size: 8B 32B 4 KB

larger, slower, cheaper

Page 1

DRAM vs. SRAM as a “Cache”

DRAM vs. disk is more extreme than SRAM vs. DRAM
m Access latencies:
® DRAM ~10X slower than SRAM
® Disk ~100,000X slower than DRAM
= Importance of exploiting spatial locality:
® First byte is ~100,000X slower than successive bytes on disk

» vs. ~4X improvement for page-mode vs. regular accesses to
DRAM

= Bottom line:

@ Design decisions made for DRAM caches driven by enormous cost
of misses

SRAM I‘

DRAM Disk

Locating an Object in a “Cache”

SRAM Cache
m Tag stored with cache line
= Maps from cache block to memory blocks
® From cached to uncached form
o Save afew bits by only storing tag
= No tag for block not in cache
= Hardware retrieves information

® can quickly match against multiple tags
q y g p g “Cache”

Tag Data
Object Name 0. [D [243
N e,

Impact of Properties on Design

If DRAM was to be organized similar to an SRAM cache,
how would we set the following design parameters?
m Line size?
el arge, since disk better at transferring large blocks
m Associativity?
eHigh, to mimimize miss rate
= Write through or write back?
eWrite back, since can't afford to perform small writes to disk

What would the impact of these choices be on:
m miss rate
eExtremely low. << 1%
m hit time
®Must match cache/DRAM performance
= miss latency
eVery high. ~20ms
= tag storage overhead
eLow, relative to block size

Locating an Object in “Cache” (cont.)

DRAM Cache
= Each allocated page of virtual memory has entry in page table
= Mapping from virtual pages to physical pages
e From uncached form to cached form
= Page table entry even if page not in memory
® Specifies disk address
e Only way to indicate where to find page
= OS retrieves information

Page Table “Cache”

Location Data

Object Name o[o | 0: 243
3 o7

X: IN-1: 105

10

A System with Physical Memory Only
Examples:
m most Cray machines, early PCs, nearly all embedded systems, etc.

Memory

0:
il

Physical
Addresses

/—'

~—

I~

N-1]

m Addresses generated by the CPU correspond directly to bytes in
physical memory

11

A System with Virtual Memory

Examples: Memory
= workstations, servers, modern PCs, etc.
0:
Page Table 1
Virtual i
Addresses AZE)(ZISCS?JS
><;
S|
N-1.

= Address Translation: Hardware converts virtual addresses to
physical addresses via OS-managed lookup table (page table)

Page 2

Page Faults (like “Cache Misses”)

What if an object is on disk rather than in memory?
m Page table entry indicates virtual address not in memory
m OS exception handler invoked to move data from disk into
memory
® current process suspends, others can resume
@ OS has full control over placement, etc.
Before fault After fault

Memory

Memory

Page Table

Virtual
Addresses

Page Table

Virtual
Addresses

Physical
JAddresses| ..

13

Servicing a Page Fault

1) Initiate Block Read

Processor Signals Controller

Processor
= Read block of length P 3) Read
starting at disk address X and (Dgneea
store starting at memory
address Y
Read Occurs \
= Direct Memory Access (DMA) ‘ peTOTyHObuS ‘
= Under control of I/O controller (2) DMA \
Transfer| 1
1/ O Controller Signals Memory cffitroller
Completion
= Interrupt processor Disk Disk
= OS resumes suspended —_
process

14

Motivation #2: Memory Management

Multiple processes can reside in physical memory.

How do we resolve address conflicts?
= what if two processes access something at the same

address?
Kernel v memary | memery mvisivle to
%esp stack
t
. Memory mapped region
Linux/x86 forshared libraries
process 1
the “brk” ptr
memory runtime heap (via malloc)
image uninitialized data (.bss)
initialized data (.data)
program text (.text)
forbidden

15

Solution: Separate Virt. Addr. Spaces

= Virtual and physical address spaces divided into equal-sized
blocks

® blocks are called “pages” (both virtual and physical)
m Each process has its own virtual address space

® operating system controls how virtual pages as assigned to
physical memory

0

Virtual o[| Address Translation Physical
Address PP 2 Address
Space for (Space)

: DRAM
Process1:]

(e.g., read/only
EEW) library code)

Virtual
Address
————— [PP10
Space for
Process 2: -
oy M1

16

Contrast: Macintosh Memory Model

MAC OS 1-9
mDoes not use traditional virtual memory

P1 Pointer Table Shared Address Space

Prow, A
| 5

“Handles” P2 Pointer T; c
Process P.
— | D
—T®
E

All program objects accessed through “handles”
= Indirect reference through pointer table
= Objects stored in shared global address space

17

Page 3

Macintosh Memory Management

Allocation / Deallocation
m Similar to free-list management of malloc/free
Compaction

m Can move any object and just update the (unique) pointer in pointer
table

P1 Pointer Table Shared Address Space

B
Prow jrul
=i A
“Handle
P2 Pointg
(o]
Process P.
] D
E

Mac vs. VM-Based Memory Mgmt

Allocating, deallocating, and moving memory:
= can be accomplished by both techniques
Block sizes:
= Mac: variable-sized
® may be very small or very large
= VM: fixed-size
® size is equal to one page (4KB on x86 Linux systems)
Allocating contiguous chunks of memory:
= Mac: contiguous allocation is required

= VM: can map contiguous range of virtual addresses to
disjoint ranges of physical addresses

Protection

= Mac: “wild write” by one process can corrupt another’s data

19

MAC OS X

“Modern” Operating System
= Virtual memory with protection
= Preemptive multitasking

@ Other versions of MAC OS require processes to voluntarily
relinquish control

Based on MACH OS
= Developed at CMU in late 1980's

20

Motivation #3: Protection

Page table entry contains access rights information
= hardware enforces this protection (trap into OS if violation

occurs
) Page Tables Memory
Read? Write? Physical Addr 0
vPof ves J[No][PPo 1
Process i: |vpaf Yes |[ves || PP4 H
VP2 No][No [xxxxxxx] >
. . .]
Read? Write? Physical Addr /S
VP 0| Yes Yes PP 6 /
Process j: |vP 1 ves No PP 9 N-1.
VP2 No || No [Xxxxxxxx

21

VM Address Translation

Virtual Address Space
aVvV={0,1,.. N-1}

Physical Address Space
mP={0,1, .., M-1}
asM<N

Address Translation
s MAP: V- P U {&}
m For virtual address a:

® MAP(a) = a' if data at virtual address a s at physical
address &' in P

® MAP(a) =@ if data at virtual address a not in physical
memory

» Either invalid or stored on disk

22

VM Address Translation: Hit

Hardware -

Addr Trans

a Mechanism | ——— > Memory
S | *

virtual address part of the physical address
on-chip
memory mgmt unit (MMU)

23

Page 4

VM Address Translation: Miss

page fault

/|
j handler —‘
Hardware | @ _ v
Addr Trans ‘MMaln Secondary
a Mechanism | = —* emory o——| memory

yd \

virtual address part of the physical address [c,)ﬂss”[?;ﬁ’srgf
on-chip if mi
memory mgmt unit (MMU) (only if miss)

VM Address Translation

Parameters
m P = 2P = page size (bytes).
= N =2" = Virtual address limit
» M =2m = Physical address limit
n-1 p p-1 0
‘ virtual page number | page offset

virtual address

address translation

m-1 p p-1 0
‘ physical page number | page offset

physical address

Page offset bits don't change as a result of translation

25

Page Tables

Virtual Page Memory resident
Number page table
|:| (physical page .
valia o disk address) Physical Memory
1 -~
1 .
Q CL
1 o |
IEE— Y L
1 o \
0 LY
1 = >
0 « <[Disk Storage
1 Caal e N (swap file or
AN N regular file system file)
b)
N N
N A
\\ N
N

26

Address Translation via Page Table

page table base register

VPN acts
as
table inde;

virtual address
n-1 p p-1 0

‘ virtual page number (VPN) | page offset

valid access physical page number (PPN|

if valid=0
then page
not in memory

—

m-1 p p-1 0
physical page number (PPN)| page offset

physical address

27

Page Table Operation

Translation
= Separate (set of) page table(s) per process
= VPN forms index into page table (points to a page table entry)

page table base register

VPN acts

virtual address
p p-1 0
[virtual page number (veN) | page offset |

n-1

as
table index _iq access physical page number (PPN]

if valid=0
then page
not in memory

p—

m-1 pp
[physical page number (PPNJ

-1
page offset

physical address

28

Page Table Operation

Computing Physical Address
= Page Table Entry (PTE) provides information about page
e if (valid bit = 1) then the page is in memory.
» Use physical page number (PPN) to construct address
o if (valid bit = 0) then the page is on disk
» Page fault

page table base register

VPN acts

virtual address
n-1 p p-1 0
[virtual page number (vPN) | page offset

as
table index—"_ 1 access physical page number (PPN

if valid=0
then page
not in memory

—

m-1 p p-1

[physical page number (PPN)|

page offset

h
physical address 29

Page Table Operation

Checking Protection
m Access rights field indicate allowable access
e e.g., read-only, read-write, execute-only
e typically support multiple protection modes (e.g., kernel vs. user)
= Protection violation fault if user doesn’t have necessary
permission

page table base register

VPN acts
as

virtual address
n-1 p p-1 0
[virtual page number (vPN) | page offset

table index—" ;4 access physical page number (PPN

if valid=0
then page
notin memory

m-1 p p-1 0
physical page number (PPN)] _page offset

physical address

30

Page 5

Integrating VM and Cache

VA PA miss
CPU Trans- Cache Main
lation Memory
hit 17 ‘—l
data

Most Caches “Physically Addressed”
m Accessed by physical addresses
= Allows multiple processes to have blocks in cache at same time
= Allows multiple processes to share pages

= Cache doesn’t need to be concerned with protection issues
® Access rights checked as part of address translation

Perform Address Translation Before Cache Lookup
= But this could involve a memory access itself (of the PTE)
= Of course, page table entries can also become cached

31

Speeding up Translation with a TLB

“Translation Lookaside Buffer” (TLB)
= Small hardware cache in MMU
= Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of

pages
hit)
VA PA miss
TLB Main
cPU Lookup Cache Memory
miss l I hit
Trans-
lation
data

32

Address Translation with a TLB

n-1 p p-1 0
[virtual page number | page offset] virtual address

valid_tag_physical page number
e e e LB
T |
o]
TLB hit—@E—
I physical address]
tag index| l byte offset
alid_tag data
f] Cache
! |
T 1
cache hit—@&— | data

33

Simple Memory System Example

Addressing
m 14-bit virtual addresses
m 12-bit physical address
= Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO

PPN PPO

(Physical Page Number) (Physical Page Offset)

34

Simple Memory System Page Table

= Only show first 16 entries

VPN | PPN | Valid | VPN | PPN | Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 oc - 0
05 16 1 0D 2D 1
06 - 0 OE 11 1
07 — 0 OF 0D 1

35

Simple Memory System TLB

TLB
= 16 entries
= 4-way associative

10

13 12 11

9 8 7 6 5 4 3 2 1 0

VPN VPO
Set | Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid
0 03 - 0 09 | oD 1 00 - 0 07 | 02 1
1 03 | 20 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 | oD 1 0A | 34 1 02 - 0

36

Page 6

Simple Memory System Cache

Cache
= 16 lines
m 4-byte line size
= Direct mapped

1 10 9 8 7 6 5 4 3 2 1 0
N O I O
Idx Tag | Valid BO B1 B2 B3 Idx Tag | Valid BO B1 B2 B3
19 1 99 11 23 11 24 1 3A 00 51 89

00 02 04 08 93 15 DA 3B

09

04 96 34 15

83 7 1B D3

~lo|o|s|wv|e|o
w|w
8|8
mlolk|r|olrk|o
S
)
2
o
@
bl
|
nimlo|o|w|>|o|w
o
@

11 C2 DF 03

37

Address Translation Example #1

Virtual Address 0x03D4

6

13 12 11 10 9 8 7 5 4 3 2 1 0

VPN VPO
VPN__ TLBI__ TLBT TLB Hit? __ PageFault? __ PPN:

Physical Address

1 10 9 8 7 6 5 4 3 2 1 0
N N N O I
PPN PPO
Offset__ CI__ CT__ Hit?_ Byte:

38

Address Translation Example #2

Virtual Address 0x0B8F

6

13 12 11 10 9 8 7 5 4 3 2 1 0

VPN VPO
VPN__ TLBI__ TLBT TLB Hit? __ PageFault? __ PPN:

Physical Address

Address Translation Example #3

Virtual Address 0x0040

6

13 12 11 10 9 8 7 5 4 3 2 1 0

VPN VPO
VPN__ TLBI__ TLBT TLB Hit? __ PageFault? __ PPN:

Physical Address

1 10 9 8 7 6 5 4 3 2 1 0
N N N O I
PPN PPO
Offset__ CI__ CT__ Hit?_ Byte:

40

1 10 9 8 7 6 5 4 3 2 1 0
N N N B I I
PPN PPO
Offset__ C_ CT___ Hit? Byte:
39
Multi-Level Page Tables
. Level 2
Given: Tables
m 4KB (2%?) page size
m 32-bit address space
m 4-byte PTE
. Level 1
Problem: Table L

= Would need a 4 MB page table!
® 220*4 bytes

Common solution
= multi-level page tables
= e.g., 2-level table (P6)
® Level 1table: 1024 entries, each of
which points to a Level 2 page table.
® Level 2 table: 1024 entries, each of
which points to a page

41

Main Themes

Programmer’s View
= Large “flat” address space
@ Can allocate large blocks of contiguous addresses
= Process “owns” machine
® Has private address space
o Unaffected by behavior of other processes

System View
= User virtual address space created by mapping to set of
pages
® Need not be contiguous
® Allocated dynamically
e Enforce protection during address translation
= OS manages many processes simultaneously
@ Continually switching among processes
® Especially when one must wait for resource
» E.g., disk I/O to handle page fault

42

Page 7

